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Abstract—OCO-I (LOw COmplexity LOssless COmpression sample valuer;; by assigning a conditional probability dis-

for Images) is the algorithm at the core of the new ISO/ITU stan-  tribution P(-| «*) to it. Ideally, the code length contributed by

dard for lossless and near-lossless compression of continuous-tone ; . t\ hi ;
h . i X o 141 1S — log P(x 1) bits (hereafter, logarithms are taken
images, JPEG-LS. Itis conceived as a “low complexity projection” L g P(zig1]2") ( 9

of the universal context modeling paradigm, matching its mod- to the base 2), which averages to the entropy of the probabilistic

eling unit to a simple coding unit. By combining simplicity with the ~model. In asequentialformulation, the distribution(- | z*)
compression potential of context models, the algorithm “enjoys the is learned from the past and is available to the decoder as it

best of both worlds.” It is based on a simple fixed context model, decodes the past string sequentially. Alternatively,tim@pass
which approaches the capability of the more complex universal geheme the conditional distribution can be learned from the

techniques for capturing high-order dependencies. The model is . - .
tuned for efficient performance in conjunction with an extended WNOl€ image in a first pass and must be sent to the decoder as

family of Golomb-type codes, which are adaptively chosen, and an header information.

embedded alphabet extension for coding of low-entropy image re-  The conceptual separation between the modeling and coding

gions. LOCO-| attains compression ratios similar or superior to  gperations [9] was made possible by the invention ofettith-

those obtained with state-of-the-art schemes based on arithmetic atic codeg10], which can realize any probability assignment

coding. Moreover, it is within a few percentage points of the best P dictated by th del. t t . Th ;

available compression ratios, at a much lower complexity level. We ( |-), dic "?1 €d by the moael, o a preset precision. es_e Wo

discuss the principles underlying the design of LOCO-I, and its Milestones in the development of lossless data compression al-

standardization into JPEG-LS. lowed researchers to view the problem merely as one of prob-
Index Terms—Context modeling, geometric distribution, ability assignment, concentrating on the design of imaginative

Golomb codes, lossless image compression, near-lossless compregiodels for §pecific_ applications (e.g_., image comp_res_sio_n) with
sion, standards. the goal of improving on compression ratios. Optimization of

the sequential probability assignment process for images, in-
spired on the ideas afniversal modelingis analyzed in [11],
where a relatively high complexity scheme is presented as a way

OCO-I (LOw COmplexity LOssless COmpression for Imto demonstrate these ideas. Rather than pursuing this optimiza-

ages) is the algorithm at the core of the new I1SO/ITtlon, the main objective driving the design of LOCO-I is to sys-
standard for lossless and near-lossless compression of cortématically “project” the image modeling principles outlined in
uous-tone images, JPEG-LS. The algorithm was introduced[iri1] and further developed in [12], into a low complexity plane,
an abridged format in [1]. The standard evolved after successfusth from a modeling and coding perspective. A key challenge
refinements [2]-[6], and a complete specification can be fouml this process is that the above separation between modeling
in[7]. However, the latter reference is quite obscure, and it omisid coding becomes less clean under the low complexity coding
the theoretical background that explains the success of the algonstraint. This is because the use of a generic arithmetic coder,
rithm. In this paper, we discuss the theoretical foundations which enables the most general models, is ruled out in many
LOCO-I and present a full description of the main algorithmifow complexity applications, especially for software implemen-
components of JPEG-LS. tations.

Lossless data compression schemes often consist of twdmage compression models customarily consisted of a fixed
distinct and independent componentsodelingand coding  structure, for which parameter values were adaptively learned.
The modeling part can be formulated as an inductive infeThe model in [11], instead, is adaptive not only in terms of the
ence problem, in which the data (e.g., an image) is observesrameter values, but also in structure. While [11] represented
sample by sample in some predefined order (e.g., raster-saae, best published compression results at the time (at the cost
which will be the assumed order for images in the sequeff high complexity), it could be argued that the improvement
At each time instant, and after having scanned past dataver the fixed model structure paradigm, best represented by
xt = w1z, ...z, ONE wishes to make inferences on the nexthe Sunset family of algorithms [13]-[16], was scant. The re-

) ) i search leading to the CALIC algorithm [17], conducted in par-
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complex version of the algorithm [18]. More recently, the samess mode, while Section V discusses variations to the basic
observation applies to the TMW algorithm [19], which adoptsonfiguration, including one based on arithmetic coding, which
a multiple-pass modeling approach. Actually, in many applichas been adopted for a prospective extension of the baseline
tions, a drastic complexity reduction can have more practicH’EG-LS standard. In Section VI, compression results are re-
impact than a modest increase in compression. This observatanted for standard image sets. Finally, an Appendix lists var-
suggested that judicious modeling, which seemed to be reachioigs additional features in the standard, including the treatment
a point of diminishing returns in terms of compression ratiosf color images.
should rather be applied to obtain competitive compression atWhile modeling principles will generally be discussed in ref-
significantly lower complexity levels. erence to LOCO-I as the algorithm behind JPEG-LS, specific
On the other hand, simplicity-driven schemes (e.g., the maktscriptions will generally refer to LOCO-I/JPEG-LS, unless
popular version of the lossless JPEG standard [20]) propasgplicable to only one of the schemes.
minor variations of traditional DPCM techniques [21], which
include Huffman coding [22] of prediction residuals obtained
with some fixed predictor. These simpler techniques are fun-
damentally limited in their compression performance by th& Model Cost and Prior Knowledge
first order entropy of the prediction residuals, which in general
cannot achieve total decorrelation of the data[23]. The Compra)f

Il. M ODELING PRINCIPLES AND LOCO-I

In this section, we review the principles that guide the choice

sion gap between these simple schemes and the more com frodel and, consequently, the resulting probability assigr_1-
ones is significant, although the FELICS algorithm [24] can be%)ﬁt scheme. In state-of-the-art lossless image compression
considered a first’step in bridging this gap, as it incorporatSChemeS'. this probability assignment is generally broken into
o : ' five following components.
adaptivity in a low complexity framework. o i ] ]
While maintaining the complexity level of FELICS, LOCO-I 1) A prediction step, in which a Val@'ﬂrl is guessed for
attains significantly better compression ratios, similar or supe- (1€ néxt sample:,, based on a finite subset (ausal
rior to those obtained with state-of-the art schemes based on  t€mplatg of the available past datet.
arithmetic coding, but at a fraction of the complexity. In fact, 2) 1he determination of @ontextin which z.., occurs.
as shown in Section VI, when tested over a benchmark set of 1€ contextis, again, a function of a (possibly different)
images of a wide variety of types, LOCO-I performed within causal template. o _
a few percentage points of the best available compression ras) A probab|l|stA|c model for therediction residua(or error
tios (given, in practice, by CALIC), at a much lower complexity ~ Signal)e.41 = @:41 — 241, conditioned on the context
level. Here, complexity was estimated by measuring running of z41.
times of software implementations made widely available by tfgis structure was pioneered by the Sunset algorithm [13].
authors of the respective algorithms. Model Cost: A probability assignment scheme for data
In the sequel, our discussions will generally be confined tmmpression aims at producing a code length which approaches
gray-scale images. For multicomponent (color) images, thiee empirical entropy of the data. Lower entropies can be
JPEG-LS syntax supports both interleaved and noninterleaathieved through higher order conditioning (larger contexts).
(i.e., component by component) modes. In interleaved modémwever, this implies a larger numbéf of parameters in the
possible correlation between color planes is used in a limitsthtistical model, with an associatedodel cost[27] which
way, as described in the Appendix. For some color spaces (eapyld offset the entropy savings. This cost can be interpreted
an RGB representation), good decorrelation can be obtairesicapturing the penalties of “context dilution” occurring when
through simple lossless color transforms as a pre-processgaayint statistics must be spread over too many contexts, thus
step to JPEG-LS. Similar performance is attained by moadfecting the accuracy of the corresponding estimates. The
elaborate schemes which do not assume prior knowledge of flex-sample asymptotic model cost is given(B§logn)/(2n),
color space (see, e.g., [25] and [26]). wherer is the number of data samples [28]. Thus, the number
JPEG-LS offers alossy mode of operation, termed “near-logd-parameters plays a fundamental role in modeling problems,
less,” in which every sample value in a reconstructed imageverning the above “tension” between entropy savings and
component is guaranteed to differ from the corresponding valo®del cost [27]. This observation suggests that the choice of
in the original image by up to a preset (small) amountin  model should be guided by the use, whenever possible, of
fact, in the specification [7], the lossless mode is just a spec@lailable prior knowledgeon the data to be modeled, thus
case of near-lossless compression, Witk 0. This paper will avoiding unnecessary “learning” costs (i.e., overfitting). In
focus mainly on the lossless mode, with the near-lossless caseontext model, K is determined by the number of free
presented as an extension in Section IV. parameters defining the coding distribution at each context and
The remainder of this paper is organized as follows. Sectiorldy the number of contexts.
reviews the principles that guide the choice of model in loss- Prediction: In general, the predictor consists of a fixed
less image compression, and introduces the basic componamd an adaptive component. When the predictor is followed
of LOCO-I as low complexity projections of these guiding prinby a zero-order coder (i.e., no further context modeling is per-
ciples. Section Ill presents a detailed description of the basamed), its contribution stems from it being the only “decor-
algorithm behind JPEG-LS culminating with a summary of alielation” tool. When used in conjunction with a context model,
the steps of the algorithm. Section IV discusses the near-loeswever, the contribution of the predictor is more subtle, espe-
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cially for its adaptive component. In fact, prediction may seeiotically optimal in a certain broad class of processes used to
redundant at first, since the same contextual information thatmodel the data [30].

