
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000 1309

The LOCO-I Lossless Image Compression Algorithm:
Principles and Standardization into JPEG-LS

Marcelo J. Weinberger, Senior Member, IEEE, Gadiel Seroussi, Fellow, IEEE, and Guillermo Sapiro, Member, IEEE

Abstract—LOCO-I (LOw COmplexity LOssless COmpression
for Images) is the algorithm at the core of the new ISO/ITU stan-
dard for lossless and near-lossless compression of continuous-tone
images, JPEG-LS. It is conceived as a “low complexity projection”
of the universal context modeling paradigm, matching its mod-
eling unit to a simple coding unit. By combining simplicity with the
compression potential of context models, the algorithm “enjoys the
best of both worlds.” It is based on a simple fixed context model,
which approaches the capability of the more complex universal
techniques for capturing high-order dependencies. The model is
tuned for efficient performance in conjunction with an extended
family of Golomb-type codes, which are adaptively chosen, and an
embedded alphabet extension for coding of low-entropy image re-
gions. LOCO-I attains compression ratios similar or superior to
those obtained with state-of-the-art schemes based on arithmetic
coding. Moreover, it is within a few percentage points of the best
available compression ratios, at a much lower complexity level. We
discuss the principles underlying the design of LOCO-I, and its
standardization into JPEG-LS.

Index Terms—Context modeling, geometric distribution,
Golomb codes, lossless image compression, near-lossless compres-
sion, standards.

I. INTRODUCTION

L OCO-I (LOw COmplexity LOssless COmpression for Im-
ages) is the algorithm at the core of the new ISO/ITU

standard for lossless and near-lossless compression of contin-
uous-tone images, JPEG-LS. The algorithm was introduced in
an abridged format in [1]. The standard evolved after successive
refinements [2]–[6], and a complete specification can be found
in [7]. However, the latter reference is quite obscure, and it omits
the theoretical background that explains the success of the algo-
rithm. In this paper, we discuss the theoretical foundations of
LOCO-I and present a full description of the main algorithmic
components of JPEG-LS.

Lossless data compression schemes often consist of two
distinct and independent components:modelingand coding.
The modeling part can be formulated as an inductive infer-
ence problem, in which the data (e.g., an image) is observed
sample by sample in some predefined order (e.g., raster-scan,
which will be the assumed order for images in the sequel).
At each time instant , and after having scanned past data

, one wishes to make inferences on the next

Manuscript received November 24, 1998; revised March 1, 2000. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Lina J. Karam.

M. J. Weinberger and G. Seroussi are with the Hewlett-Packard Laboratories,
Palo Alto, CA 94304 USA (e-mail: marcelo@hpl.hp.com).

G. Sapiro was with Hewlett-Packard Laboratories, Palo Alto, CA 94304 USA.
He is now with the Department of Electrical and Computer Engineering, Uni-
versity of Minnesota, Minneapolis, MN 55455 USA.

Publisher Item Identifier S 1057-7149(00)06129-7.

sample value by assigning a conditional probability dis-
tribution to it. Ideally, the code length contributed by

is bits (hereafter, logarithms are taken
to the base 2), which averages to the entropy of the probabilistic
model. In asequentialformulation, the distribution
is learned from the past and is available to the decoder as it
decodes the past string sequentially. Alternatively, in atwo-pass
scheme the conditional distribution can be learned from the
whole image in a first pass and must be sent to the decoder as
header information.1

The conceptual separation between the modeling and coding
operations [9] was made possible by the invention of thearith-
metic codes[10], which can realize any probability assignment

, dictated by the model, to a preset precision. These two
milestones in the development of lossless data compression al-
lowed researchers to view the problem merely as one of prob-
ability assignment, concentrating on the design of imaginative
models for specific applications (e.g., image compression) with
the goal of improving on compression ratios. Optimization of
the sequential probability assignment process for images, in-
spired on the ideas ofuniversal modeling, is analyzed in [11],
where a relatively high complexity scheme is presented as a way
to demonstrate these ideas. Rather than pursuing this optimiza-
tion, the main objective driving the design of LOCO-I is to sys-
tematically “project” the image modeling principles outlined in
[11] and further developed in [12], into a low complexity plane,
both from a modeling and coding perspective. A key challenge
in this process is that the above separation between modeling
and coding becomes less clean under the low complexity coding
constraint. This is because the use of a generic arithmetic coder,
which enables the most general models, is ruled out in many
low complexity applications, especially for software implemen-
tations.

Image compression models customarily consisted of a fixed
structure, for which parameter values were adaptively learned.
The model in [11], instead, is adaptive not only in terms of the
parameter values, but also in structure. While [11] represented
the best published compression results at the time (at the cost
of high complexity), it could be argued that the improvement
over the fixed model structure paradigm, best represented by
the Sunset family of algorithms [13]–[16], was scant. The re-
search leading to the CALIC algorithm [17], conducted in par-
allel to the development of LOCO-I, seems to confirm a pattern
of diminishing returns. CALIC avoids some of the optimizations
performed in [11], but by tuning the model more carefully to the
image compression application, some compression gains are ob-
tained. Yet, the improvement is not dramatic, even for the most

1A two-pass version of LOCO-I was presented in [8].

1057–7149/00$10.00 © 2000 IEEE

1310 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

complex version of the algorithm [18]. More recently, the same
observation applies to the TMW algorithm [19], which adopts
a multiple-pass modeling approach. Actually, in many applica-
tions, a drastic complexity reduction can have more practical
impact than a modest increase in compression. This observation
suggested that judicious modeling, which seemed to be reaching
a point of diminishing returns in terms of compression ratios,
should rather be applied to obtain competitive compression at
significantly lower complexity levels.

On the other hand, simplicity-driven schemes (e.g., the most
popular version of the lossless JPEG standard [20]) propose
minor variations of traditional DPCM techniques [21], which
include Huffman coding [22] of prediction residuals obtained
with some fixed predictor. These simpler techniques are fun-
damentally limited in their compression performance by the
first order entropy of the prediction residuals, which in general
cannot achieve total decorrelation of the data [23]. The compres-
sion gap between these simple schemes and the more complex
ones is significant, although the FELICS algorithm [24] can be
considered a first step in bridging this gap, as it incorporates
adaptivity in a low complexity framework.

While maintaining the complexity level of FELICS, LOCO-I
attains significantly better compression ratios, similar or supe-
rior to those obtained with state-of-the art schemes based on
arithmetic coding, but at a fraction of the complexity. In fact,
as shown in Section VI, when tested over a benchmark set of
images of a wide variety of types, LOCO-I performed within
a few percentage points of the best available compression ra-
tios (given, in practice, by CALIC), at a much lower complexity
level. Here, complexity was estimated by measuring running
times of software implementations made widely available by the
authors of the respective algorithms.

In the sequel, our discussions will generally be confined to
gray-scale images. For multicomponent (color) images, the
JPEG-LS syntax supports both interleaved and noninterleaved
(i.e., component by component) modes. In interleaved modes,
possible correlation between color planes is used in a limited
way, as described in the Appendix. For some color spaces (e.g.,
an RGB representation), good decorrelation can be obtained
through simple lossless color transforms as a pre-processing
step to JPEG-LS. Similar performance is attained by more
elaborate schemes which do not assume prior knowledge of the
color space (see, e.g., [25] and [26]).

JPEG-LS offers a lossy mode of operation, termed “near-loss-
less,” in which every sample value in a reconstructed image
component is guaranteed to differ from the corresponding value
in the original image by up to a preset (small) amount,. In
fact, in the specification [7], the lossless mode is just a special
case of near-lossless compression, with . This paper will
focus mainly on the lossless mode, with the near-lossless case
presented as an extension in Section IV.

The remainder of this paper is organized as follows. Section II
reviews the principles that guide the choice of model in loss-
less image compression, and introduces the basic components
of LOCO-I as low complexity projections of these guiding prin-
ciples. Section III presents a detailed description of the basic
algorithm behind JPEG-LS culminating with a summary of all
the steps of the algorithm. Section IV discusses the near-loss-

less mode, while Section V discusses variations to the basic
configuration, including one based on arithmetic coding, which
has been adopted for a prospective extension of the baseline
JPEG-LS standard. In Section VI, compression results are re-
ported for standard image sets. Finally, an Appendix lists var-
ious additional features in the standard, including the treatment
of color images.

While modeling principles will generally be discussed in ref-
erence to LOCO-I as the algorithm behind JPEG-LS, specific
descriptions will generally refer to LOCO-I/JPEG-LS, unless
applicable to only one of the schemes.

II. M ODELING PRINCIPLES AND LOCO-I

A. Model Cost and Prior Knowledge

In this section, we review the principles that guide the choice
of model and, consequently, the resulting probability assign-
ment scheme. In state-of-the-art lossless image compression
schemes, this probability assignment is generally broken into
the following components.

1) A prediction step, in which a value is guessed for
the next sample based on a finite subset (acausal
template) of the available past data .

2) The determination of acontext in which occurs.
The context is, again, a function of a (possibly different)
causal template.

3) A probabilistic model for theprediction residual(or error
signal) , conditioned on the context
of .

This structure was pioneered by the Sunset algorithm [13].
Model Cost: A probability assignment scheme for data

compression aims at producing a code length which approaches
the empirical entropy of the data. Lower entropies can be
achieved through higher order conditioning (larger contexts).
However, this implies a larger number of parameters in the
statistical model, with an associatedmodel cost[27] which
could offset the entropy savings. This cost can be interpreted
as capturing the penalties of “context dilution” occurring when
count statistics must be spread over too many contexts, thus
affecting the accuracy of the corresponding estimates. The
per-sample asymptotic model cost is given by ,
where is the number of data samples [28]. Thus, the number
of parameters plays a fundamental role in modeling problems,
governing the above “tension” between entropy savings and
model cost [27]. This observation suggests that the choice of
model should be guided by the use, whenever possible, of
available prior knowledgeon the data to be modeled, thus
avoiding unnecessary “learning” costs (i.e., overfitting). In
a context model, is determined by the number of free
parameters defining the coding distribution at each context and
by the number of contexts.

