
Communications of the ACM (ISSN: 0001-0782) Volume 44 , Issue 2 (2001)

An operating system approach to securing e-services
Page 58

Chris Dalton and Tse Huong Choo

ACM COPYRIGHT NOTICE. Copyright © 2001 by the Association for Computing Machinery, Inc. Permission to
make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions from Publications Dept, ACM Inc., fax
+1 (212) 869-0481, or permissions@acm.org.

Trusted Linux – an operating system
approach to securing E-Services

More and more services are being turned electronic
and exposed to the public world of the Internet.
Many of these are and will become attractive and
lucrative targets to would-be attackers. A large
number of Internet security breaches take place via
compromise of the applications forming the
electronic services.

The applications that form electronic services are in
general sophisticated and contain many lines of
code. It is not surprising that there are bugs in some
of this code. Indeed, with such large applications it
is very difficult to guarantee otherwise. Offering a
service over the Internet means exposing it to a
large population of attackers capable of probing the
service for vulnerabilities. It is not unlikely, and
has been shown to be the case in the past, that some
of these bugs can and will be exploited to lead to
security violations.

Increasingly, single machines are being used to host
multiple services concurrently (e.g. ISP, ASP, xSP
service provision). It is becoming critically
important that not only is the security of the host
platform protected from application compromise
attacks but also the applications are adequately
protected from each other in the face of attack.

This article looks at some of the problems
surrounding application compromise in more detail
and puts forward our approach to solving those
problems. We do not attempt to guarantee that the
application services are bug free (a hard problem).
Instead, we have found that the effects of this type
of attack, and quite a few others, can be usefully
mitigated by adding specific properties to the
operating systems used to host those applications

Specifically, we take a look at Trusted Linux which
is HP Laboratories’ implementation of a secure
version of Linux, and that we believe is an ideal
platform for e-service application hosting.

Using the OS to Counter Application
Compromise

Tackling application compromise at the OS level by
kernel enforced controls is an attractive proposition.
The controls implemented in the kernel can not be
overridden or subverted from user space by any

application or user. The controls apply to all
applications irrespective of the individual application
code quality. The downside of this approach is of
course that the controls may be too broad to be useful,
however in practice this appears not to be the case,
certainly for a large class of Internet service type
applications. We shall see evidence of this later in the
detailed discussion of Trusted Linux and how it can be
configured and deployed.

There are two basic requirements at the system level
in order to protect against application compromise and
its effects. Firstly the application should be protected
from attack as much as possible in the first place. The
exposed interfaces to the application should be as
narrow as possible. Access to those interfaces should
be as well controlled as possible. Secondly, there
should be some guaranteed limit on the amount of
damage that an application can do to the system and
other applications on the system should it be
compromised.

These two requirements are fairly well captured by the
abstract property of containment. An application is
contained if it has strict controls placed on which
resources (e.g., file, process, network, ipc) it can
access (and what type of access it has, e.g., read-only)
even if the application has been compromised.
Containment also protects an application from
external attack and interference.

Once an application has been compromised (for
example by a buffer overflow attack) it can be
exploited in several ways by an attacker to breach the
security of a system. The containment property has the
potential to mitigate many of these exploits, in some
cases the exploits are entirely eliminated. Some of the
benefits of containment can only be achieved at the
application design level, however if implemented
correctly it can be usefully used to effectively secure a
large number of existing applications without
application modification.

The most common exploits following the compromise
of an application can be roughly categorized as one of
four types. (Though the consequences of a particular
attack may be a combination of any or all of these).

1. Misuse of privilege to gain direct access to
protected system resources. If an application is
running with special privileges (e.g., an
application running as root on a standard Unix
OS) then an attacker can attempt to use that
privilege in unintended ways. For example, the
attacker can use that privilege to gain access to

protected OS resources or interfere with other
applications running on the same machine.

2. Subversion of application enforced access
controls. This type of attack gains access to
legitimate resources (i.e., resources that are
supposed to be exposed by the application) but
in an unauthorized fashion. For example, a web
server that enforces access control on its
content before it serves it is an example of an
application susceptible to this type of attack.
Since the web server has uncontrolled direct
access to the content, then so does an attacker
if they can gain control of that web server.