used to predict is also available for building the coding model,

which will eventually learn the “predictable” patterns of the datB. Application to LOCO-I

and assign probabilities accordingly. The use of two different In this section, we introduce the basic components of LOCO-|

modeling tools based on the same contextual information is ap: complexity projections of the guiding principles pre-
alyzed in [12], and the interaction is also explained in terms nted in Section I1-A. The components are described in detail

model cost. The first observation, is that prediction turns out ﬁq Section IlI
reduce the number of coding parameters needed for modeling” o o ictor: The predictor in LOCO-l is context-de-
high order dependencies. This is due to the existence of multipl ndent, as in [11]. It also follows classical autoregressive
conditional distributions that are similarly shaped but center R) mo’dels including an affine term (see, e.g., [Z[his

at different values. By predicting a_det_erministic, context-d Hine term is' adaptively optimized, while tr'1e de'pendence on
pendent value, ., for z.,, and considering the (context)-cony, surrounding samples is through fixed coefficients. The
ditional probability distribution of the prediction residual., fixed component of the predictor further incorporates prior
rather than that of,; itself, we allow for similar probability

distributi hich be all tered at tknowledge by switching among three simple predictors, thus
IStributions one, Which may now be all centered at zero, Qesulting in a nonlinear function with a rudimentary edge

metrglg\? in sit#_?ti?hnsf\_/vhgn the originf\l ?:rs]tributicci)_nfaowould _Fetecting capability. The adaptive term is also referred to as
not. Now, while the fixéd component ot the predictor can easily;, ; cancellation,” due to an alternative interpretation (see
be explained as reflecting our prior knowledge of typical Stru%’ection lII-A)

tures in the data, leading, again, to model cost savings, the main Context Model: A very simple context model, determined

c_ontribution in_ [12]is to _analyze the adaptive component. N quantized gradients as in [11], is aimed at approaching the
tice that adaptive prediction also learns patterns through a mo bability of the more complex universal context modeling tech-

i y ) .
(with a numherK" of parameters), which has an associat gues for capturing high-order dependencies. The desired small

I(_earning cost. This cost ShOL."d be Wei.ghted against the PotRlimber of free statistical parameters is achieved by adopting,
tial savings of0(K (log n)/n) in the coding model cost. Afirst 00 o5 \well, a TSGD model, which yields two free parameters
indication that this trade-off might be favorable is given by the .~ .0+ ’ ’

predictability bound in [29] (analogous to the coding bound i Coder: In a low complexity framework, the choice of a

.[28])’ which ShO.WS _that the per-_sample m_O(_jEI °°§t for predictio[réGD model is of paramount importance since it can be effi-
is O(K’/n), which is asymptotically negligible with respect tociently encoded with an extended family of Golomb-type codes
the coding model cost. The results in [12] confirm this intuitio

I[132] which are adaptively selected [33] (see also [34]). The
and show that itis worth mcre;asnfg V.Vh”e redqcmgK. Asa n-line selection strategy turns out to be surprisingly simple,
result, [12] proposes the basic paradigm of using a large mo ?lld it is derived by reduction of the family of optimal prefix
for adaptive prediction which in turn allows for a smaller mod odes for TSGDs [35]. As a result, adaptive symbol-by-symbol
for :;gaptlve coding. This paradigm is also applied, for 'nStanCc?oding is possible at very low complexity, thus avoiding the use
in [17]. of the more complex arithmetic coderdn order to address

Parametric Distributions: Prior knowledge on th_e Struc'fthe redundancy of symbol-by-symbol coding in the low entropy
ture of images to be compressed can be further utilized by rlﬁnge (“flat’ regions), an alphabet extension is embedded in

ting parametric distributions with few parameters per contextin. " o del (‘run” mode). In JPEG-LS, run lengths are adap-
the data. This approach allows for a larger number of conteﬁ y '
7

. : - . ely coded usinglock-MELCODE an adaptation technique
to capture higher order dependencies without penalty in ove } Golomb-type codes [2], [36]
model cost. Although there is room for creative combinations, f '

i : L . >’ Summary: The overall simplicity of LOCO-I/JPEG-LS
the widely accepted observation [21] that prediction re&duals&gn be mainly attributed to its success in matching the

contl_nuqus_-ton_e images are well m_odeled byve-sided geo- complexity of the modeling and coding units, combining
meiric distribution(TSGD) makes this model very appealing IrEimplicity with the compression potential of context models,

image coding. .lt is used in [11] and requires only WO paramegs, o “enjoying the best of both worlds.” The main blocks of the
ters (representing the rate of decay and the shift from zero) %%orithm are depicted in Fig. 1, including the causal template

context, as discussed in Section lll-B1. actually employed. The shaded area in the image icon at the

The optimization of the above modeling steps, inspired 9Bft of the figure represents the scanned past datan which

the ideas of universal modeling, is demonstrated in [11]. In tr\b?ediction and context modeling are based, while the black dot

scheme, thi con;cﬁxt f%*tl Its determined dO;Jt O;.d'ﬁerfrcesrepresents the sample, currently encoded. The switches
?tf - x?{H.W ?_re q N pa'rft“ ])I ctorres_potn <<1aEJa%e;ﬁ 0Ca-|apeledmodeselect operation in “regular” or “run” mode, as
lons within a fixed causa emplate, with t; < ¢. Each differ- determined fromx! by a simple region “flatness” criterion.

ence is adaptively quantized based on the concept of stochastic
complexity [27], to achieve an optimal number of contexts. The2a specific linear predicting function is demonstrated in [11], as an example
prediction step is accomplished with an adaptively optimized, the general setting. However, all implementations of the algorithm also in-

context-dependent function of neighboring sample values (st fsagsal%zg{:a‘%h'[ﬂ 'T)eggg}ated through the average of past prediction

[11’ (Eq 32)]) The prediCtion reSiduajls’ modeled by a TSGD@The use of Golomb codes in conjunction with context modeling was pio-
are arithmetic-encoded and the resulting code length is asymgered in the FELICS algorithm [24].
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context

i image pred[cffon * pred. ermrs,é
- d | samples L\ _errors Context | code spec. i | Golomb
TS ST Modeler |3 7| Coder
x : : :
a —> Pfg‘ic? " predicted 1
o i p Gradients cdicto values
l | Adaptive
Flat i " |Correction
e | (e | Predictor , compressed
. l ) . . P‘(’gf.llﬂ? regu C";‘ b ! ”
samples i: : : \_ istream
mode run image run [engrhs‘,é run I mode
: samples Run [ codespec. i | Run
Counter | "] Coder
Fig. 1. JPEG-LS: Block diagram.
[ll. DETAILED DESCRIPTION OFJPEG-LS fixed predictorsga, b, anda + b — ¢. Combining both interpre-

gﬁions, this predictor was renamed during the standardization
process “median edge detector” (MED).

As for the integer adaptive term, it effects a context-depen-
dent translation. Therefore, it can be interpreted as part of the
estimation procedure for the TSGD. This procedure is discussed

in Section 1I-B. Notice that/ is employed in the adaptive part
of the predictor, but not in (1).

The prediction and modeling units in JPEG-LS are based
the causal template depicted in Fig. 1, wherelenotes the
current sample, and, b, ¢, andd, are neighboring samples in
the relative positions shown in the figurélhe dependence of
a, b, c,d, andz, on the time index has been deleted from the
notation for simplicity. Moreover, by abuse of notation, we wil
usea, b, ¢, d, andx to denote both thealuesof the samples and
theirlocations By using the template of Fig. 1, JPEG-LS limits

its image buffering requirement to one scan line. B. Context Modeling
As noted in Section II-A, reducing the number of parameters
A. Prediction is a key objective in a context modeling scheme. This number

Ideally, the value guessed for the current samplghould is d_eternjingd py the number of free parameters defining the
depend o, b, ¢, andd through an adaptive model of the IocaFOd'ng distribution at each context and by the number of con-
edge direction. While our complexity constraints rule out thi§Xts- o
possibility, some form of edge detection is still desirable. In 1)_Parameterization: .
LOCO-I/JPEG-LS, a fixed predictor performs a primitive test ~ 1>GD Model: Itis awidely accepted observation [21] that
to detect vertical or horizontal edges, while the adaptive pép[e global s_tatlstlcs of residuals from a fixed predictor in contin-
is limited to aninteger additive term, which is context-de- Uous-toneimages are well-modeled by a TSGD centered at zero.
pendent as in [11] and reflects the affine term in classicAfcording to.th_|s dlstnbgnon,the probablhty of aninteger value
AR models (e.g., [31]). Specifically, the fixed predictor irf Of the prediction error s proportional 8!, whered € (0,1)

LOCO-I/JPEG-LS guesses controls the two-sided exponential decay rate. However, it was
observed in [15] that a dc offset is typically presentcion-
min(a,b), if ¢ > max(a,b) text-conditionedprediction error signals. This offset is due to
#MED 2 max(a,b), if ¢ < min(a,b) (1) integer-value constraints and possible bias in the prediction step.
a+b—c, otherwise. Thus, a more general model, which includes an additiofisét

parametery, is appropriate. Letting: take noninteger values,
The predictor (1) switches between three simple predictorstliie two adjacent modes often observed in empirical context-de-
tends to pickb in cases where a vertical edge exists left of theendent histograms of prediction errors are also better captured
current locationg in cases of an horizontal edge above the cuby this model. We break the fixed prediction offset into an in-
rent location, ora + b — c if no edge is detected. The latterteger part® (or “bias”), and a fractional past (or “shift”), such
choice would be the value of if the current sample belongedthat;: = R — s, where0 < s < 1. Thus, the TSGD parametric
to the “plane” defined by the three neighboring samples witHassF ,,), assumed by LOCO-I/JPEG-LS for the residuals of
“heights” a, b, andc. This expresses the expected smoothnet¥e fixed predictor at each context, is given by
of the image in the absence of edges. The predictor (1) has been
ysed in imgge compression applic_ations [37], under a different Ploo(e) = C(0, 3)9|F—R+S|’ c=0,4+1,42,... (2)
interpretation: The guessed value is seen astbeianof three ’
whereC(6, s) = (1 —6)/(*~* +6°) is a normalization factor.
4 N o . The biasR calls for an integer adaptive term in the predictor.
The causal template in [1] includes an additional samplg/est ofa. This

location was discarded in the course of the standardization process as its cohithe Sequel’ we aSS!Jme that this term '.S tgned to caficel
bution was not deemed to justify the additional context storage required [4]. producing average residuals between distribution modes located
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Posl€) the prediction errors incurred in previous encodings. By sym-
<« metryé ¢, g2, and gz influence the model in the same way.
Since further model size reduction is obviously needed, each
. differencey;,j = 1,2, 3, is quantized into a small number of
S e approximatelyequiprobable connected regions by a quantizer
RO #(-) independent ofj. This quantization aims at maximizing
.- el the mutual informationbetween the current sample value and
... .. its context, an information-theoretic measure of the amount of
S : : e information provided by the conditioning context on the sample
-3 -2 -1 —s 0 1 2 € value to be modeled. We refer to [11] and [12] for an in-depth
theoretical discussion of these issues.