Prediction: In general, the predictor consists of a fixed
and an adaptive component. When the predictor is followed
by a zero-order coder (i.e., no further context modeling is per-
formed), its contribution stems from it being the only “decor-
relation” tool. When used in conjunction with a context model,
however, the contribution of the predictor is more subtle, espe-

WEINBERGERet al.: LOCO-I LOSSLESS IMAGE COMPRESSION ALGORITHM 1311

cially for its adaptive component. In fact, prediction may seem
redundant at first, since the same contextual information that is
used to predict is also available for building the coding model,
which will eventually learn the “predictable” patterns of the data
and assign probabilities accordingly. The use of two different
modeling tools based on the same contextual information is an-
alyzed in [12], and the interaction is also explained in terms of
model cost. The first observation, is that prediction turns out to
reduce the number of coding parameters needed for modeling
high order dependencies. This is due to the existence of multiple
conditional distributions that are similarly shaped but centered
at different values. By predicting a deterministic, context-de-
pendent value for , and considering the (context)-con-
ditional probability distribution of the prediction residual
rather than that of itself, we allow for similar probability
distributions on , which may now be all centered at zero, to
merge in situations when the original distributions onwould
not. Now, while the fixed component of the predictor can easily
be explained as reflecting our prior knowledge of typical struc-
tures in the data, leading, again, to model cost savings, the main
contribution in [12] is to analyze the adaptive component. No-
tice that adaptive prediction also learns patterns through a model
(with a number of parameters), which has an associated
learning cost. This cost should be weighted against the poten-
tial savings of in the coding model cost. A first
indication that this trade-off might be favorable is given by the
predictability bound in [29] (analogous to the coding bound in
[28]), which shows that the per-sample model cost for prediction
is , which is asymptotically negligible with respect to
the coding model cost. The results in [12] confirm this intuition
and show that it is worth increasing while reducing . As a
result, [12] proposes the basic paradigm of using a large model
for adaptive prediction which in turn allows for a smaller model
for adaptive coding. This paradigm is also applied, for instance,
in [17].

Parametric Distributions: Prior knowledge on the struc-
ture of images to be compressed can be further utilized by fit-
ting parametric distributions with few parameters per context to
the data. This approach allows for a larger number of contexts
to capture higher order dependencies without penalty in overall
model cost. Although there is room for creative combinations,
the widely accepted observation [21] that prediction residuals in
continuous-tone images are well modeled by atwo-sided geo-
metric distribution(TSGD) makes this model very appealing in
image coding. It is used in [11] and requires only two parame-
ters (representing the rate of decay and the shift from zero) per
context, as discussed in Section III-B1.

The optimization of the above modeling steps, inspired on
the ideas of universal modeling, is demonstrated in [11]. In this
scheme, the context for is determined out of differences

, where the pairs correspond to adjacent loca-
tions within a fixed causal template, with . Each differ-
ence is adaptively quantized based on the concept of stochastic
complexity [27], to achieve an optimal number of contexts. The
prediction step is accomplished with an adaptively optimized,
context-dependent function of neighboring sample values (see
[11, (Eq. 3.2)]). The prediction residuals, modeled by a TSGD,
are arithmetic-encoded and the resulting code length is asymp-

totically optimal in a certain broad class of processes used to
model the data [30].

B. Application to LOCO-I

In this section, we introduce the basic components of LOCO-I
as low complexity projections of the guiding principles pre-
sented in Section II-A. The components are described in detail
in Section III.

Predictor: The predictor in LOCO-I is context-de-
pendent, as in [11]. It also follows classical autoregressive
(AR) models, including an affine term (see, e.g., [31]).2 This
affine term is adaptively optimized, while the dependence on
the surrounding samples is through fixed coefficients. The
fixed component of the predictor further incorporates prior
knowledge by switching among three simple predictors, thus
resulting in a nonlinear function with a rudimentary edge
detecting capability. The adaptive term is also referred to as
“bias cancellation,” due to an alternative interpretation (see
Section III-A).

Context Model: A very simple context model, determined
by quantized gradients as in [11], is aimed at approaching the
capability of the more complex universal context modeling tech-
niques for capturing high-order dependencies. The desired small
number of free statistical parameters is achieved by adopting,
here as well, a TSGD model, which yields two free parameters
per context.

Coder: In a low complexity framework, the choice of a
TSGD model is of paramount importance since it can be effi-
ciently encoded with an extended family of Golomb-type codes
[32], which are adaptively selected [33] (see also [34]). The
on-line selection strategy turns out to be surprisingly simple,
and it is derived by reduction of the family of optimal prefix
codes for TSGDs [35]. As a result, adaptive symbol-by-symbol
coding is possible at very low complexity, thus avoiding the use
of the more complex arithmetic coders.3 In order to address
the redundancy of symbol-by-symbol coding in the low entropy
range (“flat” regions), an alphabet extension is embedded in
the model (“run” mode). In JPEG-LS, run lengths are adap-
tively coded usingblock-MELCODE, an adaptation technique
for Golomb-type codes [2], [36].

Summary: The overall simplicity of LOCO-I/JPEG-LS
can be mainly attributed to its success in matching the
complexity of the modeling and coding units, combining
simplicity with the compression potential of context models,
thus “enjoying the best of both worlds.” The main blocks of the
algorithm are depicted in Fig. 1, including the causal template
actually employed. The shaded area in the image icon at the
left of the figure represents the scanned past data, on which
prediction and context modeling are based, while the black dot
represents the sample currently encoded. The switches
labeledmodeselect operation in “regular” or “run” mode, as
determined from by a simple region “flatness” criterion.

2A specific linear predicting function is demonstrated in [11], as an example
of the general setting. However, all implementations of the algorithm also in-
clude an affine term, which is estimated through the average of past prediction
errors, as suggested in [11, p. 583].

3The use of Golomb codes in conjunction with context modeling was pio-
neered in the FELICS algorithm [24].

1312 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

Fig. 1. JPEG-LS: Block diagram.

III. D ETAILED DESCRIPTION OFJPEG-LS

The prediction and modeling units in JPEG-LS are based on
the causal template depicted in Fig. 1, wheredenotes the
current sample, and , and , are neighboring samples in
the relative positions shown in the figure.4 The dependence of

, and , on the time index has been deleted from the
notation for simplicity. Moreover, by abuse of notation, we will
use , and to denote both thevaluesof the samples and
their locations. By using the template of Fig. 1, JPEG-LS limits
its image buffering requirement to one scan line.

A. Prediction

Ideally, the value guessed for the current sampleshould
depend on , and through an adaptive model of the local
edge direction. While our complexity constraints rule out this
possibility, some form of edge detection is still desirable. In
LOCO-I/JPEG-LS, a fixed predictor performs a primitive test
to detect vertical or horizontal edges, while the adaptive part
is limited to an integer additive term, which is context-de-
pendent as in [11] and reflects the affine term in classical
AR models (e.g., [31]). Specifically, the fixed predictor in
LOCO-I/JPEG-LS guesses

if
if
otherwise.

(1)

The predictor (1) switches between three simple predictors: it
tends to pick in cases where a vertical edge exists left of the
current location, in cases of an horizontal edge above the cur-
rent location, or if no edge is detected. The latter
choice would be the value of if the current sample belonged
to the “plane” defined by the three neighboring samples with
“heights” , and . This expresses the expected smoothness
of the image in the absence of edges. The predictor (1) has been
used in image compression applications [37], under a different
interpretation: The guessed value is seen as themedianof three

4The causal template in [1] includes an additional sample,e, West ofa. This
location was discarded in the course of the standardization process as its contri-
bution was not deemed to justify the additional context storage required [4].

fixed predictors, , and . Combining both interpre-
tations, this predictor was renamed during the standardization
process “median edge detector” (MED).

As for the integer adaptive term, it effects a context-depen-
dent translation. Therefore, it can be interpreted as part of the
estimation procedure for the TSGD. This procedure is discussed
in Section III-B. Notice that is employed in the adaptive part
of the predictor, but not in (1).

B. Context Modeling

As noted in Section II-A, reducing the number of parameters
is a key objective in a context modeling scheme. This number
is determined by the number of free parameters defining the
coding distribution at each context and by the number of con-
texts.

1) Parameterization:
TSGD Model: It is a widely accepted observation [21] that

the global statistics of residuals from a fixed predictor in contin-
uous-tone images are well-modeled by a TSGD centered at zero.
According to this distribution, the probability of an integer value

of the prediction error is proportional to , where
controls the two-sided exponential decay rate. However, it was
observed in [15] that a dc offset is typically present incon-
text-conditionedprediction error signals. This offset is due to
integer-value constraints and possible bias in the prediction step.
Thus, a more general model, which includes an additionaloffset
parameter , is appropriate. Letting take noninteger values,
the two adjacent modes often observed in empirical context-de-
pendent histograms of prediction errors are also better captured
by this model. We break the fixed prediction offset into an in-
teger part (or “bias”), and a fractional part (or “shift”), such
that , where . Thus, the TSGD parametric
class , assumed by LOCO-I/JPEG-LS for the residuals of
the fixed predictor at each context, is given by

(2)

where is a normalization factor.
The bias calls for an integer adaptive term in the predictor.
In the sequel, we assume that this term is tuned to cancel,
producing average residuals between distribution modes located

WEINBERGERet al.: LOCO-I LOSSLESS IMAGE COMPRESSION ALGORITHM 1313

Fig. 2. Two-sided geometric distribution.

at 0 and (see Section III-B3). Consequently, after adaptive
prediction, the model of (2) reduces in LOCO-I/JPEG-LS to

(3)

where and , as above. This reduced range
for the offset is matched to the codes presented in Section III-C,
but any unit interval could be used in principle (the preference
of over is arbitrary). The model of (3) is depicted in
Fig. 2. The TSGD centered at zero corresponds to , and,
when is a bi-modal distribution with equal peaks
at and 0. Notice that the parameters of the distribution are
context-dependent, even though this fact is omitted by our nota-
tion. Two-sided geometric distributions are extensively studied
in [33]–[35]. Their low complexity adaptive coding is further
investigated in [38]. The application of these low complexity
techniques to LOCO-I/JPEG-LS is studied in Section III-C.