3. Supply of bogus security decision making
information. This type of attack is usually an
indirect attack. Here the compromised
application is not normally the main service but
a support one such as an authorization service.
That compromised security service can then be
used to supply bogus or forged information and
thus gain the attacker access to the main
service. This is another way for the attacker to
gain unauthorized access to resources
legitimately exposed by the application.

4. Illegitimate use of unprotected system
resources. This is where the attacker gains
access to local resources of the machine that
are not protected but nonetheless would not
normally be exposed by the application.
Typically, these local resources are then used
to launch further attacks. For example, it may
be possible for an attacker to gain shell access
to the hosting system. From here staged attacks
may then be launched on other applications on
the machine or across the network, for
example.

With containment, type (1) exploits are much less
serious; even if the attacker makes use of the
application privilege the resources that can be
accessed are bounded by what has been made
available in the application’s container. This is also
true for type (4) unprotected resource access, e.g.,
using containment we can block access to (or at
least put very tight controls on) the network from a
contained application. By using containment to
limit to exposure of applications to attack we can
help against exploits of type (3). We can guarantee
that the only access to support services is from
legitimate clients, i.e., the application services.

Type (2) exploits usually have to be solved at the
application design, or at least configuration level.

The design principle here is that large sophisticated
applications (such as a web server) should not be
trusted to carry out access control checks. This also
implies that they should not have direct access to the
resources that are being protected The code
responsible for making access control decisions
should be single purpose and as small and bug free as
possible. Hopefully, then compromise of this code is
unlikely. This code and the resources that it is
designed to protect should be hosted in their own
compartment. Using containment, we can arrange that
access to protected resources from the large untrusted
application must go through the smaller, more trusted
application [2].

Theoretically, at least it seems that containment is a
very useful property to have in an operating system.

Figure 1 Example architecture for multi-service
hosting on an operating system with the
containment property.

Containment is used here to ensure that applications
are kept separated from one another and critical
system resources. An application can’t interfere with
the processing of another application or get access to
its perhaps sensitive data. Containment is used to
ensure that only the interfaces (input and output) that a
particular application needs to function are exposed by
the operating system. This limits both the scope for
attack on a particular application and also the amount
of damage that can be done should the application be
compromised. Containment helps to preserve the
integrity of the hosting platform as a whole not just
individual applications.

Implementing Containment

Kernel enforced containment mechanisms in operating
systems have been available for several years,
typically in ones that were designed for the handling

Service 0

Service 1

Service N

Application
data

Hosting Platform

…

X

X

Application
data

Application
data

Internet Back-end
Hosts

and processing of classified (military) information
[4][3]. These types of operating systems are often
termed Trusted Operating systems.

The containment property is usually achieved
through a combination of Mandatory Access
Controls (MAC), and Privileges. MAC protection
schemes enforce a particular policy of access
control to the system resources such as files,
processes and network connections. This policy is
enforced by the kernel and cannot be overridden by
a user or compromised application. Most current
trusted operating systems use the Bell-LaPadula
policy model [1]. This is a formal model developed
on behalf of military organizations in which the
flow of information around the system is
predictable. Privileges break down the power of the
superuser. With them an application can be given
just the privilege it needs.

Despite offering the attractive property of
containment, trusted operating systems have not
been widely used outside of the classified
information processing arena. The reasons for this
seem two fold.

Firstly, attempts at adding trusted operating system
features to conventional OSes have usually resulted
in the underlying operating system personalities
being lost. The operating systems have no longer
supported standard applications or management
tools. The operating systems can no longer be used
or managed in standard ways. They are much more
complicated than their standard counterparts.

Secondly, they have typically implemented a form
of containment more akin to isolation, i.e., too
strong - this has been found to be limited in scope
in terms of it’s ability to usefully and effectively
secure [existing] applications without substantial
and often expensive integration efforts. These are
the two main issues we have attempted to address
with our implementation of Trusted Linux.

The Trusted Linux Operating system

Trusted Linux is a layered extension of the standard
Linux OS at the kernel level (with user level
support). It has the containment property that we
believe is essential in guarding against application
compromise amongst other things.