In principle, the number of regions into which each context
difference is quantized should be adaptively optimized. How-
at 0 and—1 (see Section 11I-B3). Consequently, after adaptivever, the low complexity requirement dictates a fixed number of
prediction, the model of (2) reduces in LOCO-I/JPEG-LS to “equiprobable” regions. To preserve symmetry, the regions are

indexed—7,...,—1,0,1,...,T, with k(g) = —x(—g), for a
Poo(e) = C0, )81 e=0,+1,42,... () total of (27" + 1) different contexts. A further reduction in the

. number of contexts is obtained after observing that, by sym-
where0 < 8 < 1 and0 < s < 1, as above. This reduced range;netry it is reasonable to assume that

for the offset is matched to the codes presented in Section IlI-C,
but any unit interval could be used in principle (the preference Prob{ess1 = A|Cy = [q1, 2. a3]}

of —1 over +1 is arbitrary). The model of (3) is depicted in _ Prob C ALC = g —a
Fig. 2. The TSGD centered at zero corresponds o 0, and, = Probies, = |G =[-q1, —g2, —asl}

whens 1/2’P(9.75) is a bi-modal distribution with _equ_al p.eakswhere C, represents the quantized context triplet apd=
at —1 and 0. Notice that the parameters of the distribution ar ) ; ' .
. . : {g;),7=1,2,3. Hence, if the first nonzero element 6% is

context-dependent, even though this fact is omitted by our nota~"’’. : : )
é}?gatwe, the encoded value-ig;,1, using context-C;. This

tion. Two-sided geometric distributions are extensively studi i anticipated by the decoder, which flips the error sign if nec-

in [33]-[35]. Their low complexity adaptive coding is furtheressar to obtain the original error value. By merging contexts of
investigated in [38]. The application of these low complexity y 9 =Y ging

techniques to LOCO-I/JPEG-LS is studied in Section IlI-C. opposite signs,” the total number of contexts becoi{es” +

3
Error Residual Alphabet in JPEG-LSThe image al- 1°+1)/2.

phabet, assumed infinite in (3), has a finite sizén practice. Contexts in JPEG-LSFor JPEG-LST" = 4 was se-
' T ' ) lected, resulting in 365 contexts. This number balances storage
For a given predictionz, ¢ takes on values in the range

—% < e < a — Z. Sincez is known to the decoder, the actuarequwements (whph are roughly_propomonal to the number
- . of contexts) with high-order conditioning. In fact, due to the
value of the prediction residual can be reduced, modulo

t0 a value betweer-|a/2] and [«/2] — 1. This is done in parametric model of (3), more contexts could be afforded for

LOCO-I/JPEG-LS, thus remapping large prediction residua'frs]emum_Slzed o large images, W'tho.Ut INCUITING an Excessive
. e e .model cost. However, the compression improvement is mar-
to small ones. Merging the “tails” of peaked distributions with .

their central part does not significantly affect the two-side%Inal and does not justify the increase in resources [4]. For

geometric behavior. While this observation holds for smooﬁ{na." Images, it is possible to reduce the_ number of contexts
within the framework of the standard, as discussed below.

images, this remapping i_s especially suited alsc_)_for, €91 complete the definition of the contexts in JPEG-LS
compound documents, as it assigns a large probability to Shﬁ”?emains to specify the boundaries between quantizatic;n

transitions. In the common case = 27, it consists of just ; : .
interpreting the3 least significant bits of in 2's complement regions. For an 8-bit/sample alphabet, the default quantization
regions are{0}, +{1,2}, £{3,4,5,6}, £{7,8,...,20},

representatiop. Since « is typically quite large, we will ! :
. . e > . -
continue to use the infinite alphabet model (3), although tﬁz{e | e > 21}. However, the boundaries are adjustable param

reducedprediction residuals, still denoted ky belong to the e?ers_, except t_hat the central region mUSt be_ {0} In parfucul_ar,
- a suitable choice collapses quantization regions, resulting in a
finite range[—| /2], [a/2] — 1]. . . o
Sl smaller effective number of contexts, with applications to the
2) Context Determination:

General Approach:The context that conditions the en-compression of small images. For example, a model with 63

coding of the current prediction residual in JPEG-LS is buiﬁ.omeXtS(T.: 2), was fOL.md tq work best for thel x G4-tile
. size used in the FlashPix™ file format [40]. Through appro-
out of the differenceg;, = d — 0, go = b — ¢, andgz = ¢ — a.

These differences represent the local gradient, thus capturing%‘gte scaling, defe_lult boundary values are also provided for
eneral alphabet sizes[3], [7].

level of activity (smoothness, edginess) surrounding a samp(i’eg) Adaptive Correction:As mentioned in Sections IlI-Aand

which governs the statistical behavior of prediction errors. No- . : : .
tice that this approach differs from the one adopted in the Sunﬁs)”e_tBl’ the adaptive part of the predictor is context-based and it

family [16] and other schemes, where the context is built out oféHere, we assume that the class of images to be encoded is essentially sym-
metric with respect to horizontal/vertical, left/right, and top/bottom transposi-
5A higher complexity remapping is discussed in [39]. tions, as well as the sample value “negation” transformatien (o —1 —x).

Fig. 2. Two-sided geometric distribution.
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is used to “cancel” the integer pakt of the offset due to the B=B+e¢ /% accumulate prediction residual */
fixed predictor. As a result, the context-dependent shift inthe N =N +1; /* update occurrence counter */
distributions (3) was restricted to the range< s < 1. This /* update correction value and shift statistics */

if ( B<-N) {
C=C-1;B=B+N;
if (B<-N) B=—-N+1;

section discusses how this adaptive correctiorb{as cancel-
lation) is performed at low complexity.

Bias Estimation: In principle, maximum-likelihoodML)
estimation ofR in (2) would dictate a bias cancellation proce- else if ( B>0) {
dure based on thmedianof the prediction errors incurred so far C=C+1;B=B-N;
in the context by the fixed predictor (1). However, storage con- if ( B>0) B=0;
straints rule out this possibility. Instead, an estimate based onthe }
averagecould be obtained by just keeping a codbf context
occurrences, and a cumulative sithof fixed prediction errors
incurred so far in the context. Thencarrection valueC’ could

be computed as the rounded average complexity subfamily of the family of optimal prefix codes for
o' — ID/N 4 TSGDs, recently characterized in [35]. The coding unit also
= [D/N] ) implements a low complexity adaptive strategystmuentially

and added to the fixed predictigngp, to offset the prediction selegt a code among the above sub-fa_mil_y. In thi; _subsection,
bias. This approach, however, has two main problems. First discuss the codes of [35] and the principles guiding general
requires a general division, in opposition to the low complexifgdaPtation strategies, and show how the codes and the princi-
requirements of LOCO-I/JPEG-LS. Second, it is very sensitif€S are simplified to yield the adopted solution.

to the influence of “outliers,” i.e., atypical large errors can affect 1) (“?olomb Codes and Optimal Prefix Codes for the
future values of”” until it returns to its typical value, which is TSGD: The optimal codes of [35] are based Golomb codes

quite stable. [32], whose structure enables simple calculation of the code
To solve these problems, first notice that (4) is equivalent t°rd of any given sample, without recourse to the storage of
code tables, as would be the case with unstructured, generic
D=N.C'+B Huffman codes. In an adaptive mode, a structured family of
codes further relaxes the need of dynamically updating code
where the integeB’ satisfies—N < B’ < 0. Itis readily ver- tables due to possible variations in the estimated parameters
ified, by setting up a simple recursion, that the correction valygee, e.g., [41]).
can be implemented by storidgf andC”, and adjusting bothfor  Golomb codes were first described in [32], as a means for
each occurrence of the context. Téwrectedprediction erroe  encoding run lengths. Given a positive integer parameter
is first added ta3’, and thenV is subtracted or added until thethe mth order Golomb cod&?,,, encodes an integay > 0