Error Residual Alphabet in JPEG-LS:The image al-
phabet, assumed infinite in (3), has a finite sizein practice.
For a given prediction takes on values in the range

. Since is known to the decoder, the actual
value of the prediction residual can be reduced, modulo,
to a value between and . This is done in
LOCO-I/JPEG-LS, thus remapping large prediction residuals
to small ones. Merging the “tails” of peaked distributions with
their central part does not significantly affect the two-sided
geometric behavior. While this observation holds for smooth
images, this remapping is especially suited also for, e.g.,
compound documents, as it assigns a large probability to sharp
transitions. In the common case , it consists of just
interpreting the least significant bits of in 2’s complement
representation.5 Since is typically quite large, we will
continue to use the infinite alphabet model (3), although the
reducedprediction residuals, still denoted by, belong to the
finite range .

2) Context Determination:
General Approach:The context that conditions the en-

coding of the current prediction residual in JPEG-LS is built
out of the differences , and .
These differences represent the local gradient, thus capturing the
level of activity (smoothness, edginess) surrounding a sample,
which governs the statistical behavior of prediction errors. No-
tice that this approach differs from the one adopted in the Sunset
family [16] and other schemes, where the context is built out of

5A higher complexity remapping is discussed in [39].

the prediction errors incurred in previous encodings. By sym-
metry,6 , and influence the model in the same way.
Since further model size reduction is obviously needed, each
difference , is quantized into a small number of
approximatelyequiprobable, connected regions by a quantizer

independent of . This quantization aims at maximizing
the mutual informationbetween the current sample value and
its context, an information-theoretic measure of the amount of
information provided by the conditioning context on the sample
value to be modeled. We refer to [11] and [12] for an in-depth
theoretical discussion of these issues.

In principle, the number of regions into which each context
difference is quantized should be adaptively optimized. How-
ever, the low complexity requirement dictates a fixed number of
“equiprobable” regions. To preserve symmetry, the regions are
indexed , with , for a
total of different contexts. A further reduction in the
number of contexts is obtained after observing that, by sym-
metry, it is reasonable to assume that

where represents the quantized context triplet and
. Hence, if the first nonzero element of is

negative, the encoded value is , using context . This
is anticipated by the decoder, which flips the error sign if nec-
essary to obtain the original error value. By merging contexts of
“opposite signs,” the total number of contexts becomes

.
Contexts in JPEG-LS:For JPEG-LS, was se-

lected, resulting in 365 contexts. This number balances storage
requirements (which are roughly proportional to the number
of contexts) with high-order conditioning. In fact, due to the
parametric model of (3), more contexts could be afforded for
medium-sized to large images, without incurring an excessive
model cost. However, the compression improvement is mar-
ginal and does not justify the increase in resources [4]. For
small images, it is possible to reduce the number of contexts
within the framework of the standard, as discussed below.

To complete the definition of the contexts in JPEG-LS,
it remains to specify the boundaries between quantization
regions. For an 8-bit/sample alphabet, the default quantization
regions are

. However, the boundaries are adjustable param-
eters, except that the central region must be {0}. In particular,
a suitable choice collapses quantization regions, resulting in a
smaller effective number of contexts, with applications to the
compression of small images. For example, a model with 63
contexts , was found to work best for the -tile
size used in the FlashPix™ file format [40]. Through appro-
priate scaling, default boundary values are also provided for
general alphabet sizes[3], [7].

3) Adaptive Correction:As mentioned in Sections III-A and
III-B1, the adaptive part of the predictor is context-based and it

6Here, we assume that the class of images to be encoded is essentially sym-
metric with respect to horizontal/vertical, left/right, and top/bottom transposi-
tions, as well as the sample value “negation” transformationx! (�� 1�x).

1314 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

is used to “cancel” the integer part of the offset due to the
fixed predictor. As a result, the context-dependent shift in the
distributions (3) was restricted to the range . This
section discusses how this adaptive correction (orbias cancel-
lation) is performed at low complexity.

Bias Estimation: In principle,maximum-likelihood(ML)
estimation of in (2) would dictate a bias cancellation proce-
dure based on themedianof the prediction errors incurred so far
in the context by the fixed predictor (1). However, storage con-
straints rule out this possibility. Instead, an estimate based on the
averagecould be obtained by just keeping a countof context
occurrences, and a cumulative sumof fixed prediction errors
incurred so far in the context. Then, acorrection value could
be computed as the rounded average

(4)

and added to the fixed prediction , to offset the prediction
bias. This approach, however, has two main problems. First, it
requires a general division, in opposition to the low complexity
requirements of LOCO-I/JPEG-LS. Second, it is very sensitive
to the influence of “outliers,” i.e., atypical large errors can affect
future values of until it returns to its typical value, which is
quite stable.

To solve these problems, first notice that (4) is equivalent to

where the integer satisfies . It is readily ver-
ified, by setting up a simple recursion, that the correction value
can be implemented by storing and , and adjusting both for
each occurrence of the context. Thecorrectedprediction error
is first added to , and then is subtracted or added until the
result is in the desired range . The number of subtrac-
tions/additions of prescribes the adjustment for .

Bias Computation in JPEG-LS:The above procedure is
further modified in LOCO-I/JPEG-LS by limiting the number
of subtractions/additions to one per update, and then “forcing”
the value of into the desired range, if needed. Specifically,

and are replaced by approximate valuesand , re-
spectively, which are initialized to zero and updated according
to the division-free procedure shown in Fig. 3 (in C-language
style). The procedure increments (resp. decrements) the correc-
tion value each time (resp.). At this time,

is also adjusted to reflect the change in. If the increment
(resp. decrement) is not enough to bringto the desired range
(i.e., the adjustment in was limited), is clamped to 0 (resp.

). This procedure will tend to produce average predic-
tion residuals in the interval , with serving as an esti-
mate (albeit not the ML one) of . Notice that is an es-
timate of the residual fractional shift parameter(again, not the
ML one). To reduce storage requirements,is not incremented
(resp. decremented) over 127 (resp. under128). Mechanisms
for “centering” image prediction error distributions, based on
integer offset models, are described in [15] and [17].

C. Coding

To encode corrected prediction residuals distributed ac-
cording to the TSGD of (3), LOCO-I/JPEG-LS uses a minimal

Fig. 3. Bias computation procedure.

complexity subfamily of the family of optimal prefix codes for
TSGDs, recently characterized in [35]. The coding unit also
implements a low complexity adaptive strategy tosequentially
select a code among the above sub-family. In this subsection,
we discuss the codes of [35] and the principles guiding general
adaptation strategies, and show how the codes and the princi-
ples are simplified to yield the adopted solution.

1) Golomb Codes and Optimal Prefix Codes for the
TSGD: The optimal codes of [35] are based onGolomb codes
[32], whose structure enables simple calculation of the code
word of any given sample, without recourse to the storage of
code tables, as would be the case with unstructured, generic
Huffman codes. In an adaptive mode, a structured family of
codes further relaxes the need of dynamically updating code
tables due to possible variations in the estimated parameters
(see, e.g., [41]).

Golomb codes were first described in [32], as a means for
encoding run lengths. Given a positive integer parameter,
the th order Golomb code encodes an integer
in two parts: aunary representation of , and amodified
binary representation of (using bits if

and bits otherwise). Golomb codes are
optimal [42] forone-sided geometric distributions(OSGDs) of
the nonnegative integers, i.e., distributions of the form ,
where . Thus, for every there exists a value of
such that yields the shortest average code length over all
uniquely decipherable codes for the nonnegative integers.

The special case of Golomb codes with leads to
very simple encoding/decoding procedures: the code foris
constructed by appending theleast significant bits of to the
unary representation of the number formed by the remaining
higher order bits of (the simplicity of the case was
already noted in [32]). The length of the encoding is

. We refer to codes asGolomb-power-of-2(GPO2)
codes.

In the characterization of optimal prefix codes for TSGDs
in [35], the parameter space is partitioned into regions,
and a different optimal prefix code corresponds to each region
(is assumed, since the case can be reduced
to the former by means of the reflection/shift transformation

on the TSG-distributed variable). Each region is
associated with an th order Golomb code, where the parameter

is a function of the values ofand in the region. Depending
on the region, an optimal code from [35] encodes an integer
either by applying a region-dependent modification of to ,

WEINBERGERet al.: LOCO-I LOSSLESS IMAGE COMPRESSION ALGORITHM 1315

followed by a sign bit whenever , or by using ,
where

(5)

and the indicator function if , or otherwise.
Codes of the first type are not used in LOCO-I/JPEG-LS, and
are not discussed further in this paper. Instead, we focus on the
mapping , which gives the index of in the interleaved
sequence This mapping was first used by
Rice in [39] to encode TSGDs centered at zero, by applying a
GPO2 code to . Notice that is a very natural mapping
under the assumption , since it sorts prediction resid-
uals in nonincreasing order of probability. The corresponding
mapping for is , which effects the
probability sorting in this case. Following the modular reduction
described in Section III–B1, for , the
corresponding values fall in the range .
This is also the range for with even . For odd
can also take on the value(but not).

