

Device Independence and the Web1

Mark Butler, Fabio Giannetti, Roger Gimson, Tony Wiley
Information Infrastructure Laboratory
HP Laboratories Bristol
HPL-2002-249
October 2nd , 2002*

 The Web is steadily increasing its reach beyond the desktop to devices

ranging from mobile phones to domestic appliances. This rapidly
expanding accessibility is largely due to the Web's foundation in open
protocols and markup languages, which offer the most widely
implemented global infrastructure for content and application access.
HTML's original aim was to provide a device-independent markup
language that was based on document semantics. It identified document
elements such as headings, paragraphs, and lists without specifying
presentation. Early on, however, browser developers introduced many ad
hoc presentation-specific elements and attributes to HTML that blurred
the distinction between semantics and presentation. A presentation created
for a large-screen device, for example, can theoretically be displayed and
interacted with on a small-screen device because they use the same
markup. Practically, however, it might be too hard to use simply because
the author did not create the presentation with a small form-factor in
mind. Device independence is an attempt to regain some of Web
publications' original intent. Web standards are now encouraging a
renewed distinction between semantics and presentation through styling
languages such as Cascading Style Sheets (CSS) and Extensible
Stylesheet Language Formatting Objects (XSL-FO) for adding
information to Web output, and interaction markup languages such as
XML Forms (XForms) for input. As the number of devices accessing the
Internet increases, the problem of creating presentations for each device
type grows worse. Ideally, authors would need to create only one version
of their Web content. Then, during the delivery and rendering process,
adaptation software would create a presentation to match the delivery
device's capabilities.

* Internal Accession Date Only Approved for External Publication
IEEE Internet Computing – September/October 2002 – pp 81-86
 Copyright IEEE 2002

1

Device Independence and the Web1

Mark Butler, Fabio Giannetti, Roger Gimson, and Tony Wiley
HP Labs, Bristol

HPL-2002-249

The Web is steadily increasing its reach beyond the desktop to devices ranging from mobile
phones to domestic appliances. This rapidly expanding accessibility is largely due to the Web’s
foundation in open protocols and markup languages, which offer the most widely implemented
global infrastructure for content and application access.

HTML’s original aim was to provide a device-independent markup language that was based on
document semantics. It identified document elements such as headings, paragraphs, and lists
without specifying presentation. Early on, however, browser developers introduced many ad hoc
presentation-specific elements and attributes to HTML that blurred the distinction between
semantics and presentation. A presentation created for a large-screen device, for example, can
theoretically be displayed and interacted with on a small-screen device because they use the
same markup. Practically, however, it might be too hard to use simply because the author did not
create the presentation with a small form-factor in mind.

Device independence is an attempt to regain some of Web publications’ original intent. Web
standards are now encouraging a renewed distinction between semantics and presentation
through styling languages such as Cascading Style Sheets (CSS) and Extensible Stylesheet
Language Formatting Objects (XSL-FO) for adding information to Web output, and interaction
markup languages such as XML Forms (XForms) for input.

As the number of devices accessing the Internet increases, the problem of creating presentations
for each device type grows worse. Ideally, authors would need to create only one version of their
Web content. Then, during the delivery and rendering process, adaptation software would create
a presentation to match the delivery device’s capabilities.

1 IEEE Internet Computing – September/October 2002 – pp 81-86.

© 2002 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must
be obtained from the IEEE.

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and
all rights therein are retained by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by each author's copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

2

These are the key questions:

• How can we express a Web application independent of the delivery device?

• How can we adapt device-independent applications to suit delivery device capabilities?

• How can authors retain some control over the final presentation of their content?

Existing Web technologies can provide partial answers to these questions, and researchers and
practitioners are now working on technologies to provide fuller solutions. Here, we offer an
overview of both.

Why device independence?
Currently, authors typically design Web applications for the PC browser and screen. To exert
maximum control over the final appearance, they often base Web page layouts on tables,
specified using absolute pixel positioning. Because adapting such a site for a small display is
effectively impossible, authors must create a parallel site to accommodate these devices. Figure 1
shows similar content adapted for different devices. As the variety of Web-connected devices
increases, however, creating a separate site for each kind of device is both economically and
administratively impractical.

Figure 1: Content adapted for different devices. Although device display capabilities overlap in
some cases, other factors, such as text entry capabilities, can vary widely.

3

The device-independent approach to design lets authors support many different devices without
the high overhead. In fact, it’s often unnecessary for authors to create completely different
content for each device. The display capabilities of phones and PDAs, for example, overlap in
some cases — though their text entry capabilities can differ widely. The key concept in
achieving greater device independence is to match the rendering of application content and
interaction to device capabilities.