result is in the desired rande- NV, 0]. The number of subtrac- in two parts: aunary representation ofy/m], and amodified
tions/additions ofV prescribes the adjustment f6Y. binary representation of mod m (using [logm | bits if y <
Bias Computation in JPEG-LSThe above procedure isalles™1 _ , and [logm] bits otherwise). Golomb codes are
further modified in LOCO-I/JPEG-LS by limiting the numberoptimal [42] forone-sided geometric distributio®SGDs) of
of subtractions/additions to one per update, and then “forcingiie nonnegative integers, i.e., distributions of the ftm6)6¥,
the value ofB’ into the desired range, if needed. Specificallyvhere0 < # < 1. Thus, for eveny there exists a value of,
C’ and B’ are replaced by approximate valuesand B, re-  such that@,, yields the shortest average code length over all
spectively, which are initialized to zero and updated accordingiquely decipherable codes for the nonnegative integers.
to the division-free procedure shown in Fig. 3 (in C-language The special case of Golomb codes with = 2* leads to
style). The procedure increments (resp. decrements) the corigsy simple encoding/decoding procedures: the codeyfir
tion valueC each timeB > 0 (resp.B < —N). Atthis time, constructed by appending tikdeast significant bits of to the
B is also adjusted to reflect the change(in|f the increment unary representation of the number formed by the remaining
(resp. decrement) is not enough to brifigo the desired range higher order bits of; (the simplicity of the caser = 2* was
(i.e., the adjustment i6’ was limited),B is clamped to O (resp. already noted in [32]). The length of the encodingsis- 1 +
—N + 1). This procedure will tend to produce average prediciy/gkjl We refer to code&?,. asGolomb-power-of-2GP0O?2)
tion residuals in the intervdl-1, 0], with C serving as an esti- ¢codes.
mate (albeit not the ML one) dk. Notice that-B/N isanes-  |n the characterization of optimal prefix codes for TSGDs
timate of the residual fractional shift parametgagain, notthe in [35], the parameter spadé, s) is partitioned into regions,
ML one). To reduce storage requiremeiss notincremented and a different optimal prefix code corresponds to each region
(resp. decremented) over 127 (resp. und&g8). Mechanisms (s < 1/2 is assumed, since the case> 1/2 can be reduced
for “centering” image prediction error distributions, based ofp the former by means of the reflection/shift transformation
integer offset models, are described in [15] and [17]. ¢ — —(e+1) on the TSG-distributed variabig. Each region is
) associated with amth order Golomb code, where the parameter
C. Coding m is a function of the values #fands in the region. Depending
To encode corrected prediction residuals distributed agn the region, an optimal code from [35] encodes an integer
cording to the TSGD of (3), LOCO-I/JPEG-LS uses a minimadither by applying a region-dependent modificatiogf to|¢|,

Fig. 3. Bias computation procedure.
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followed by a sign bit whenever= 0, or by usingG,,,(M(¢)), GPO2 codes. Furthermore, only codes based on the mappings
where M(-)yandM'(-) (for s < 1/2 ands > 1/2, respectively) are
used. We denotB(e) = Gy (M(€)). The mappingV’'(-) is
M(e) =2|e] —u(e) () relevant only fork = 0, sincel'x(¢) = x(—e — 1) for every
k > 0. Thus, the sequential code selection process in LOCO-
I/dJPEG-LS consists of the selection of a Golomb paramnigter
nd in casé = 0, amapping¥/(-) or M’(-). We further denote
Ne) = G1(M(e)).
The above subfamily of codes, which we dendtespresents
a specific compression-complexity trade-off. It is shown in [35]
%at the average code length with the best codé is within

and the indicator functiom(e¢) = 1 if ¢ < 0, or 0 otherwise.
Codes of the first type are not used in LOCO-I/JPEG-LS, al
are not discussed further in this paper. Instead, we focus on
mapping M (¢), which gives the index of in the interleaved

sequencd, —1,1,—2,2,.... This mapping was first used by
Rice in [39] to encode TSGDs centered at zero, by applyin

GPO2 code td/(c). Notice thatld () is a very natural mapping about 4.7% of the optimal prefix codes for TSGDs, with largest

unde_r the a_ssumpt_lom < 1/2, since it s_c_)rts prediction res'd.'deterioration in the very low entropy region, where a different
uals in nonincreasing order of probability. The correspondin

mapping fors > 1/2 is M"(e) = M(—e — 1), which effects the c%ding_ method i§ needed anyway (see Section IlI-E). Furgher—
probability sorting in this case. Following the modular reductiowolreé.'t 'S shé)wnbm [3&3] that the gfaE IS rehduced to .about 1.8 /° byd
described in Section ll-B1, for [a/2] < ¢ < [a/2] — 1, the including codes based on one of the other mappings mentione
ding valuei () fallin the range) < M(e) < a—1 above, with a slightly more complex adaptation strategy. These
;:'zri;eizpa?lgo thge range fc§V[’ (¢) with ever?a For odc deo. M ( ) results are consistent with estimates in [39] for the redundancy
5o tak thg | Cb ot 1) + Y of GPO2 codes on OSGDs.
car21 aSso a et_orll P € va ute( IlEJ tr_wo C: _)' The ML estimation approachis used in LOCO-I/JPEG-LS for
)St:t(lllj”r?gr:? of tir: r;’]r%glrenfzillzitlﬁgﬁgh in general adap-COdeltselﬁ?tir?r.] within g‘?‘ S[lég]fami?i Itt)r/]ieldts t?e foIIo_winfg
. . . . N ; : result, which is proved in and is the starting point for a
tive strategies are easier to implement with arithmetic COdec?iain of approximations leading to the very simple adaptation

the family of codes of [35] provides a reasonable alternat|¥8|e used, in the end, in JPEG-LS.

for low complexity adaptive coding of TSGDs, which is investi- ) A 3 -
gated in [33]: Based on the past sequence of prediction residual:srheorem Llety = (\/5 +1)/2( gqlden ra_t|(_) )- Encade
0 <t < n, according to the following decision rules.

¢ = e1e2...¢, encoded at a given context, select a code (i.65+1? i
an optimality region, which includes a Golomb parametgr 1) If S: < ¢t, compares,, ¢ — V,, and V. If S, is largest,
sequentially, and use this code to encedg . (Notice thatt choose codé’,. Otherwise, ift — IV, is largest, choose
here indexes occurrencesa given contexthus corresponding I'. Otherwise, choosEy,. .
to the variableN introduced in Section I1I-B3.) The decoder 2) If S+ > ¢t, choose cod€).1, k > 1, provided that
makes the same determination, after decoding the same past se- 1 S, 1
quence. Thus, the coding is done “on the fly,” as with adap- W < ra < m (6)
tive arithmetic coders. Two adaptation approaches are possible
for selecting the code for;,;: exhaustive searchf the code Let A(¢™) denote the code length resulting from applying this
that would have performed best e or expected code lengthadaptation strategy to the sequenée Let A*(6, s) denote
minimization for anestimateof the TSGD parameters giveh  the minimum expected codeword length over codes in the
These two approaches also apply inleck codingrramework?  sub-familyC for a TSGD with (unknown) parametefisands.
with the samples in the block to be encoded used in lieti.of Then

An advantage of the estimation approach is that, if based on 1 1
ML, it depends only on theufficient statisticss; andV; for the —Ep o [A(e")] S A*(0,s) + O <—)
parameter$ ands, given by n n

: : whereEy .| -] denotes expectation undgands.
S, = Z(|€i| —u(e)), Ny = Zu(fi) Theorem 1 involves the decision regions derived in [35,
i1 Lemma 4] forC in the case oknownparameters, aftaepa-
rameterizatiorto § 2 6/(1 —6)andp 2 61=2 /(017" + 6°).

with «(-) as in (5). ClearlyV; is the total number of negative .
samples inc!, and S, + N, is the accumulated sum of abso-The (transformed) parametefs and p are replaced by their

) -~ (simple) estimates$, /¢t and V, /¢, respectively. The claim of
lute values. In contrast, an exhaustive search would require ng e . . . S
counter per context for each code in the family € theorem applies in a probabilistic setting, in which it is
: f postulated that the data is TSG-distributed with parameters that

Code Family ReductionDespite the relative simplicity o . .
the codes, the complexity of both the code determination and re unknown to the coders. It states that a sequential adaptation

encoding procedure for the full family of optimal codes of [351 rategy based on ML estimation of the TSGD parameters,

would still be beyond the constraints set for JPEG-LS. For tha?d a part|_t|0n of the parame_ter space into decision regions
rresponding to codes i@ with minimum expected code

. . C
reason, as in [39], LOCO-I/JPEG-LS only uses the subfamil P .
[39] y y Pength, performs essentially as well (up to@fl /») term) as
7For block coding, an image is divided into rectangular blocks of samplefie best code i@ for the unknownparameters.
The blocks are scanned to select a code within a small family, which is identified
with a few overhead bits, and the samples are encoded in a second pass throu§Ve will refer tok also as @&olomb parametetthe distinction fron2* being
the block (see, e.g., [39]). clear from the context.

i=1
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Theorem 1 formalizes related results presented in [39] fand only ifPr{¢ < 0} < 1/2. Therefore, the result of the com-
block coding. A result analogous to Theorem 1 is proved in [2¢prison2B > —N approximates the result of the comparison
for the exhaustive search approach, under a OSGD assumptiié, < ¢ reasonably well, and the simplified procedure follows.
There, the deviation from optimality is bounded@§l/+/n), In software,k can be computed by the C programming lan-
and the derivation also involves the golden ratio. Notice that tiggage “one-liner”
exhaustive search adaptation approach is recommended in both
[24] and [39] for selecting GPO2 codes, even though both men- for (k=0; (N k) <A; k++);
tion ways of explicitly estimating the paramekeirom observed
error values. In [39], an estimation formula based on a $ygm
over values in a block is presented. The parameteis de-
termined according to ranges of valuesigf. Reference [24]
briefly mentions the possibility of deriving by first estimating
the variance of the distribution frori. Approximating the suf-
ficient statistics, rather than computing the variance or the s
Iy, results in a surprisingly simple calculation foand, in case
k = 0, also for the mapping.