2) Sequential Parameter Estimation:
Statement of the Problem:Even though, in general, adap-

tive strategies are easier to implement with arithmetic codes,
the family of codes of [35] provides a reasonable alternative
for low complexity adaptive coding of TSGDs, which is investi-
gated in [33]: Based on the past sequence of prediction residuals

encoded at a given context, select a code (i.e.,
an optimality region, which includes a Golomb parameter)
sequentially, and use this code to encode . (Notice that
here indexes occurrencesof a given context, thus corresponding
to the variable introduced in Section III-B3.) The decoder
makes the same determination, after decoding the same past se-
quence. Thus, the coding is done “on the fly,” as with adap-
tive arithmetic coders. Two adaptation approaches are possible
for selecting the code for : exhaustive searchof the code
that would have performed best on, or expected code length
minimization for anestimateof the TSGD parameters given.
These two approaches also apply in ablock codingframework,7

with the samples in the block to be encoded used in lieu of.
An advantage of the estimation approach is that, if based on

ML, it depends only on thesufficient statistics and for the
parameters and , given by

with as in (5). Clearly, is the total number of negative
samples in , and is the accumulated sum of abso-
lute values. In contrast, an exhaustive search would require one
counter per context for each code in the family.

Code Family Reduction:Despite the relative simplicity of
the codes, the complexity of both the code determination and the
encoding procedure for the full family of optimal codes of [35]
would still be beyond the constraints set for JPEG-LS. For that
reason, as in [39], LOCO-I/JPEG-LS only uses the subfamily of

7For block coding, an image is divided into rectangular blocks of samples.
The blocks are scanned to select a code within a small family, which is identified
with a few overhead bits, and the samples are encoded in a second pass through
the block (see, e.g., [39]).

GPO2 codes. Furthermore, only codes based on the mappings
and (for and , respectively) are

used. We denote . The mapping is
relevant only for , since for every

. Thus, the sequential code selection process in LOCO-
I/JPEG-LS consists of the selection of a Golomb parameter,8

and in case , a mapping or . We further denote
.

The above subfamily of codes, which we denote, represents
a specific compression-complexity trade-off. It is shown in [35]
that the average code length with the best code inis within
about 4.7% of the optimal prefix codes for TSGDs, with largest
deterioration in the very low entropy region, where a different
coding method is needed anyway (see Section III-E). Further-
more, it is shown in [38] that the gap is reduced to about 1.8% by
including codes based on one of the other mappings mentioned
above, with a slightly more complex adaptation strategy. These
results are consistent with estimates in [39] for the redundancy
of GPO2 codes on OSGDs.

The ML estimation approach is used in LOCO-I/JPEG-LS for
code selection within the sub-family. It yields the following
result, which is proved in [33] and is the starting point for a
chain of approximations leading to the very simple adaptation
rule used, in the end, in JPEG-LS.

Theorem 1: Let (“golden ratio”). Encode
, according to the following decision rules.

1) If , compare , and . If is largest,
choose code . Otherwise, if is largest, choose

. Otherwise, choose .
2) If , choose code , provided that

(6)

Let denote the code length resulting from applying this
adaptation strategy to the sequence. Let denote
the minimum expected codeword length over codes in the
sub-family for a TSGD with (unknown) parametersand .
Then

where denotes expectation underand .
Theorem 1 involves the decision regions derived in [35,

Lemma 4] for in the case ofknownparameters, afterrepa-
rameterizationto and .
The (transformed) parameters and are replaced by their
(simple) estimates and , respectively. The claim of
the theorem applies in a probabilistic setting, in which it is
postulated that the data is TSG-distributed with parameters that
are unknown to the coders. It states that a sequential adaptation
strategy based on ML estimation of the TSGD parameters,
and a partition of the parameter space into decision regions
corresponding to codes in with minimum expected code
length, performs essentially as well (up to an term) as
the best code in for theunknownparameters.

8We will refer tok also as aGolomb parameter, the distinction from2 being
clear from the context.

1316 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

Theorem 1 formalizes related results presented in [39] for
block coding. A result analogous to Theorem 1 is proved in [24]
for the exhaustive search approach, under a OSGD assumption.
There, the deviation from optimality is bounded as ,
and the derivation also involves the golden ratio. Notice that the
exhaustive search adaptation approach is recommended in both
[24] and [39] for selecting GPO2 codes, even though both men-
tion ways of explicitly estimating the parameterfrom observed
error values. In [39], an estimation formula based on a sum
over values in a block is presented. The parameteris de-
termined according to ranges of values of. Reference [24]
briefly mentions the possibility of derivingby first estimating
the variance of the distribution from. Approximating the suf-
ficient statistics, rather than computing the variance or the sum

, results in a surprisingly simple calculation forand, in case
, also for the mapping.

Next, we present (in two stages) the chain of approximations
leading to the adaptation rule used in JPEG-LS.

First Approximation: The decision region boundaries (6)
admit a low complexity approximation, proposed in [33], for
which it is useful to define the functions and ,
by

(7)

It can be shown that is a decreasingfunction of , that
ranges between , and

. Since and , (7) implies
that is within 4% of for every .
Thus, using approximate values of and in lieu of
the bounds in (6), a good approximation to the decision rule of
Theorem 1 for encoding is as follows.

Let .

1) If , compare , and . If is largest,
choose code . Otherwise, if is largest, choose

. Otherwise, choose .
2) If , choose code , provided that

.
Adaptation Rule in JPEG-LS:The rule used in JPEG-LS

further simplifies this approximation. For each context, the ac-
cumulated sum of magnitudes of prediction residuals, ,
is maintained in a register, in addition to the variables and

defined in Section III-B3. The following procedure is imple-
mented.

a) Compute as

(8)

b) If , choose code . Otherwise, if and
, choose code . Otherwise, choose code .

In the above procedure, is approximated by (implying
the assumption that is reasonably close to).
Values of in (8) correspond to Step 2) above, while a
value corresponds to the case whereis largest in Step
1), through the approximation . The other cases of Step
1) correspond to , where a finer approximation of is
used. Recall that is an estimate of. Clearly, if

and only if . Therefore, the result of the com-
parison approximates the result of the comparison

reasonably well, and the simplified procedure follows.
In software, can be computed by the C programming lan-

guage “one-liner”

Hardware implementations are equally trivial.
3) Limited-Length Golomb Codes:The encoding procedure

of Section III-C can produce significant expansion for single
samples: for example, with and , a prediction
residual would produce 256 output bits, a 32 : 1 ex-
pansion. Moreover, one can create artificial images with long
sequences of different contexts, such that this situation occurs
sample after sample, thus causing significant local expansion
(this context pattern is necessary for this situation to arise, as
large residuals would otherwise trigger adaptation ofto a
larger value for a particular context). While such a worst-case
sequence is not likely in practical situations, significant local
expansion was observed for some images. In general, local ex-
pansion does not affect the overall compression ratio, as the
average or asymptotic expansion behavior is governed by the
adaptation of the code parameter. However, local expansion
can be problematic in implementations with limited buffer space
for compressed data. Therefore, adopting a practical tradeoff,
GPO2 codes are modified in JPEG-LS to limit the code length
per sample to (typically) , where , e.g., 32 bits
for 8-bit/sample images.

The limitation is achieved using a simple technique [6] that
avoids a negative impact on complexity, while on the other hand
saving, in some situations, the significant cost of outputting
long unary representations. For a maximum code word length
of bits, the encoding of an integer , 9 pro-
ceeds as in Section III-C1 whenever satisfies

(9)

where we assume . The case where (9) holds is
by far the most frequent, and checking the condition adds only
one comparison per encoding. By (8)

(10)

so that the total code length after appendingbits is within the
required limit . Now, if is encoded in
unary, which acts as an “escape” code, followed by an explicit
binary representation of , using bits (since al-
ways satisfies (9), so that), for a total of
bits. Although the terminating bit of the unary representation is
superfluous, as zeroes would already identify an escape
code, it facilitates the decoding operation.

D. Resets

To enhance adaptation to nonstationarity of image statistics,
LOCO-I/JPEG-LS periodically resets the variables , and

. Specifically, wehalf (rounding down to nearest integer) the

9Notice that the range fory may include� in case� is odd and the mapping
M (�) is used.

WEINBERGERet al.: LOCO-I LOSSLESS IMAGE COMPRESSION ALGORITHM 1317

contents of , and for a given context each time attains
a predetermined threshold . In this way, the immediate past
is given a larger weight than the remote past. It has been found
that values of between 32 and 256 work well for typical
images; the default value in JPEG-LS is 64. More importantly
in practice, resetting the variables limits the amount of storage
required per context.

E. Embedded Alphabet Extension (Run Coding)

Motivation: Symbol-by-symbol (Huffman) coding (as
opposed to arithmetic coding) is inefficient for very low
entropy distributions, due to its fundamental limitation of
producing at least one code bit per encoding. This limitation
applies to the symbol-by-symbol coding of TSGDs performed
in LOCO-I/JPEG-LS, and may produce a significant redun-
dancy (i.e., excess code length over the entropy) for contexts
representing smooth regions, for which the distributions are
very peaked as a prediction residual of 0 is extremely likely.
In nonconditioned codes, this problem is addressed through
alphabet extension. By encoding blocks of data as “super-sym-
bols,” distributions tend to be flatter (i.e., the redundancy is
spread over many symbols).

Mode Selection:A strategy similar to the above has been
embeddedinto the context model in LOCO-I/JPEG-LS. The en-
coder enters a “run” mode when a “flat region” context with

is detected. Since the central region of quan-
tization for the gradients is the singleton {0}, the run
condition is easily detected in the process of context quantiza-
tion by checking for . Once in run mode,
a run of the symbol is expected, and the run length (which
may be zero) is encoded. While in run mode, the context is not
checked and some of the samples forming the run may occur in
contexts other than . When the run is broken by a non-
matching sample , the encoder goes into a “run interruption”
state, where the difference (with the sample above)
is encoded. Runs can also be broken by ends of lines, in which
case the encoder returns to normal context-based coding. Since
all the decisions for switching in and out of the run mode are
based on past samples, the decoder can reproduce the same de-
cisions without any side information.