Similar to the traditional trusted operating system
approach we achieve the property of containment
by kernel level mandatory protection of processes,
files and network resources. However, our

mandatory controls are somewhat different to those
found on traditional trusted operating systems. We
have attempted to reduce some of the application
integration and management problems associated with
traditional trusted operating systems.

The key concept of our trusted operating system is the
compartment. Services and applications on the
machine are run within separate compartments.

We use simple mandatory access controls and process
labeling to realise the concept of a compartment.
Each process is given a label; processes with the same
label belong to the same compartment. We enforce
kernel level mandatory checks to ensure that processes
from one compartment cannot interfere with processes
from another compartment. The access controls are
very simple, labels either match or they don’t. There is
no hierarchical ordering of labels within the system
such as there is in the Bell-LaPadula model1.

Filesystem protection is also mandatory. Unlike
traditional trusted operating system, we do not use
labels to directly control access to the filesystem; each
compartment has a section of file system associated
with it. This section of file system is a chroot of the
main filesystem. Processes running within a particular
compartment only have access to that section of the
filesystem. Importantly, via kernel controls, we
remove the ability of a process to transition to root
from within a compartment so that the chroot cannot
be escaped. We also have the ability to make selected
files within the chroot immutable.

Flexible communication paths between compartments
and network resources are provided via narrow, kernel
level controlled interfaces to TCP/UDP plus most IPC
mechanisms. Access to these communication
interfaces is governed by rules specified by the
security administrator on a per compartment basis.
Unlike traditional trusted operating systems we don’t
have to override our mandatory access controls with
privilege or resort to the use of user level trusted
proxies to allow communication between
compartments and/or network resources.

These features together give us as a system that both
offers containment and also has enough flexibility to
make application integration relatively

1 In most implementations of the Bell-Lapadula model,
resource labels have 2 components to them; an ordered
sensitivity level and zero or more compartment names. Our
labels just have a single compartment name and no
sensitivity level.

straightforward. This in turn reduces the
management overhead and pain of deploying and
running a trusted system.

Kernel Implementation

Within the kernel, each system-resource that we
wish to protect has been extended with a tag
indicating the compartment that the resource
belongs to. Examples of such resources include
data-structures describing

• individual processes,
• shared-memory segments,
• semaphores, message-queues,
• sockets, network packets, network-

interfaces and routing-table entries.

The assignment of the tag occurs largely through
inheritance, with the init-process initially being
assigned to compartment 0. Any kernel objects
created by a process inherit the current label of the
running process. An example of the tag added to
the kernel socket data-structure is shown below:

struct socket {
...

#ifdef TLINUX
unsigned long compartment;

#endif
};

At appropriate points in the kernel, access-control
checks are performed through the use of hooks to a
dynamically loadable security-module that consults
a table of rules indicating which compartments are
allowed to access the resources of another
compartment. This occurs transparently to the
running applications.

Access Control Rules

Each security check consults a table of rules. Each
rule has the form:

source -> destination method m [attr]
 [netdev n]
where:
source/destination is one of:
 COMPARTMENT (a named compartment)
 HOST (a fixed IPv4 address)
 NETWORK (an IPv4 subnet)
 m: supported kernel mechanism
 e.g. tcp, udp, msg (message queues),
 shm (shared-memory) etc.
attr: attributes further qualifying the method m
 n: a named network-interface if
 applicable eg eth0

An example of such a rule which allows processes
in the compartment named “WEB” to access

shared-memory segments (e.g., using shmat/shmdt())
from the compartment named
“CGI” would look like:

COMPARTMENT:WEB -> COMPARTMENT:CGI
 METHOD shm

Present also are certain implicit rules, which allow
some communications to take place within a
compartment e.g., a process is allowed to see the
process identifiers of processes residing in the same
compartment. This is to allow a bare-minimum of
functionality within an otherwise unconfigured
compartment. An exception is compartment 0, which
is relatively unprivileged and where there are more
restrictions applied. Compartment 0 is typically used
to host kernel-level threads (such as the swapper).