Next, we present (in two stages) the chain of approximatio arge residuals would otherwise trigger adaptationtdio a

leading to the adaptation rule used in JPEG-LS. . .
; NS . . . larger value for a particular context). While such a worst-case
First Approximation: The decision region boundaries (6) . . : . o L
. . o . sequence is not likely in practical situations, significant local
admit a low complexity approximation, proposed in [33], for

which it is useful to define the functior&(k) and~(k), k > 0, expansion was observed for some images. In genera!, local ex-
by pansion does not affect the overall compression ratio, as the

average or asymptotic expansion behavior is governed by the
A 1 A 261 g adaptation of the code parameterHowever, local expansion
= S 1 = o -5 + (k). (7) canbe problematic in implementations with limited buffer space
for compressed data. Therefore, adopting a practical tradeoff,
It can be shown that(k) is a decreasingfunction of k, that GPO2 codes are modified in JPEG-LS to limit the code length

ranges between + (1/2) — (1/1n¢) ~ 0.04 (k = 1), and0  per sample to (typically}s, wheres 2 [logal, e.g., 32 bits
(k — o0). Since¢ ~ 1.618 and1/In ¢ ~ 2.078, (7) implies for 8-bit/'sample images.
thatS(k) is within 4% of2* — (1/2) + (1/8) for everyk > 0. The limitation is achieved using a simple technique [6] that
Thus, using approximate values$fk) and.S(k + 1) in lieu of avoids a negative impact on complexity, while on the other hand
the bounds in (6), a good approximation to the decision rule ®ving, in some situations, the significant cost of outputting
Theorem 1 for encoding ; is as follows. long unary representations. For a maximum code word length
Let S/ = S; + (t/2) — (t/8). of L., bits, the encoding of an integer0 < y < «, 9 pro-
1) If S/ < 2t, compareS;, N, andt — N;. If S, is largest, ceeds as in Section 11I-C1 whenevgy) = |2~ *y| satisfies
choose codé’;. Otherwise, ift — N, is largest, choose A
I'y. Otherwise, choosE,. () < Lunax — = 1 = gmax ©)

2) If 5; > 2t, choose codé’s+1,k > 1, provided that \here we assums,,.. > 3 + 1. The case where (9) holds is
12k < S < 2kt

by far the most frequent, and checking the condition adds only
Adaptation Rule in JPEG-LSThe rule used in JPEG-LS one Comparison per encoding_ By (8)

further simplifies this approximation. For each context, the ac-

cumulated sum of magnitudes of prediction residugist- NV, kE<Tlogla/2]1 <p -1 (10)
is maintained in a registet, in addition to the variable® and o

N defined in Section I11-B3. The following procedure is impleSO that the total code length after appendirigts is within the
mented. required limit L. Now, if ¢(¥) > Gmax, 9max IS €ncoded in
unary, which acts as an “escape” code, followed by an explicit
binary representation af — 1, using/ bits (sincey = 0 al-
ways satisfies (9), so that< y — 1 < «), for a total of L,

bits. Although the terminating bit of the unary representation is
superfluous, ag..x zeroes would already identify an escape
code, it facilitates the decoding operation.

Hardware implementations are equally trivial.

3) Limited-Length Golomb CodesFhe encoding procedure
of Section 1lI-C can produce significant expansion for single
samples: for example, with = 256 andk = 0, a prediction
residuale = —128 would produce 256 output bits, a 32:1 ex-
lPna]msion. Moreover, one can create artificial images with long
sequences of different contexts, such that this situation occurs
sample after sample, thus causing significant local expansion

ﬁtgis context pattern is necessary for this situation to arise, as

S(k)

a) Compute: as
k = min{%’ | M N > A} 8)

b) If £ > 0, choose cod&. Otherwise, ift = 0 and2B >
— N, choose codé&'y. Otherwise, choose codé,.
In the above proceduré, is approximated by (implying D. Resets
the assumption tha¥, is reasonably close t@t/2) — (¢/8)). _ _ _ _ o
Values ofk > 2 in (8) correspond to Step 2) above, while a T0 enhance adaptation to nonstationarity of image statistics,
valuek = 1 corresponds to the case wheieis largest in Step LOCO-I/JPEG-LS periodically resets the variablés 4, and
1), through the approximatiaN, = ¢/2. The other cases of StepB- Specifically, wehalf (rounding down to nearest integer) the

1) correspond td = 0, _Where a finer approximation a¥; i_s 9Notice that the range far may includex in casex is odd and the mapping
used. Recall that B/N is an estimate of. Clearly,s < 1/2if  M’(.) is used.
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contents ofV, A, andB for a given context each tim¥ attains of these codes were introduced in [36], [43], and [44] in the
a predetermined threshold,. In this way, the immediate pastcontext of adaptive run-length coding. They are also studied in
is given a larger weight than the remote past. It has been foUdd] in the context of embedded coding of wavelet coefficients,
that values ofNy between 32 and 256 work well for typicalwhere insight is provided into their well-known efficiency for
images; the default value in JPEG-LS is 64. More importantBncoding i.i.d. binary sequences over a surprisingly wide range
in practice, resetting the variables limits the amount of storagévalues of the probability of a zero.
required per context. Wheng is unknowna priori, elementary Golomb codes are
superior to Golomb codes in that the value:otan be adapted
within a run, based on the current estimate@fThe optimal
adaptation turns out to be extremely simple if the family of codes
Motivation: Symbol-by-symbol (Huffman) coding (asis reduced, again, to the case= 27, while the redundancy re-
opposed to arithmetic coding) is inefficient for very lowmains very small for the ranges of interest. In addition, the code
entropy distributions, due to its fundamental limitation ofvords for interrupted runs are ajl+ 1 bits long and provide
producing at least one code bit per encoding. This limitatig@xplicitly the length of the interrupted run. This approach, pro-
applies to the symbol-by-symbol coding of TSGDs performeepsed in [2], was adopted in JPEG-LS and replaces the approach
in LOCO-I/JPEG-LS, and may produce a significant reduised in [1]. It is inspired in [36], and is termédock-MEL-
dancy (i.e., excess code length over the entropy) for conte’d®DE
representing smooth regions, for which the distributions areCount-based adaptation strategies for the parameterpro-
very peaked as a prediction residual of 0 is extremely likelposed in [36] and [45]. JPEG-LS uses a predefined table to ap-
In nonconditioned codes, this problem is addressed througfximate these strategies. A run segment of lengthe.,0™)
alphabet extensioBy encoding blocks of data as “super-symtriggers an index increment, while a “miss” (1.6%1, 0 < £ <
bols,” distributions tend to be flatter (i.e., the redundancy i) triggers an index decrement. The index is used to enter the
spread over many symbols). table, which determines how many consecutive run segments
Mode Selection:A strategy similar to the above has beefiresp. “misses”) trigger an increment (resp. decrement)sée
embeddeéhto the context model in LOCO-I/JPEG-LS. The enk7)).
coder enters a “run” mode when a “flat region” context with ~ Run Interruption Coding: The coding procedure for a run
a = b = ¢ = d is detected. Since the central region of quarnterruption sampler is applied toe = = — bmod «. Thus,
tization for the gradients;, ¢», g3 is the singleton {0}, the run both the fixed predictor (1) and the bias cancellation procedure
condition is easily detected in the process of context quantiZ€ skipped. Coding is otherwise similar to the regular sample
tion by checking forfqy, g2, g3] = [0, 0,0]. Once in run mode, case. However, conditioning is based on two special contexts,
a run of the symbok is expected, and the run length (whictietermined according to whethere= b or a # b. In the former
may be zero) is encoded. While in run mode, the context is ré@se, we always havez 0 (since, by definition of run inter-

checked and some of the samples forming the run may occuf@ption,z # a). Therefore, the mapping®(-) and M’(-) are
contexts other thaf, 0, 0]. When the run is broken by a non-modified to take advantage of this exclusion. Moreover, since

matching Samp|e;, the encoder goes into a “run interruption”theB counter is not used in these contexts (no bias cancellation
state, where the differenee= = — b (with the sample above) is performed), the decision betwea#i(-) and M’(-) is based
is encoded. Runs can also be broken by ends of lines, in whighthe numberV; of negative values occurring in each context.
case the encoder returns to normal context-based coding. SihBe same reset procedure as in Section I1l-D is used for the cor-
all the decisions for switching in and out of the run mode af@sponding counters. Also, the length limitation for the Golomb
based on past samples, the decoder can reproduce the samg&afte takes into account tlget 1 bits of the last coded run seg-
cisions without any side information. ment, thus limiting every code word lengthlg,,x — g — 1 bits.
Adaptive Run Length CodingThe encoding of run
lengths in JPEG-LS is also based on Golomb codes, or@—
inally proposed in [32] for such applications. However, an Figs. 4 and 5 summarize the JPEG-LS lossless encoding
improved adaptation strategy can be derived from viewingocedures for a single component of an image. The decoding
the encoded sequence as binary (“0” for a “hit,” “1” for grocess uses the same basic procedures and follows almost the
“miss”). For a positive integer parametet, let EG,, denote same steps in reverse order (see [7] for details). Nondefined
a variable-to-variable length code defined over the extendsamples in the causal template at the boundaries of the image
binary alphabef1, 01,001, ...,0™ 11,0}, where0* denotes are treated as follows: For the first line,= ¢ = d = 0 is
a sequence of zeros. UndelEG,,, the extended symb@l™ assumed. For the first and last column, whenever undefined,
(a successful run af: “hits”) is encoded with a 0, whil@‘1, the samples at positionsandd are assumed to be equal to the
0 < ¢ < m, is encoded with a 1 followed by the modifiedone at positiorb, while the value of the samples at position
binary representation of. By considering a concatenation ofis copied from the value that was assigned to positiavhen
extended input symbols, itis easy to see thiét,, is equivalent encoding the first sample in the previous line.
to GG,,, applied to the run length. HoweveEG,, is defined For ease of cross-reference, for the main steps of the proce-
over a finite alphabet, with “hits” and “misses” modeled adures in Fig. 4 we indicate, in square brackets, the label of the
independent and identically distributed (i.i.d.). We will refer t@orresponding block in Fig. 1, and the numbers of the sub-sec-
EG,, as anelementary Golomb codef orderm. Variations tions where the computation is discussed. Fig. 5 corresponds to

E. Embedded Alphabet Extension (Run Coding)

Summary of Encoding Procedures
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Step 0. Initialization:
a. Compute Lmax = 2(Fmax+ max{8, Bmax}), where Buax = max{2, [logal}.
b. Initialize the 365 sets of context counters A, B, C, and N as follows: B =C =0, N =1,
A = max{2, [(« + 32)/64]}. Similar initializations are needed for the corresponding variables
in the two run interruption contexts.
c. Initialize to O the index Iryn to the run mode adaptation table.
d. Set current sample z to the first sample in the image.