Adaptive Run Length Coding:The encoding of run
lengths in JPEG-LS is also based on Golomb codes, orig-
inally proposed in [32] for such applications. However, an
improved adaptation strategy can be derived from viewing
the encoded sequence as binary (“0” for a “hit,” “1” for a
“miss”). For a positive integer parameter, let denote
a variable-to-variable length code defined over the extended
binary alphabet , where denotes
a sequence of zeros. Under , the extended symbol
(a successful run of “hits”) is encoded with a 0, while

, is encoded with a 1 followed by the modified
binary representation of. By considering a concatenation of
extended input symbols, it is easy to see that is equivalent
to applied to the run length. However, is defined
over a finite alphabet, with “hits” and “misses” modeled as
independent and identically distributed (i.i.d.). We will refer to

as anelementary Golomb codeof order . Variations

of these codes were introduced in [36], [43], and [44] in the
context of adaptive run-length coding. They are also studied in
[45] in the context of embedded coding of wavelet coefficients,
where insight is provided into their well-known efficiency for
encoding i.i.d. binary sequences over a surprisingly wide range
of values of the probability of a zero.

When is unknowna priori, elementary Golomb codes are
superior to Golomb codes in that the value ofcan be adapted
within a run, based on the current estimate of. The optimal
adaptation turns out to be extremely simple if the family of codes
is reduced, again, to the case , while the redundancy re-
mains very small for the ranges of interest. In addition, the code
words for interrupted runs are all bits long and provide
explicitly the length of the interrupted run. This approach, pro-
posed in [2], was adopted in JPEG-LS and replaces the approach
used in [1]. It is inspired in [36], and is termedblock-MEL-
CODE.

Count-based adaptation strategies for the parameterare pro-
posed in [36] and [45]. JPEG-LS uses a predefined table to ap-
proximate these strategies. A run segment of length(i.e.,)
triggers an index increment, while a “miss” (i.e.,

) triggers an index decrement. The index is used to enter the
table, which determines how many consecutive run segments
(resp. “misses”) trigger an increment (resp. decrement) of(see
[7]).

Run Interruption Coding:The coding procedure for a run
interruption sample is applied to . Thus,
both the fixed predictor (1) and the bias cancellation procedure
are skipped. Coding is otherwise similar to the regular sample
case. However, conditioning is based on two special contexts,
determined according to whether or . In the former
case, we always have (since, by definition of run inter-
ruption,). Therefore, the mappings and are
modified to take advantage of this exclusion. Moreover, since
the counter is not used in these contexts (no bias cancellation
is performed), the decision between and is based
on the number of negative values occurring in each context.
The same reset procedure as in Section III-D is used for the cor-
responding counters. Also, the length limitation for the Golomb
code takes into account the bits of the last coded run seg-
ment, thus limiting every code word length to bits.

F. Summary of Encoding Procedures

Figs. 4 and 5 summarize the JPEG-LS lossless encoding
procedures for a single component of an image. The decoding
process uses the same basic procedures and follows almost the
same steps in reverse order (see [7] for details). Nondefined
samples in the causal template at the boundaries of the image
are treated as follows: For the first line, is
assumed. For the first and last column, whenever undefined,
the samples at positionsand are assumed to be equal to the
one at position , while the value of the samples at position
is copied from the value that was assigned to positionwhen
encoding the first sample in the previous line.

For ease of cross-reference, for the main steps of the proce-
dures in Fig. 4 we indicate, in square brackets, the label of the
corresponding block in Fig. 1, and the numbers of the sub-sec-
tions where the computation is discussed. Fig. 5 corresponds to

1318 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

Fig. 4. JPEG-LS: Encoding of a single component.

Fig. 5. JPEG-LS: Run mode processing.

the blocks labeled “Run Counter” and “Run Coder” discussed
in Section III-E.

IV. NEAR-LOSSLESSCOMPRESSION

JPEG-LS offers a lossy mode of operation, termed “near-loss-
less,” in which every sample value in a reconstructed image
component is guaranteed to differ from the corresponding value
in the original image by up to a preset (small) amount,. The
basic technique employed for achieving this goal is the tradi-
tional DPCM loop [21], where the prediction residual (after cor-
rection and possible sign reversion, but before modulo reduc-
tion) is quantized into quantization bins of size , with

reproduction at the center of the interval. Quantization of a pre-
diction residual is performed by integer division according to

(11)

Since usually takes one of a few small integer values, the in-
teger division in (11) can be performed efficiently both in hard-
ware [46] and software (e.g., with look-up tables).

The following aspects of the coding procedure are affected
by the quantization step. Context modeling and prediction are
based on reconstructed values, so that the decoder can mimic
the operation of the encoder. In the sequel, the notation ,
and , will be used to refer also to the reconstructed values of
the samples at these positions. The condition for entering the

WEINBERGERet al.: LOCO-I LOSSLESS IMAGE COMPRESSION ALGORITHM 1319

run mode is relaxed to require that the gradients ,
satisfy . This relaxed condition reflects the fact that
reconstructed sample differences up tocan be the result of
quantization errors. Moreover, once in run mode, the encoder
checks for runs within a tolerance of, while reproducing the
value of the reconstructed sample at. Consequently, the two
run interruption contexts are determined according to whether

or not.
The relaxed condition for the run mode also determines the

central region for quantized gradients, which is
. Thus, the size of the central region is increased by,

and the default thresholds for gradient quantization are scaled
accordingly.

The reduction of the quantized prediction residual is done
modulo , where

into the range . The reduced value is (loss-
lessly) encoded and recovered at the decoder, which first multi-
plies it by , then adds it to the (corrected) prediction (or
subtracts it, if the sign associated to the context is negative), and
reduces it modulo into the range

, finally clamping it into the range . It can be
seen that, after modular reduction, the recovered value cannot
be larger than . Thus, before clamping, the decoder
actually produces a value in the range , which
is precisely the range of possible sample values with an error
tolerance of .

As for encoding, replaces in the definition of the limited-
length Golomb coding procedure. Sinceaccumulates quan-
tized error magnitudes, . On the other hand,
accumulates the encoded value,multiplied by . The alter-
native mapping is not used, as its effect would be negli-
gible since the center of the quantized error distribution is in the
interval .

The specification [7] treats the lossless mode as a special case
of near-lossless compression, with . Although the initial
goal of this mode was to guarantee a bounded error for appli-
cations with legal implications (e.g., medical images), for small
values of its visual and SNR performance is often superior to
that of traditional transform coding techniques [49].

V. VARIATIONS ON THE BASIC CONFIGURATION

A. Lower Complexity Variants

The basic ideas behind LOCO-I admit variants that can be
implemented at an even lower complexity, with reasonable de-
terioration in the compression ratios. One such variant follows
from further applying the principle that prior knowledge on the
structure of images should be used, whenever available, thus
saving model learning costs (see Section II-A). Notice that the
value of the Golomb parameteris (adaptively) estimated at
each context based on the value of previous prediction residuals.
However, the value of for a given context can be generally es-
timateda priori, as “active” contexts, corresponding to larger
gradients, will tend to present flatter distributions. In fact, for
most contexts there is a strong correlation between the “activity

level” measure , and the value of that
ends up being used the most in the context, with larger activity
levels corresponding to larger values of. However, the quanti-
zation threshold for the activity level would strongly depend on
the image.

The above observation is related to an alternative interpreta-
tion of the modeling approach in LOCO-I.10 Under this interpre-
tation, the use of only different prefix codes to encode con-
text-dependent distributions of prediction residuals, is viewed as
a (dynamic) way of clustering conditioning contexts. The clus-
ters result from the use of a small family of codes, as opposed to
a scheme based on arithmetic coding, which would use different
arithmetic codes for different distributions. Thus, this aspect of
LOCO-I can also be viewed as a realization of the basic para-
digm proposed and analyzed in [12] and also used in CALIC
[17], in which a multiplicity of predicting contexts is clustered
into a few conditioning states. In the lower complexity alter-
native proposed in this section, the clustering process is static,
rather than dynamic. Such a static clustering can be obtained,
for example, by using the above activity level in lieu of, and

, to determine in (8).

B. LOCO-A: An Arithmetic Coding Extension

In this section, we present an arithmetic coding extension
of LOCO-I, termed LOCO-A [47], which has been adopted
for a prospective extension of the baseline JPEG-LS standard
(JPEG-LS Part 2). The goal of this extension is to address the
basic limitations that the baseline presents when dealing with
very compressible images (e.g., computer graphics, near-loss-
less mode with an error of or larger), due to the symbol-by-
symbol coding approach, or with images that are very far from
being continuous-tone or have sparse histograms. Images of the
latter type contain only a subset of the possible sample values in
each component, and the fixed predictor (1) would tend to con-
centrate the value of the prediction residuals into a reduced set.
However, prediction correction tends to spread these values over
the entire range, and even if that were not the case, the proba-
bility assignment of a TSGD model in LOCO-I/JPEG-LS would
not take advantage of the reduced alphabet.

In addition to better handling the special types of images men-
tioned above, LOCO-A closes, in general, most of the (small)
compression gap between JPEG-LS and the best published re-
sults (see Section VI), while still preserving a certain complexity
advantage due to simpler prediction and modeling units, as de-
scribed below.

LOCO-A is a natural extension of the JPEG-LS baseline, re-
quiring the same buffering capability. The context model and
most of the prediction are identical to those in LOCO-I. The
basic idea behind LOCO-A follows from the alternative inter-
pretation of the modeling approach in LOCO-I discussed in
Section V-A. There, it was suggested thatconditioning states
could be obtained by clustering contexts based on the value of
the Golomb parameter (thus grouping contexts with similar
conditional distributions). The resulting state-conditioned dis-
tributions can be arithmetic encoded, thus relaxing the TSGD
assumption, which would thus be used only as a means to form

10X. Wu, private communication.