In the absence of a rule explicitly allowing a cross-
compartment access to take place, all such attempts
fail. The net effect of these rules is to enforce
mandatory segmentation across individual
compartments, except for those that have been
explicitly allowed to access another compartment’s
resources.

The rules are directional are in nature. One effect of
the directional nature of the rules is that they match
the connect/accept-behavior of TCP socket
connections. Consider a rule used to specify allowable
incoming HTTP connections of the form:

HOST:* -> COMPARTMENT X METHOD TCP PORT 80

This rule specifies that only incoming TCP
connections on port 80 are to be allowed, but not
outgoing connections.

Figure 2 Only incoming TCP connections
allowed

The directionality of the rules permits the reverse flow
or packets to occur in order to correctly establish the
incoming connection without allowing outgoing
connections to take place.

Protocol Stack Virtualisation

Because most of the data structures used in the IP
protocol stack are tagged, it is possible to partly
virtualize its operation on a per-compartment basis. In
particular, we can specify individual routing tables for

Compartment X
(Apache)

tcp/80

Xdisallowed

each configured compartment. The segmentation of
the data used within the IP stack covers high-level
constructs like sockets all the way down to
individual IP fragments and ARP cache entries.

Figure 3 Semi-virtualized IP protocol stack

Other virtualized subsystems include the System V
IPC mechanisms and the process table. When the
ipcs command is invoked, it will only show the IPC
objects in the current compartment. Similar
restrictions are in place for process listings using
ps. The virtualization occurs based on the context
of the calling process and no user-level commands
need to be modified to work in a compartmented
fashion.

Installation & Configuration

Trusted Linux is designed to install in a layered
fashion over standard RedHat installations. No

change to the file system is required. The installation
replaces the vanilla Linux kernel and any network
services which remain will start in compartment 0
upon the next reboot.

Specific software packages are available for the use of
Apache together with a Multi-Compartmented
Gateway Agent (MCGA) which performs CGI-
sandboxing by executing individual named CGI-
binaries in separate compartments.

The diagram below shows a typical configuration
hosting 3 HTTP servers each in their own
compartments with another 3 compartments hosting
the MCGA agents.

Each package can be installed in its own
compartment, with the number of compartments
limited by disk space (the tags are the size of a
machine word each). This allows the possibility of
hosting multiple instances of a web-server
independently of each other and to also prevent
security breaches in one affecting the others.

The applications that have been integrated without
source-modifications so far include: Apache,
Jakarta/Tomcat, HP OpenMail, and BEA WebLogic
Server.

Figure 4 A typical secure Web-server configuration on Trusted Linux with CGI-sandboxing

Kernel

User
Internal Compartments

External Compartments

Command-line utilities

TCP/IP Networking

WEB1 HTTPD

Rule Database

Admin Compartment AdminMCGA

Configuration Files
• Rules
• Routes
• FCDB

WEB2 HTTPD

WEB3 HTTPD

WEB1-MCGA

WEB2-MCGA

WEB3-MCGA

Device ConfigUNIX Domain Sockets

SysV IPC

Other Subsystems

Kernel Modules

ioctl

exec
MCGA

system calls

Security Module

process

Compartment 0

IP stack

sockets

routes

caches

process

Compartment 1

process

Compartment N

sockets

routes

caches

sockets

routes

caches

…

…

Performance

Initial tests indicate that most aspects of performance
fall within a few percentage points of a vanilla Linux
kernel. A test system comprising twin Pentium-III
733Mhz CPUs, 256Mbytes RAM and dual Intel
EtherExpress Pro/100Mbit NICs gave the following
figures running Apache 1.3.12 using the HTTP GET
operation on a static 1024-byte HTML file. The test
program was the ab-utility from the Apache
distribution, invoked as:

ab –n 100000 –c 50 [url]

Configuration HTTP GET
Linux-2.4.0-test5 3298
Trusted Linux based on
Linux-2.4.0-test5

3265
(1% penalty)

Configuration Example: Apache+Jakarta/VMs

This section illustrates how to compartmentalize a
setup comprising an externally facing Apache Web-
server configured to delegate the handling of Java
servlets or the serving of JSP files to two separate
instances of Jakarta/Tomcat each running in its own
compartment. By default, each compartment uses a
chroot-ed filesystem so as not to interfere with other
compartments.