Step 1. Compute the “local gradients” g1 =d — b, g2 = b — ¢, and g3 = ¢ — b. [Gradients, I1I-B2]

Step 2. If gy =g>=¢3=0, go to run mode processing (Fig. 5). Otherwise, continue in “regular” mode. [Flat
Region?, I1I-E]

Step 3. Quantize the local gradients g;, i = 1,2, 3. [Context Modeler, 11I-B2]

Step 4. Denote the quantized gradients by g;, ¢ = 1,2,3. If the first non-zero component of [g1, ¢, ¢s]
is negative, reverse all the signs in the triplet and associate a negative sign to it. Otherwise,
associate a positive sign. Map the triplet, on a one-to-one basis, into an index in the range [1, 364]
(context number 0 is reserved to the run mode). Use the index to address the context counters.
[Context Modeler, I1I-B2]

Step 5. Compute the fixed prediction Zygp according to (1). [Fixed Predictor, I1I-A]

Step 6. Correct #ygp by adding (resp. subtracting) the value of C for the context in case the sign associ-
ated to the context is positive (resp. negative). Clamp the corrected value to the range {0, o — 1]
to obtain the corrected prediction £. [Adaptive Correction, I1I-B3]

Step 7. Compute the prediction residual € = z — £ and, if a negative sign is associated to the context,
set € «— —& Reduce € modulo « to a value € in the range [-|a/2], [a/2]—1]. [subtracter &,
111-B1,111-B2]

Step 8. Compute the Golomb parameter k according to (8). [Context Modeler, 111-C2]

Step 9. Map € to M(e) or, if k =0 and 2B < =N, to M'(¢). [Context Modeler, I1I-C2]

Step 10. Golomb-encode the mapped prediction residual using the parameter k and, if necessary, perform
the code word length limitation procedure with maximum length Lyax. [Golomb Coder, III-
C1,II1-C3]

Step 11. Update the context counters by adding € to B and |¢} to A, halving A, B, and N in case N = Ny
(reset threshold), and incrementing N. [Context Modeler, 11I-C2,I1I-D]

Step 12. Update the values of B and C following the “if-else” statement in Figure 3. [Context Modeler,
IT1-B3]

Step 13. Go to Step 1 to process the next sample.

Fig. 4. JPEG-LS: Encoding of a single component.

Step 1. Read new samples until either « # a or the end of the line is encountered.

Step 2. Let m = 29 denote the current parameter of the elementary Golomb code. For each run segment
of length m, append a ‘1’ to the output bit stream and increment the index Izy~x. If so indicated
by the table, double m.

Step 3. If the run was interrupted by the end of a line, append ‘1’ to the output bit stream and go to
Step 1 of the main algorithm (Fig. 4). Otherwise, append ‘0’ to the output bit stream followed
by the binary representation of the residual run length using g bits, decrement Igyn, and if so
indicated by the table, half m.

Step 4. Encode the run interruption sample and go to Step 1 of the main algorithmn (Fig. 4).

Fig. 5. JPEG-LS: Run mode processing.

the blocks labeled “Run Counter” and “Run Coder” discussedproduction at the center of the interval. Quantization of a pre-
in Section IlI-E. diction residuak is performed by integer division according to

Q) =sim(o | 51 |

2041
Sinceé usually takes one of a few small integer values, the in-

JPEG-LS offers alossy mode of operation, termed “near-logsger division in (11) can be performed efficiently both in hard-
less,” in which every sample value in a reconstructed imagere [46] and software (e.g., with look-up tables).
component is guaranteed to differ from the corresponding valueThe following aspects of the coding procedure are affected
in the original image by up to a preset (small) amoudniThe by the quantization step. Context modeling and prediction are
basic technique employed for achieving this goal is the tradiased on reconstructed values, so that the decoder can mimic
tional DPCM loop [21], where the prediction residual (after cotthe operation of the encoder. In the sequel, the notatjone,
rection and possible sign reversion, but before modulo redwdd, will be used to refer also to the reconstructed values of
tion) is quantized into quantization bins of si2é 4+ 1, with the samples at these positions. The condition for entering the

11)
IV. NEAR-LOSSLESSCOMPRESSION
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run mode is relaxed to require that the gradiepts = 1,2,3, level” measuréd — b|+ |b— ¢| + |¢— a|, and the value of that
satisfy |¢;| < 6. This relaxed condition reflects the fact thaends up being used the most in the context, with larger activity
reconstructed sample differences upétean be the result of levels corresponding to larger valuesiofHowever, the quanti-
quantization errors. Moreover, once in run mode, the encodmtion threshold for the activity level would strongly depend on
checks for runs within a tolerance &f while reproducing the the image.

value of the reconstructed samplecatConsequently, the two  The above observation is related to an alternative interpreta-
run interruption contexts are determined according to whethern of the modeling approach in LOCO9 Under this interpre-

|a — b] < 6 or not. tation, the use of onlyC| different prefix codes to encode con-
The relaxed condition for the run mode also determines thext-dependent distributions of prediction residuals, is viewed as
central region for quantized gradients, whichgg < 6,¢ = a (dynamic) way of clustering conditioning contexts. The clus-

1,2, 3. Thus, the size of the central region is increase®&y ters result from the use of a small family of codes, as opposed to
and the default thresholds for gradient quantization are scakedcheme based on arithmetic coding, which would use different

accordingly. arithmetic codes for different distributions. Thus, this aspect of
The reduction of the quantized prediction residual is dong®CO-I can also be viewed as a realization of the basic para-
modulo«’, where digm proposed and analyzed in [12] and also used in CALIC
[17], in which a multiplicity of predicting contexts is clustered
g {O‘ + 46J into a few conditioning states. In the lower complexity alter-
20 +1 native proposed in this section, the clustering process is static,

into the rangé— | o’ /2, [ /2] —1]. The reduced value is (|Oss_rather than dynamic. Such a static clustering can be obtained,

lessly) encoded and recovered at the decoder, which first mulfif €x@mple, by using the above activity level in lieutfand
plies it by2§ + 1, then adds it to the (corrected) prediction (of¥ = 3 10 determiné in (8).
subtracts it, if the sign associated to the context is negative), and ) ) _ )
reduces it module/ (2§ + 1) into the rangd—4, o/ - (28 +1) — B. LOCO-A: An Arithmetic Coding Extension
1 — 8], finally clamping it into the rangé0, o« — 1]. It can be  In this section, we present an arithmetic coding extension
seen that, after modular reduction, the recovered value cangblLOCO-I, termed LOCO-A [47], which has been adopted
be larger thary — 1 4 6. Thus, before clamping, the decodefor a prospective extension of the baseline JPEG-LS standard
actually produces a value in the range’,a« — 1 + 6], which  (JPEG-LS Part 2). The goal of this extension is to address the
is precisely the range of possible sample values with an erfsasic limitations that the baseline presents when dealing with
tolerance oft$6. very compressible images (e.g., computer graphics, near-loss-
As for encoding¢’ replacesy in the definition of the limited- |less mode with an error a3 or larger), due to the symbol-by-
length Golomb coding procedure. Sindeaccumulates quan- symbol coding approach, or with images that are very far from
tized error magnitudes; < [log«’|. On the other hand3  being continuous-tone or have sparse histograms. Images of the
accumulates the encoded valowyltiplied by26 + 1. The alter- |atter type contain only a subset of the possible sample values in
native mapping¥’(-) is not used, as its effect would be neglieach component, and the fixed predictor (1) would tend to con-
gible since the center of the quantized error distribution is in thentrate the value of the prediction residuals into a reduced set.
interval (—1/(26 + 1), 0]. However, prediction correction tends to spread these values over
The specification [7] treats the lossless mode as a special cigeentire range, and even if that were not the case, the proba-
of near-lossless compression, with= 0. Although the initial  bility assignment of a TSGD model in LOCO-I/JPEG-LS would
goal of this mode was to guarantee a bounded error for appibt take advantage of the reduced alphabet.
cations with legal implications (e.g., medical images), for small In addition to better handling the special types of images men-
values of¢ its visual and SNR performance is often superior ttioned above, LOCO-A closes, in general, most of the (small)

that of traditional transform coding techniques [49]. compression gap between JPEG-LS and the best published re-
sults (see Section VI), while still preserving a certain complexity
V. VARIATIONS ON THE BASIC CONFIGURATION advantage due to simpler prediction and modeling units, as de-

scribed below.