1320 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

the states. The relaxation of the TSGD assumption is possible
due to the small number of states, , which en-
ables the modeling of more parameters per state. In LOCO-A,
this idea is generalized to create higher resolution clusters based
on the average magnitude of prediction residuals (as
is itself a function of). Since, by definition, each cluster
would include contexts with very similar conditional distribu-
tions, this measure of activity level can be seen as a refinement
of the “error energy” used in CALIC [17], and a further appli-
cation of the paradigm of [12]. Activity levels are also used in
the ALCM algorithm [48].

Modeling in LOCO-A proceeds as in LOCO-I, collecting the
same statistics at each context (the “run mode” condition is used
to define a separate encoding state). The clustering is accom-
plished by modifying (8) as follows:

For 8-bit/sample images, 12 encoding states are defined:
, and the run state. A similar clus-

tering is possible with other alphabet sizes.
Bias cancellation is performed as in LOCO-I, except that the

correction value is tuned to produce TSGDs with a shiftin the
range , instead of (as the coding
method that justified the negative fractional shift in LOCO-I is
no longer used). In addition, regardless of the computed cor-
rection value, the corrected prediction is incremented or decre-
mented in the direction of until it is either a value that has
already occurred in the image, or . This modification al-
leviates the unwanted effects on images with sparse histograms,
while having virtually no effect on “regular” images. No bias
cancellation is done in the run state. A “sign flip” borrowed from
the CALIC algorithm [17] is performed: if the bias count is
positive, then the sign of the error is flipped. In this way, when
distributions that are similar in shape but have opposite biases
are merged, the statistics are added “in phase.” Finally, predic-
tion errors are arithmetic-coded conditioned on one of the 12 en-
coding states. Binary arithmetic coding is performed, following
the Golomb-based binarization strategy of [48]. For a state with
index , we choose the corresponding binarization tree as the
Golomb tree for the parameter (the run state also uses

).
Note that the modeling complexity in LOCO-A does not

differ significantly from that of LOCO-I. The only added
complexity is in the determination of (which, in software,
can be done with a simple modification of the C “one-liner”
used in LOCO-I), in the treatment of sparse histograms, and in
the use of a fifth sample in the causal template, West of, as in
[1]. The coding complexity, however, is higher due to the use
of an arithmetic coder.

VI. RESULTS

In this section, we present compression results obtained with
the basic configuration of JPEG-LS discussed in Section III,
using default parameters in separate single-component scans.
These results are compared with those obtained with other rel-
evant schemes reported in the literature, over a wide variety of
images. We also present results for near-lossless compression

TABLE I
COMPRESSION RESULTS ON ISO/IEC

10918-1 IMAGE TEST SET (IN BITS/SAMPLE)

and for LOCO-A. Compression ratios are given in bits/sample.11

In Table I, we study the compression performance of LOCO-I
and JPEG-LS in lossless mode, as well as JPEG-LS in near-loss-
less mode with and , on a standard set of images
used in developing the JPEG standard [20]. These are generally
“smooth” natural images, for which the and components
have been down-sampled 2 : 1 in the horizontal direction. The
LOCO-I column corresponds to the scheme described in [1],
and the discrepancy with the JPEG-LS column reflects the main
differences between the algorithms, which in the end cancel
out. These differences include: use of a fifth context sample in
LOCO-I, limitation of Golomb code word lengths in JPEG-LS,
different coding methods in run mode, different treatment of the
mapping , and overhead in JPEG-LS due to the more elab-
orate data format (e.g., marker segments, bit stuffing, etc.).

Notice that, assuming a uniform distribution for the quanti-
zation error, the root mean square error (RMSE) per component
for a maximum loss in near-lossless mode would be

(12)

In practice, this estimate is accurate for (namely,
), while for the actual RMSE (an average

of 1.94 for the images in Table I) is slightly better than the
value estimated in (12). For such small values
of , the near-lossless coding approach is known to largely
outperform the (lossy) JPEG algorithm [20] in terms of RMSE
at similar bit-rates [49]. For the images in Table I, typical
RMSE values achieved by JPEG at similar bit-rates are 1.5 and
2.3, respectively. On these images, JPEG-LS also outperforms
the emerging wavelet-based JPEG 2000 standard [50] in
terms of RMSE for bit-rates corresponding to .12 At
bit-rates corresponding to , however, the wavelet-based
scheme yields far better RMSE. On the other hand, JPEG-LS
is considerably simpler and guarantees a maximum per-sample
error, while JPEG 2000 offers other features.

11The term “bits/sample” refers to the number of bits in each component
sample. Compression ratios will be measured as the total number of bits in the
compressed image divided by the total number of samples in all components,
after possible down-sampling.

12The default (9, 7) floating-point transform was used in these experiments,
in the so-called “best mode” (non-SNR-scalable). The progressive-to-lossless
mode (reversible wavelet transform) yields worse results even at bit-rates cor-
responding to� = 1.

WEINBERGERet al.: LOCO-I LOSSLESS IMAGE COMPRESSION ALGORITHM 1321

TABLE II
COMPRESSIONRESULTS ONNEW IMAGE TEST SET (IN BITS/SAMPLE)

Table II shows (lossless) compression results of LOCO-I,
JPEG-LS, and LOCO-A, compared with other popular schemes.
These include FELICS [24], for which the results were ex-
tracted from [17], and the two versions of the original lossless
JPEG standard [20], i.e., the strongest one based on arithmetic
coding, and the simplest one based on a fixed predictor followed
by Huffman coding using “typical” tables [20]. This one-pass
combination is probably the most widely used version of the
old lossless standard. The table also shows results for PNG, a
popular file format in which lossless compression is achieved
through prediction (in two passes) and a variant of LZ77 [51]
(for consistency, PNG was run in a plane-by-plane fashion).
Finally, we have also included the arithmetic coding version
of the CALIC algorithm, which attains the best compression
ratios among schemes proposed in response to the Call for
Contributions leading to JPEG-LS. These results are extracted
from [17]. The images in Table II are the subset of 8-bit/sample
images from the benchmark set provided in the above Call
for Contributions. This is a richer set with a wider variety of
images, including compound documents, aerial photographs,
scanned, and computer generated images.

The results in Table II, as well as other comparisons pre-
sented in [1], show that LOCO-I/JPEG-LS significantly out-
performs other schemes of comparable complexity (e.g., PNG,
FELICS, JPEG-Huffman), and it attains compression ratios sim-
ilar or superior to those of higher complexity schemes based
on arithmetic coding (e.g., Sunset CB9 [16], JPEG-Arithmetic).
LOCO-I/JPEG-LS is, on the average, within a few percentage
points of the best available compression ratios (given, in prac-
tice, by CALIC), at a much lower complexity level. Here, com-
plexity was estimated by measuring running times of software
implementations made widely available by the authors of the
compared schemes.13 The experiments showed a compression
time advantage for JPEG-LS over CALIC of about 8:1 on nat-

13The experiments were carried out with JPEG-LS executables available
from http://www.hpl.hp.com/loco, and CALIC executables available from
ftp://ftp.csd.uwo.ca/pub/from_wu as of the writing of this article. A common
platform for which both programs were available was used.

ural images and significantly more on compound documents.
Of course, software running times should be taken very cau-
tiously and only as rough complexity benchmarks, since many
implementation optimizations are possible, and it is difficult to
guarantee that all tested implementations are equally optimized.
However, these measurements do provide a useful indication of
relative practical complexity.

As for actual compression speeds in software implementa-
tions, LOCO-I/JPEG-LS benchmarks at a throughput similar to
that of the UNIXcompressutility, which is also the approxi-
mate throughput reported for FELICS in [24], and is faster than
PNG by about a 3 : 1 ratio. Measured compression data rates,
for a C-language implementation on a 1998 vintage 300 MHz
Pentium II machine, range from about 1.5 MBytes/s for nat-
ural images to about 6 MBytes/s for compound documents and
computer graphics images. The latter speed-up is due in great
part to the frequent use of the run mode. LOCO-I/JPEG-LS de-
compression is about 10% slower than compression, making it
a fairly symmetric system.

Extensive testing on medical images of various types re-
ported in [55] reveals an average compression performance for
JPEG-LS within 2.5% of that of CALIC. It is recommended in
[55] that the Digital Imaging and Communications in Medci-
cine (DICOM) standard add a transfer syntax for JPEG-LS.

Table II also shows results for LOCO-A. The comparison
with CALIC shows that the latter scheme maintains a slight ad-
vantage (1–2%) for “smooth” images, while LOCO-A shows a
significant advantage for the classes of images it targets: sparse
histograms (“aerial2”) and computer-generated (“faxballs”).
Moreover, LOCO-A performs as well as CALIC on compound
documents without using a separate binary mode [17]. The
average compression ratios for both schemes end up equal.

It is also interesting to compare LOCO-A with the JBIG algo-
rithm [52] as applied in [53] to multilevel images (i.e., bit-plane
coding of Gray code representation). In [53], the components
of the images of Table I are reduced to amplitude precisions
below 8 bits/sample, in order to provide data for testing how
algorithm performances scale with precision. LOCO-A outper-

1322 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

forms JBIG for all precisions above 3 bits/sample: for example,
at 4 bits/sample (i.e., considering down-sampling, a total of
8 bits/pixel), the average image size for LOCO-A is 1.38
bits/pixel, whereas the average size reported in [53] for JBIG
is 1.42 bits/pixel. At 3 bits/sample, the relation is reverted: the
averages are 0.86 and 0.83 bits/pixel, respectively. While the
JPEG-LS baseline outperforms JBIG by 11% on the average at
8 bits/sample for the images of Table I (the average compressed
image size reported in [53] is 3.92 bits/sample), the relative
performance deteriorates rapidly below 6 bits/sample, which
is the minimum precision for which baseline JPEG-LS still
yields better compression ratios (3.68 against 3.87 bits/pixel).
Thus, LOCO-A indeed addresses the basic limitations that the
baseline presents when dealing with very compressible images.