Figure 5 Configuration of Apache with 2
Tomcat VMs

The diagram above shows the Apache processes
residing in one compartment (WEB). This
compartment is externally accessible using the rule:

HOST:* -> COMPARTMENT WEB
 METHOD TCP PORT 80 NETDEV eth0

The presence of the NETDEV component in the rule
specifies the network-interfaces which Apache is
allowed to use. This is useful for restricting Apache
to using only the external interface on dual/multi-
homed gateway systems. This is to help prevent a
compromised instance of Apache from being used to
launch attacks on back-end networks through
internally facing network interfaces.

The WEB compartment is allowed to communicate to
two separate instances of Jakarta/Tomcat
(TOMCAT1 and TOMCAT2) via two rules, which
take the form:

COMPARTMENT:WEB -> COMPARTMENT:TOMCAT1
 METHOD TCP PORT 8007

COMPARTMENT:WEB -> COMPARTMENT:TOMCAT2
 METHOD TCP PORT 8008

The servlets in TOMCAT1 are allowed to access a
back-end host called Server1 using this rule:

COMPARTMENT:TOMCAT1 -> HOST:SERVER1
 METHOD TCP …

However, TOMCAT2 is not allowed to access any
back-end hosts at all. The kernel will deny any such
attempt from TOMCAT2. This allows one to
selectively alter the view of a back-end network
depending on which services are being hosted, and to
restrict the visibility of back-end hosts on a per-
compartment basis.

It is worth emphasizing at this point that these four
rules are all that is needed for this example
configuration. In the absence of any other rules, the
servlets executing in the Java VM can not initiate any
outgoing connections, in particular it can not be used
to launch attacks on the internal back-end network on
interface eth1. In addition, it may not access
resources from other compartments (e.g., shared-
memory segments, UNIX-domain sockets), nor be
reached directly by remote hosts. In this case,
mandatory restrictions have been placed on the
behavior of Apache and Jakarta/Tomcat without
recompiling or modifying their sources.

Summary
We have described a platform based on Linux which
implements the containment property to dynamically
separate running services. The main use of the
platform is to host (multiple) services in a
compartmented fashion. This places guaranteed
limits on the amount of damage that can be done via
a compromised service. In particular, a compromised
service can’t be used to interfere with other services
on the same platform. Likewise, the base integrity of
the platform as a whole is protected from attack by a
compromised service.

Trusted Linux represents a comfortable middle-
ground between the heavyweight approach of
traditional trusted operating systems and
conventional operating systems by offering strict

Compartment
TOMCAT1

eth0
tcp/80

tcp/8008

tcp/8007
Compartment

WEB (Apache)
Server

1

X Server
N

Compartment
TOMCAT1

(Denied)

Gateway

kernel-level access controls without requiring
existing applications to be re-written to take
advantage of new security-features.

It has been designed to incrementally secure vanilla
Linux installations by layering a more secure kernel
and leaving any unconfigured services in a relatively
unprivileged compartment. The approach taken can
be extended to other flavours of UNIX (e.g., HP-UX,
Solaris) and can be broadened to cover more
communications mechanisms.

One of the interesting possibilities of the current
prototype is to extend the format of the access-
control rules to cover compartments on remote hosts
in a secure fashion, perhaps by implicitly securing all
compartment-to-compartment communications
through the use of IPSec.

References
[1] Bell, D. and Lapadula, L. (1975) Secure

Computer Systems: unified Exposition and
Multics Interpretation, Mitre Technical Report
MTR-1997, Mitre Corporation.

[2] Dalton, C.I., Griffin, J.F. Applying Military
Grade Security to the Internet - section 4.3
COMPUTER NETWORKS AND ISDN
SYSTEMS – vol 29 Number 15.

[3] Hewlett-Packard Co. (1996) HP-UX 10.16
CMW Security Features Guide

[4] Sun Microsystems Corporation. Trusted
Solaris Operating System. <URL:
http://www.sun.com/trustedsolaris>