LOCO-A is a natural extension of the JPEG-LS baseline, re-

The basic ideas behind LOCO-I admit variants that can lgiiring the same buffering capability. The context model and
implemented at an even lower complexity, with reasonable depst of the prediction are identical to those in LOCO-I. The
terioration in the compression ratios. One such variant followgsic idea behind LOCO-A follows from the alternative inter-
from further applying the principle that prior knowledge on th%retation of the modeling approach in LOCO-I discussed in
structure of images should be used, whenever available, tRystion V-A. There, it was suggested ticanditioning states
saving model learning costs (see Section II-A). Notice that th@id be obtained by clustering contexts based on the value of
value of the Golomb parametéris (adaptively) estimated atine Golomb parametek (thus grouping contexts with similar
each context based on the value of previous prediction residugisnditional distributions). The resulting state-conditioned dis-
However, the value of for a given context can be generally esihytions can be arithmetic encoded, thus relaxing the TSGD

timateda priori, as “active” contexts, corresponding to |argeéssumption, which would thus be used only as a means to form
gradients, will tend to present flatter distributions. In fact, for

most contexts there is a strong correlation between the “activity%X. wu, private communication.

A. Lower Complexity Variants
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the states. The relaxation of the TSGD assumption is possible TABLE |
_ . - _ COMPRESSION RESULTS ON ISO/IEC

due to the small _number of statéS| = [log «] + 1, which en 10918-1 MAGE TEST SET (N BITS/SAMPLE)
ables the modeling of more parameters per state. In LOCO-A,
this idea is generalized to create higher resolution clusters based Tmage | LOCO-1 | JPEG-LS [ 0=1 [ 6=3
on the average magnitudé/N of prediction residuals (a% Balloon | 2.68 2.67 1.50 [ 0.88
o ; ; . Barb 1 3.88 3.89 2.45 | 1.59
is |tsehf a function ofA/N)_. Since, by _def|n|t|0n_,_each glus_ter Barh, 2 399 .00 556 | 16z
would include contexts with very similar conditional distribu- Board 3.20 3.21 1.83 | 0.98
tions, this measure of activity level can be seen as a refinement Boats 3.34 3.34 1.98 | 1.14

P ” ; . Girl 3.39 3.40 2.03 | 1.28
of t_he error energy used in CALI.C.[17], and a further applll— Gold 3.92 3091 | 9246|152
cation of the paradigm of [12]. Activity levels are also used in Hotel 3.78 3.80 2.36 | 1.45

i Zelda 3.35 3.35 1.97 | 1.21

the ALCM algorlthm [48]' Average 3.50 3.51 2.13 [ 1.30

Modeling in LOCO-A proceeds as in LOCO-I, collecting the
same statistics at each context (the “run mode” condition is used
to define a separate encoding state). The clustering is acCQ{Rg for LOCO-A. Compression ratios are given in bits/saréiple.
plished by modifying (8) as follows:

In Table I, we study the compression performance of LOCO-I
and JPEG-LS inlossless mode, as well as JPEG-LS in near-loss-
less mode withb = 1 andé = 3, on a standard set of images
used in developing the JPEG standard [20]. These are generally
“smooth” natural images, for which thé andV components

ve been down-sampled 2:1 in the horizontal direction. The

OCO-I column corresponds to the scheme described in [1],
range—1/2 < s < 1/2, instead o0 < s < 1 (as the coding and the discrepancy with the JPEG-LS column reflects the main

method that justified the negative fractional shift in LOCO-I iglfferences between the algorithms, which in the end cancel

no longer used). In addition, regardless of the computed c %t.c'l(')hlesl_e q':ffte_rencfe(sz 'TCIUSE: L(ste Of‘z?ﬂh fﬁnte)f]t;é‘gpﬂgm
rection value, the corrected prediction is incremented or decrez =~ imrtation of 50lomb code word 1engtns in =

mented in the direction afyep until itis either a value that has ifferent coding methods in run mode, different treatment of the

SRes )
| inthe |  Thi ficati . mappingd/ (-), and overhead in JPEG-LS du.e to th.e more elab-
already occurred in the image, &kpn. This modification a te data format (e.g., marker segments, bit stuffing, etc.).

leviates the unwanted effects on images with sparse histograﬂ{% . . . o :
while having virtually no effect on “regular” images. No bias _otlce that, assuming a uniform distribution for the quanti-
cancellation is done in the run state. A “sign flip” borrowed fron?atIon error, the root mean square error (RMSE) per component
the CALIC algorithm [17] is performed: if the bias couBtis or & maximum loss in near-lossless mode would be
positive, then the sign of the error is flipped. In this way, when 5 5
distributions that are similar in shape but have opposite biases RMSE = 4/ 2> i ] (12)
are merged, the statistics are added “in phase.” Finally, predic- 264+1
tion errors are arithmetic-coded conditioned on one of the 12 en-
coding states. Binary arithmetic coding is performed, followin :
the Golomb-based binarization strategy of [48]. For a state wi SE ~ 0'816)’. while fo_ré = 3the "’!"t”?' RMSE (an average
index k, we choose the corresponding binarization tree as s 1.94 for the images in Taple !) is slightly better than the
Golomb tree for the parametef*/21 (the run state also uses'lue RMSE = 2 estimated in (12). For such small values
k= 0). of &, the near-lossless coding ap_proach is known to largely
no?utperform the (lossy) JPEG algorithm [20] in terms of RMSE
gat similar bit-rates [49]. For the images in Table I, typical
RMSE values achieved by JPEG at similar bit-rates are 1.5 and
2.3, respectively. On these images, JPEG-LS also outperforms
tn_fz emerging wavelet-based JPEG 2000 standard [50] in
terms of RMSE for bit-rates corresponding do= 1.12 At
é@'t—rates corresponding # > 2, however, the wavelet-based
scheme yields far better RMSE. On the other hand, JPEG-LS
is considerably simpler and guarantees a maximum per-sample
error, while JPEG 2000 offers other features.

k = min{k’ |2¥/2N > A}.

For 8-bit/sample images, 12 encoding states are defihed:
0,k=1,...,k =9,k > 9, and the run state. A similar clus-
tering is possible with other alphabet sizes.

Bias cancellation is performed as in LOCO-I, except that t
correction value is tuned to produce TSGDs with a shiftthe

practice, this estimate is accurate for = 1 (namely,

Note that the modeling complexity in LOCO-A does
differ significantly from that of LOCO-I. The only adde
complexity is in the determination df (which, in software,
can be done with a simple modification of the C “one-liner
used in LOCO-I), in the treatment of sparse histograms, and
the use of a fifth sample in the causal template, West af in
[1]. The coding complexity, however, is higher due to the u
of an arithmetic coder.

VI. RESULTS

; ; ; : . 11The term “bits/sample” refers to the number of bits in each component
In this section, we present compression results obtained Wég%ple. Compression ratios will be measured as the total number of bits in the

the basic configuration of JPEG-LS discussed in Section IHempressed image divided by the total number of samples in all components,

using default parameters in separate single-component scafi). possible down-sampling.

These results are Compared with those obtained with other r_e|1?l'he default (9, 7) floating-point transform was used in these_experiments,
. . . . . in the so-called “best mode” (non-SNR-scalable). The progressive-to-lossless

evant schemes reported in the literature, over a wide Var'etynqide (reversible wavelet transform) yields worse results even at bit-rates cor-

images. We also present results for near-lossless compressigponding te) = 1.
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TABLE I
COMPRESSIONRESULTS ONNEW IMAGE TEST SET (IN BITS/SAMPLE)

Lossless | Lossless
JPEG JPEG | CALIC
Image LOCO-1 | JPEG-LS | FELICS | Huffman | arithm. | arithm. | LOCO-A | PNG
bike 3.59 3.63 4.06 4.34 3.92 3.50 3.54 4.06
cafe 4.80 4.83 3.31 5.74 5.35 4.69 4.75 5.28
woman 4.17 4.20 4.58 4.86 4.47 4.05 4.11 4.68
tools 5.07 5.08 5.42 5.71 5.47 4.95 5.01 5.38
bike3 4.37 4.38 4.67 5.18 4.78 4.23 4.33 4.84
cats 2.59 2.61 3.32 3.73 2.74 2.51 2.54 2.82
water 1.79 1.81 2.36 2.63 1.87 1.74 1.75 1.89
finger 5.63 5.66 6.11 5.95 5.85 5.47 5.50 5.81
us 2.67 2.63 3.28 3.77 2.52 2.34 2.45 2.84
chart 1.33 1.32 2.14 2.41 1.45 1.28 1.18 1.40
chart_s 2.74 2.77 3.44 4.06 3.07 2.66 2.65 3.21
compoundl 1.30 1.27 2.39 2.75 1.50 1.24 1.21 1.37
compound?2 1.35 1.33 2.40 2.71 1.54 1.24 1.25 1.46
aerial2 4.01 4.11 4.49 5.13 4.14 3.83 3.58 4.44
faxballs 0.97 0.90 1.74 1.73 0.84 0.75 0.64 0.96
gold 3.92 3.91 4.10 4.33 4.13 3.83 3.85 4.15
hotel 3.78 3.80 4.06 4.39 4.15 3.71 3.72 4.22
Average 3.18 3.19 3.76 4.08 3.40 3.06 3.06 3.46