Software implementations of JPEG-LS for various platforms
are available at http://www.hpl.hp.com/loco/. The organizations
holding patents covering aspects of JPEG-LS have agreed to
allow payment-free licensing of these patents for use in the stan-
dard.

APPENDIX

OTHER FEATURES OF THESTANDARD

Bit Stream: The compressed data format for JPEG-LS
closely follows the one specified for JPEG [20]. The same
high level syntax applies, with the bit stream organized into
frames, scans, and restart intervals within a scan, markers
specifying the various structural parts, and marker segments
specifying the various parameters. New marker assignments are
compatible with [20]. One difference, however, is the existence
of default values for many of the JPEG-LS coding parameters
(e.g., gradient quantization thresholds, reset threshold), with
marker segments used to override these values. In addition,
the method for easy detection of marker segments differs from
the one in [20]. Specifically, a single byte of coded data with
the hexadecimal value “FF” is followed with the insertion of a
single bit ‘0,’ which occupies the most significant bit position
of the next byte. This technique is based on the fact that all
markers start with an “FF” byte, followed by a bit “1.”

Color Images: For encoding images with more than
one component (e.g., color images), JPEG-LS supports com-
binations of single-component and multicomponent scans.
Section III describes the encoding process for a single-compo-
nent scan. For multicomponent scans, a single set of context
counters (namely, , and for regular mode contexts) is
used across all components in the scan. Prediction and context
determination are performed as in the single component case,
and are component independent. Thus, the use of possible
correlation between color planes is limited to sharing statistics,
collected from all planes. For some color spaces (e.g., RGB),
good decorrelation can be obtained through simple lossless
color transforms as a pre-processing step to JPEG-LS. For
example, compressing the (R-G,G,B-G) representations of the
images of Table I, with differences taken modulo the alphabet
size in the interval , yields savings
between 25% and 30% over compressing the respective RGB
representations. These savings are similar to those obtained

with more elaborate schemes which do not assume prior knowl-
edge of the color space [26]. Given the variety of color spaces,
the standardization of specific filters was considered beyond
the scope of JPEG-LS, and color transforms are handled at the
application level.

In JPEG-LS, the data in a multicomponent scan can be in-
terleaved either by lines (line-interleavedmode) or by samples
(sample-interleavedmode). In line-interleaved mode, assuming
an image that is not subsampled in the vertical direction, a full
line of each component is encoded before starting the encoding
of the next line (for images subsampled in the vertical direc-
tion, more than one line from a component are interleaved be-
fore starting with the next component). The index to the table
used to adapt the elementary Golomb code in run mode is com-
ponent-dependent.

In sample-interleaved mode, one sample from each compo-
nent is processed in turn, so that all components which belong
to the same scan must have the same dimensions. The runs
are common to all the components in the scan, with run mode
selected only when the corresponding condition is satisfied for
all the components. Likewise, a run is interrupted whenever so
dictated byany of the components. Thus, a single run length,
common to all components, is encoded. This approach is
convenient for images in which runs tend to be synchronized
between components (e.g., synthetic images), but should be
avoided in cases where run statistics differ significantly across
components, since a component may systematically cause run
interruptions for another component with otherwise long runs.
For example, in a CMYK representation, the runs in the
plane tend to be longer than in the other planes, so it is best to
encode the plane in a different scan.

The performance of JPEG-LS, run in line-interleaved mode
on the images of Table II, is very similar to that of the com-
ponent-by-component mode shown in the table. We observed a
maximum compression ratio deterioration of 1% on “gold” and
“hotel,” and a maximum improvement of 1% on “compound1.”
In sample-interleaved mode, however, the deterioration is gen-
erally more significant (3% to 5% in many cases), but with a 3%
to 4% improvement on compound documents.

Palletized Images:The JPEG-LS data format also pro-
vides tools for encoding palletized images in an appropriate
index space (i.e., as an array of indices to a palette table),
rather than in the original color space. To this end, the decoding
process may be followed by a so-calledsample-mapping pro-
cedure, which maps each decoded sample value (e.g., and 8-bit
index) to a reconstructed sample value (e.g., an RGB triplet)
by means of mapping tables. Appropriate syntax is defined to
allow embedding of these tables in the JPEG-LS bit stream.

Many of the assumptions for the JPEG-LS model, targeted at
continuous-tone images, do not hold when compressing an array
of indices. However, an appropriate reordering of the palette
table can sometimes alleviate this deficiency. Some heuristics
are known that produce good results at low complexity, without
using image statistics. For example, [54] proposes to arrange
the palette colors in increasing order of luminance value, so that
samples that are close in space in a smooth image will tend to be
close in color and in luminance. Using this reordering, JPEG-LS
outperforms PNG by about 6% on palletized versions of the

WEINBERGERet al.: LOCO-I LOSSLESS IMAGE COMPRESSION ALGORITHM 1323

images “Lena” and “gold.” On the other hand, PNG may be
advantageous for dithered, halftoned, and some graphic images
for which LZ-type methods are better suited. JPEG-LS does not
specify a particular heuristic for palette ordering.

The sample-mapping procedure can also be used to alleviate
the problem of “sparse histograms” mentioned in Section V-B,
by mapping the sparse samples to a contiguous set. This his-
togram compaction, however, assumes a prior knowledge of
the histogram sparseness not required by the LOCO-A solu-
tion, and is done off-line. The standard extension (JPEG-LS
Part 2) includes provisions for on-line compaction with LOCO-
I/JPEG-LS.

ACKNOWLEDGMENT

The authors would like to thank H. Kajiwara, G. Langdon, D.
Lee, N. Memon, F. Ono, E. Ordentlich, M. Rabbani, D. Speck,
I. Ueno, X. Wu, and T. Yoshida for useful discussions.

REFERENCES

[1] M. J. Weinberger, G. Seroussi, and G. Sapiro, “LOCO-I: A low
complexity, context-based, lossless image compression algorithm,” in
Proc. 1996 Data Compression Conference, Snowbird, UT, Mar. 1996,
pp. 140–149.

[2] Proposed Modification of LOCO-I for Its Improvement of the Perfor-
mance, Feb. 1996. ISO/IEC JTC1/SC29/WG1 Doc. N297.

[3] Fine-Tuning the Baseline, June 1996. ISO/IEC JTC1/SC29/WG1 Doc.
N341.

[4] Effects of Resets and Number of Contexts on the Baseline, June 1996.
ISO/IEC JTC1/SC29/WG1 Doc. N386.

[5] Palettes and Sample Mapping in JPEG-LS, Nov. 1996. ISO/IEC
JTC1/SC29/WG1 Doc. N412.

[6] JPEG-LS with Limited-Length Code Words, July 1997. ISO/IEC
JTC1/SC29/WG1 Doc. N538.

[7] Information Technology—Lossless and Near-Lossless Compression of
Continuous-Tone Still Images, 1999. ISO/IEC 14495-1, ITU Recom-
mend. T.87.

[8] LOCO-I: A Low Complexity Lossless Image Compression Algorithm,
July 1995. ISO/IEC JTC1/SC29/WG1 Doc. N203.

[9] J. Rissanen and G. G. Langdon, Jr., “Universal modeling and coding,”
IEEE Trans. Inform. Theory, vol. IT-27, pp. 12–23, Jan. 1981.

[10] J. Rissanen, “Generalized Kraft inequality and arithmetic coding,”IBM
J. Res. Develop., vol. 20, no. 3, pp. 198–203, May 1976.

[11] M. J. Weinberger, J. Rissanen, and R. B. Arps, “Applications of universal
context modeling to lossless compression of gray-scale images,”IEEE
Trans. Image Processing, vol. 5, pp. 575–586, Apr. 1996.

[12] M. J. Weinberger and G. Seroussi, “Sequential prediction and ranking
in universal context modeling and data compression,”IEEE Trans. In-
form. Theory, vol. 43, pp. 1697–1706, Sept. 1997. Preliminary version
presented at 1994 IEEE Int. Symp. Inform. Theory, Trondheim, Norway,
July 1994.

[13] S. Todd, G. G. Langdon Jr., and J. Rissanen, “Parameter reduction and
context selection for compression of the gray-scale images,”IBM J. Res.
Develop., vol. 29, pp. 188–193, Mar. 1985.

[14] G. G. Langdon Jr., A. Gulati, and E. Seiler, “On the JPEG model for
lossless image compression,” inProc. 1992 Data Compression Conf.,
Snowbird, UT, USA, Mar. 1992, pp. 172–180.

[15] G. G. Langdon Jr. and M. Manohar, “Centering of context-dependent
components of prediction error distributions,”Proc. SPIE, vol. 2028,
pp. 26–31, July 1993.

[16] G. G. Langdon Jr. and C. A. Haidinyak, “Experiments with lossless and
virtually lossless image compression algorithms,”Proc. SPIE, vol. 2418,
pp. 21–27, Feb. 1995.

[17] X. Wu and N. D. Memon, “Context-based, adaptive, lossless image
coding,” IEEE Trans. Commun., vol. 45, pp. 437–444, Apr. 1997.

[18] X. Wu, “Efficient lossless compression of continuous-tone images via
context selection and quantization,”IEEE Trans. Image Processing, vol.
6, pp. 656–664, May 1997.

[19] B. Meyer and P. Tischer, “TMW—A new method for lossless image
compression,” inProc. 1997 Int. Picture Coding Symp., Berlin, Ger-
many, Sept. 1997.

[20] Digital Compression and Coding of Continuous Tone Still Images—Re-
quirements and Guidelines, Sept. 1993. ISO/IEC 10918-1, ITU Recom-
mend. T.81.

[21] A. Netravali and J. O. Limb, “Picture coding: A review,”Proc. IEEE,
vol. 68, pp. 366–406, 1980.

[22] D. Huffman, “A method for the construction of minimum redundancy
codes,”Proc. IRE, vol. 40, pp. 1098–1101, 1952.

[23] M. Feder and N. Merhav, “Relations between entropy and error proba-
bility,” IEEE Trans. Inform. Theory, vol. 40, pp. 259–266, Jan. 1994.

[24] P. G. Howard and J. S. Vitter, “Fast and efficient lossless image com-
pression,” inProc. 1993 Data Compression Conf., Snowbird, UT, Mar.
1993, pp. 351–360.

[25] X. Wu, W.-K. Choi, and N. D. Memon, “Lossless interframe image com-
pression via context modeling,” inProc. 1998 Data Compression Conf.,
Snowbird, UT, Mar. 1998, pp. 378–387.

[26] R. Barequet and M. Feder, “SICLIC: A simple inter-color lossless image
coder,” in Proc. 1999 Data Compression Conf., Snowbird, UT, Mar.
1999, pp. 501–510.

[27] J. Rissanen,Stochastic Complexity in Statistical Inquiry, London, U.K.:
World Scientific, 1989.

[28] , “Universal coding, information, prediction, and estimation,”IEEE
Trans. Inform. Theory, vol. IT-30, pp. 629–636, July 1984.

[29] N. Merhav, M. Feder, and M. Gutman, “Some properties of sequential
predictors for binary Markov sources,”IEEE Trans. Inform. Theory, vol.
39, pp. 887–892, May 1993.

[30] M. J. Weinberger, J. Rissanen, and M. Feder, “A universal finite memory
source,”IEEE Trans. Inform. Theory, vol. 41, pp. 643–652, May 1995.

[31] P. A. Maragos, R. W. Schafer, and R. M. Mersereau, “Two-dimensional
linear predictive coding and its application to adaptive predictive
coding of images,”IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-32, pp. 1213–1229, Dec. 1984.

[32] S. W. Golomb, “Run-length encodings,”IEEE Trans. Inform. Theory,
vol. IT-12, pp. 399–401, July 1966.

[33] N. Merhav, G. Seroussi, and M. J. Weinberger, “Coding of sources with
two-sided geometric distributions and unknown parameters,”IEEE
Trans. Inform. Theory, vol. 46, pp. 229–236, Jan. 2000.

[34] , “Modeling and low-complexity adaptive coding for image predic-
tion residuals,” inProc. 1996 Int. Conf. Image Processing, vol. 2, Lau-
sanne, Switzerland, Sept. 1996, pp. 353–356.

[35] , “Optimal prefix codes for sources with two-sided geometric distri-
butions,”IEEE Trans. Inform. Theory, vol. 46, pp. 121–135, Jan. 2000.

[36] R. Ohnishi, Y. Ueno, and F. Ono, “The efficient coding scheme for binary
sources,”IECE Jpn., vol. 60-A, pp. 1114–1121, Dec. 1977. In Japanese.

[37] S. A. Martucci, “Reversible compression of HDTV images using median
adaptive prediction and arithmetic coding,” inProc. IEEE Int. Symp.
Circuits Syst., 1990, pp. 1310–1313.

[38] G. Seroussi and M. J. Weinberger, “On adaptive strategies for an ex-
tended family of Golomb-type codes,” inProc. 1997 Data Compression
Conf., Snowbird, UT, Mar. 1997, pp. 131–140.

[39] R. F. Rice, “Some Practical Universal Noiseless Coding Tech-
niques—Parts I–III,” Jet Propulsion Lab., Pasadena, CA, Tech. Reps.
JPL-79-22, JPL-83-17, and JPL-91-3, Mar. 1979, Mar. 1983, Nov.
1991.

[40] “FlashPix format specification,” Digital Imaging Group, July 1997. Ver.
1.0.1.

[41] D. E. Knuth, “Dynamic Huffman coding,”J. Algorithms, vol. 6, pp.
163–180, 1985.

[42] R. Gallager and D. V. Voorhis, “Optimal source codes for geometrically
distributed integer alphabets,”IEEE Trans. Inform. Theory, vol. IT-21,
pp. 228–230, Mar. 1975.

[43] J. Teuhola, “A compression method for clustered bit-vectors,”Inform.
Process. Lett., vol. 7, pp. 308–311, Oct. 1978.

[44] G. G. Langdon Jr., “An adaptive run-length coding algorithm,”IBM
Tech. Disclosure Bull., vol. 26, pp. 3783–3785, Dec. 1983.

[45] E. Ordentlich, M. J. Weinberger, and G. Seroussi, “A low complexity
modeling approach for embedded coding of wavelet coefficients,” in
Proc. 1998 Data Compression Conf., Snowbird, UT, Mar. 1998, pp.
408–417.

[46] S.-Y. Li, “Fast constant division routines,”IEEE Trans. Comput., vol.
C-34, pp. 866–869, Sept. 1985.

[47] LOCO-A: An Arithmetic Coding Extension of LOCO-I, June 1996.
ISO/IEC JTC1/SC29/WG1 Doc. N342.

[48] Activity Level Classification Model (ALCM), 1995. Proposal submitted
in response to the Call for Contributions for ISO/IEC JTC 1.29.12.

1324 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, NO. 8, AUGUST 2000

[49] Evaluation of JPEG-DCT as a Near-Lossless Function, June 1995.
ISO/IEC JTC1/SC29/WG1 Doc. N207.

[50] JPEG 2000 VM 5.02, Sept. 1999. ISO/IEC JTC1/SC29/WG1 Doc.
N1422.

[51] J. Ziv and A. Lempel, “A universal algorithm for sequential data com-
pression,”IEEE Trans. Inform. Theory, vol. IT-23, pp. 337–343, May
1977.

[52] Progressive Bi-Level Image Compression, 1993. ISO/IEC 11544,
CCITT T.82.

[53] R. B. Arps and T. K. Truong, “Comparison of international standards
for lossless still image compression,”Proc. IEEE, vol. 82, pp. 889–899,
June 1994.

[54] A. Zaccarin and B. Liu, “A novel approach for coding color quantized
images,”IEEE Trans. Image Processing, vol. 2, pp. 442–453, Oct. 1993.

[55] D. Clunie, “Losssless compression of grayscale medical images,”Proc.
SPIE, vol. 3980, Feb. 2000.

Marcelo J. Weinberger (M’90–SM’98) was born in
Buenos Aires, Argentina, in 1959. He received the
Electrical Engineer degree from the Universidad de
la República, Montevideo, Uruguay, in 1983, and the
M.Sc. and D.Sc. degrees in electrical engineering
from Technion—Israel Institute of Technology,
Haifa, in 1987 and 1991, respectively.

From 1985 to 1992, he was with the Department
of Electrical Engineering, Technion, joining the
faculty for the 1991–1992 academic year. During
1992–1993, he was a Visiting Scientist at IBM

Almaden Research Center, San Jose, CA. Since 1993, he has been with
Hewlett-Packard Laboratories, Palo Alto, CA. His research interests are in
information theory and statistical modeling, including source coding, data and
image compression, and sequential decision problems.

Dr. Weinberger is an Associate Editor for Source Coding for the IEEE
TRANSACTIONS ONINFORMATION THEORY.

Gadiel Seroussi (M’87–SM’91–F’98) was born
in Montevideo, Uruguay, in 1955. He received
the B.Sc. degree in electrical engineering, and the
M.Sc. and D.Sc. degrees in computer science from
Technion—Israel Institute of Technology, Haifa, in
1977, 1979, and 1981, respectively.

From 1981 to 1987, he was with the faculty of the
Computer Science Department, Technion. During
the 1982–1983 academic year, he was a Postdoctoral
Fellow at the Mathematical Sciences Department,
IBM T. J. Watson Research Center, Yorktown

Heights, NY. From 1986 to 1988, he was a Senior Research Scientist with
Cyclotomics Inc., Berkeley, CA. Since 1988, he has been with Hewlett-Packard
Laboratories, Palo Alto, CA, where he leads the Information Theory Research
Group. His research interests include the mathematical foundations and
practical applications of information theory, error correcting codes, data and
image compression, and cryptography. He has published numerous journal and
conference articles in these areas, and is a co-author of the recent bookElliptic
Curves in Cryptography.

Guillermo Sapiro (M’93) was born in Montevideo,
Uruguay, on April 3, 1966. He received the B.Sc.
(summa cum laude), M.Sc., and Ph.D. degrees
from the Department of Electrical Engineering,
Technion—Israel Institute of Technology, Haifa, in
1989, 1991, and 1993, respectively.

After post-doctoral research at the Massachusetts
Institute of Technology, Cambridge, he became
Member of Technical Staff at Hewlett-Packard
Laboratories, Palo Alto, CA. He is currently with the
Department of Electrical and Computer Engineering,

University of Minnesota, Minneapolis. He works on differential geometry and
geometric partial differential equations, both in theory and applications in
computer vision and image analysis.

He recently co-edited a special issue of the IEEE TRANSACTIONS ONIMAGE

PROCESSINGand will be co-editing a special issue of theJournal of Visual Com-
munication and Image Representation. He was awarded the Gutwirth Scholar-
ship for Special Excellence in Graduate Studies in 1991, the Ollendorff Fellow-
ship for Excellence in Vision and Image Understanding Work in 1992, the Roth-
schild Fellowship for Post-Doctoral Studies in 1993, the Office of Naval Re-
searsh Young Investigator Award in 1998, the Presidential Early Career Awards
for Scientist and Engineers (PECASE) in 1988, and the National Science Foun-
dation Career Award in 1999.