Table Il shows (lossless) compression results of LOCOdral images and significantly more on compound documents.
JPEG-LS, and LOCO-A, compared with other popular schemé&f course, software running times should be taken very cau-
These include FELICS [24], for which the results were exiously and only as rough complexity benchmarks, since many
tracted from [17], and the two versions of the original losslegsiplementation optimizations are possible, and it is difficult to
JPEG standard [20], i.e., the strongest one based on arithmgtiarantee that all tested implementations are equally optimized.
coding, and the simplest one based on a fixed predictor followkldwever, these measurements do provide a useful indication of
by Huffman coding using “typical” tables [20]. This one-passelative practical complexity.
combination is probably the most widely used version of the As for actual compression speeds in software implementa-
old lossless standard. The table also shows results for PNGioas, LOCO-I/JPEG-LS benchmarks at a throughput similar to
popular file format in which lossless compression is achieveldat of the UNIX compresautility, which is also the approxi-
through prediction (in two passes) and a variant of LZ77 [Shhate throughput reported for FELICS in [24], and is faster than
(for consistency, PNG was run in a plane-by-plane fashio®NG by about a 3:1 ratio. Measured compression data rates,
Finally, we have also included the arithmetic coding versidior a C-language implementation on a 1998 vintage 300 MHz
of the CALIC algorithm, which attains the best compressioRentium Il machine, range from about 1.5 MBytes/s for nat-
ratios among schemes proposed in response to the Call doal images to about 6 MBytes/s for compound documents and
Contributions leading to JPEG-LS. These results are extractminputer graphics images. The latter speed-up is due in great
from [17]. The images in Table Il are the subset of 8-bit/sampjpert to the frequent use of the run mode. LOCO-I/JPEG-LS de-
images from the benchmark set provided in the above Caimpression is about 10% slower than compression, making it
for Contributions. This is a richer set with a wider variety o# fairly symmetric system.
images, including compound documents, aerial photographsExtensive testing on medical images of various types re-
scanned, and computer generated images. ported in [55] reveals an average compression performance for

The results in Table Il, as well as other comparisons préPEG-LS within 2.5% of that of CALIC. It is recommended in
sented in [1], show that LOCO-I/JPEG-LS significantly outf55] that the Digital Imaging and Communications in Medci-
performs other schemes of comparable complexity (e.g., PN¢he (DICOM) standard add a transfer syntax for JPEG-LS.
FELICS, JPEG-Huffman), and it attains compression ratios sim-Table Il also shows results for LOCO-A. The comparison
ilar or superior to those of higher complexity schemes basaith CALIC shows that the latter scheme maintains a slight ad-
on arithmetic coding (e.g., Sunset CB9 [16], JPEG-Arithmeticyantage (1-2%) for “smooth” images, while LOCO-A shows a
LOCO-I/JPEG-LS is, on the average, within a few percentaganificant advantage for the classes of images it targets: sparse
points of the best available compression ratios (given, in pradustograms (“aerial2”) and computer-generated (“faxballs”).
tice, by CALIC), at a much lower complexity level. Here, comMoreover, LOCO-A performs as well as CALIC on compound
plexity was estimated by measuring running times of softwadecuments without using a separate binary mode [17]. The
implementations made widely available by the authors of tlaverage compression ratios for both schemes end up equal.
compared schemés.The experiments showed a compression ltis also interesting to compare LOCO-A with the JBIG algo-
time advantage for JPEG-LS over CALIC of about 8:1 on natithm [52] as applied in [53] to multilevel images (i.e., bit-plane

coding of Gray code representation). In [53], the components

13The experiments were carried out with JPEG-LS executables availagje the images of Table | are reduced to amplitude precisions
from http://www.hpl.hp.com/loco, and CALIC executables available fro . . . .

elow 8 bits/sample, in order to provide data for testing how

ftp://ftp.csd.uwo.ca/pub/from_wu as of the writing of this article. A commo ' ' =
platform for which both programs were available was used. algorithm performances scale with precision. LOCO-A outper-
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forms JBIG for all precisions above 3 bits/sample: for examplejth more elaborate schemes which do not assume prior knowl-
at 4 bits/sample (i.e., considering down-sampling, a total efige of the color space [26]. Given the variety of color spaces,
8 bits/pixel), the average image size for LOCO-A is 1.3the standardization of specific filters was considered beyond
bits/pixel, whereas the average size reported in [53] for JBliGe scope of JPEG-LS, and color transforms are handled at the
is 1.42 bits/pixel. At 3 bits/sample, the relation is reverted: tragpplication level.
averages are 0.86 and 0.83 bits/pixel, respectively. While theln JPEG-LS, the data in a multicomponent scan can be in-
JPEG-LS baseline outperforms JBIG by 11% on the averagdedeaved either by linediie-interleavednode) or by samples
8 bits/sample for the images of Table | (the average compresgsample-interleavethode). In line-interleaved mode, assuming
image size reported in [53] is 3.92 bits/sample), the relatia image that is not subsampled in the vertical direction, a full
performance deteriorates rapidly below 6 bits/sample, whitihe of each component is encoded before starting the encoding
is the minimum precision for which baseline JPEG-LS stibbf the next line (for images subsampled in the vertical direc-
yields better compression ratios (3.68 against 3.87 bits/pixdipn, more than one line from a component are interleaved be-
Thus, LOCO-A indeed addresses the basic limitations that tfuge starting with the next component). The index to the table
baseline presents when dealing with very compressible imagased to adapt the elementary Golomb code in run mode is com-
Software implementations of JPEG-LS for various platformsonent-dependent.
are available at http://www.hpl.hp.com/loco/. The organizations In sample-interleaved mode, one sample from each compo-
holding patents covering aspects of JPEG-LS have agreech@mt is processed in turn, so that all components which belong
allow payment-free licensing of these patents for use in the stan-the same scan must have the same dimensions. The runs
dard. are common to all the components in the scan, with run mode
selected only when the corresponding condition is satisfied for
APPENDIX all the components. Likewise, a run is interrupted whenever so
dictated byany of the components. Thus, a single run length,
common to all components, is encoded. This approach is
convenient for images in which runs tend to be synchronized
Bit Stream: The compressed data format for JPEG-LBetween components (e.g., synthetic images), but should be
closely follows the one specified for JPEG [20]. The sam&voided in cases where run statistics differ significantly across
high level syntax applies, with the bit stream organized intmomponents, since a component may systematically cause run
frames, scans, and restart intervals within a scan, markererruptions for another component with otherwise long runs.
specifying the various structural parts, and marker segmefim example, in a CMYK representation, the runs in e
specifying the various parameters. New marker assignments plane tend to be longer than in the other planes, so it is best to
compatible with [20]. One difference, however, is the existen@ncode thel plane in a different scan.
of default values for many of the JPEG-LS coding parametersThe performance of JPEG-LS, run in line-interleaved mode
(e.g., gradient quantization thresholds, reset threshold), wih the images of Table Il, is very similar to that of the com-
marker segments used to override these values. In additippnent-by-component mode shown in the table. We observed a
the method for easy detection of marker segments differs frarmaximum compression ratio deterioration of 1% on “gold” and
the one in [20]. Specifically, a single byte of coded data witthotel,” and a maximum improvement of 1% on “compoundl.”
the hexadecimal value “FF” is followed with the insertion of & sample-interleaved mode, however, the deterioration is gen-
single bit ‘0,” which occupies the most significant bit positiorerally more significant (3% to 5% in many cases), but with a 3%
of the next byte. This technique is based on the fact that &l 4% improvement on compound documents.
markers start with an “FF” byte, followed by a bit “1.” Palletized Images:The JPEG-LS data format also pro-
Color Images: For encoding images with more tharvides tools for encoding palletized images in an appropriate
one component (e.g., color images), JPEG-LS supports comdex space (i.e., as an array of indices to a palette table),
binations of single-component and multicomponent scamather than in the original color space. To this end, the decoding
Section Il describes the encoding process for a single-comgwecess may be followed by a so-callsgmple-mapping pro-
nent scan. For multicomponent scans, a single set of contegtlure which maps each decoded sample value (e.g., and 8-bit
counters (namely, B, C, and/N for regular mode contexts) is index) to a reconstructed sample value (e.g., an RGB triplet)
used across all components in the scan. Prediction and contaximeans of mapping tables. Appropriate syntax is defined to
determination are performed as in the single component caallow embedding of these tables in the JPEG-LS bit stream.
and are component independent. Thus, the use of possibldany of the assumptions for the JPEG-LS model, targeted at
correlation between color planes is limited to sharing statistiantinuous-tone images, do not hold when compressing an array
collected from all planes. For some color spaces (e.g., RGBJ,indices. However, an appropriate reordering of the palette
good decorrelation can be obtained through simple losslaéable can sometimes alleviate this deficiency. Some heuristics
color transforms as a pre-processing step to JPEG-LS. Rwe known that produce good results at low complexity, without
example, compressing the (R-G,G,B-G) representations of th&ng image statistics. For example, [54] proposes to arrange
images of Table I, with differences taken modulo the alphabiie palette colors in increasing order of luminance value, so that
size « in the interval [—|«/2], [«/2] — 1], yields savings samples that are close in space in a smooth image will tend to be
between 25% and 30% over compressing the respective R@Bse in color and in luminance. Using this reordering, JPEG-LS
representations. These savings are similar to those obtaionetperforms PNG by about 6% on palletized versions of the

OTHER FEATURES OF THESTANDARD



WEINBERGERet al: LOCO-I LOSSLESS IMAGE COMPRESSION ALGORITHM

images “Lena” and “gold.” On the other hand, PNG may be[19]
advantageous for dithered, halftoned, and some graphic images
for which LZ-type methods are better suited. JPEG-LS does ngs,
specify a particular heuristic for palette ordering.

The sample-mapping procedure can also be used to alleviate
the problem of “sparse histograms” mentioned in Section V-B,
by mapping the sparse samples to a contiguous set. This hig2]
togram compaction, however, assumes a prior knowledge 23]
the histogram sparseness not required by the LOCO-A solu-
tion, and is done off-line. The standard extension (JPEG-L$4]
Part 2) includes provisions for on-line compaction with LOCO-

I/JPEG-LS. [25]
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