In addition to easing author overhead, device independence offers users several benefits.
Accessibility, for example, is a fundamental concern, and in some countries a legal necessity.
Users must be able to interact with the Web in ways that suit their abilities. Offering options that
let users replace images with text, present text as speech, or interact using voice or special input
devices can benefit a wide range of users. Different circum-stances might also alter the way users
want to interact. A user in a car, for example, might switch from visual to audio-only interaction
while driving. By making content adaptability a fundamental design aspect, Web site designers
can both increase user options and better accommodate presentation preferences.

Device-Independence Technologies
Currently, designers are using many different approaches to achieve better device independence
for Web presentations. The existing approaches fall into three broad categories — intermediate,
client-side, and server-side — depending on who controls the adaptation process.

Intermediate adaptation

To avoid changing either the server that provides content or the client that consumes it,
intermediaries in the content delivery chain can offer limited adaptation. Transcoding proxies,
for example, can transform image formats or even subsets of markup languages. This gives data-
enabled phones access to Web sites by either omitting a server’s full-resolution color images or
transcoding them into low-resolution or monochrome versions, depending on the phone’s display
capabilities.

Intermediaries typically lack special information about content, and thus their adaptation abilities
are limited. This is usually no problem for individual images, which typically include resolution
and size metadata. Because authors are increasingly marking up content with presentation rather
than semantic information, however, it’s much harder to transcode anything but trivial markup
and still get an acceptable result. Transcoding HTML into Wireless Markup Language (WML),
Compact HTML (cHTML), or Handheld Device Markup Language (HDML) for phones is only
possible for some constructs. Literally transcoding Web pages that use “hidden semantics” —
such as tables to control layout or text embedded within images — typically produces unusable
results.

Intermediate adaptation can help reduce origin server loads, but it is only fully successful when
it’s based on both knowledge of target device capabilities and author-provided metadata and
adaptation hints.

Client-side adaptation

Adaptation can also occur in the content delivery device (typically the Web browser). The
advantage here is that the adaptation code usually has direct access to the device’s capabilities.

4

Some client-side adaptations are independent of content directives. Many browsers, for example,
let users increase or decrease text display size. However, this can have unexpected consequences
for author-defined layouts. Client-side adaptations can also occur based on directives within the
content. An example of such author-controlled client-side adaptation is the use of CSS, which
authors often use to style HTML elements. CSS is equally applicable, in browsers that support it,
for styling Extensible Hypertext Markup Language (XHTML), Scalable Vector Graphics (SVG),
or even plain XML content. Separating style from content is accepted good practice and lets
authors provide different styles to suit different devices.

CSS media types (not to be confused with Internet MIME media types) are names that identify
different device types, such as screen, handheld, TV, print, projection, aural, and Braille. In CSS,
authors can define different styling rules for different media types. Figure 2 shows an example
style sheet, with variable attributes such as foreground and background colors, and text fonts that
let the browser adjust the presentation for conventional screens, printers, small handheld devices,
televisions, or projection displays.

On smaller devices, authors can use CSS media types to omit display of parts of a Web page. Of
course, delivering a complete page suitable for any device, then omitting large parts of it, is not
an effective use of delivery bandwidth.

Figure 2: CSS style sheet with device-dependent styles. By adjusting display colors and text
fonts, the presentation is suitable for a variety of devices, including PCs, printers, handhelds,
and projection displays.

/* media-dependent foreground/background colours */
@media screen, print, handheld
 { body { color: black; background-color: white } }
@media projection, tv
 { body { color: white; background-color: blue } }

/* media-dependent font family */
@media screen, handheld, tv, projection
 { body { font-family: helvetica,sans-serif } }
@media print
 { body { font-family: times,serif } }

/* media-dependent text appearance */
@media screen, print
 { body { font-size: 12pt } }
@media handheld
 { body { font-size: 10pt; line-height: 80% } }
@media projection, tv
 { body { font-size: 16pt; font-weight: bold } }

/* increase width of borders on tv to avoid flicker */
@media tv
 { body { border-width: thick } }

5

Figure 3: Extensible Stylesheet Language Transformation (XSLT) style sheet. In this example,
the style sheet uses HP’s Delivery Context Library (Deli) capability handling for Cocoon.

<?xml version="1.0"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">
 <xsl:param name="accept"/>
 <xsl:param name="deli-capabilities"/>

 <xsl:template match="/">
 <xsl:if test="contains($accept,'wml')">
 <xsl:call-template name="wmldevice"/>
 </xsl:if>
 <xsl:if test="not(contains($accept,'wml'))">
 <xsl:call-template name="htmldevice"/>
 </xsl:if>
 </xsl:template>

 <xsl:template name="htmldevice">
 <html>
 <head>
 <title>Example HTML page</title>
 </head>
 <body>
 <xsl:call-template name="capabilityTest"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template name="wmldevice">
 <wml>
 <card title="Example WML card">
 <xsl:call-template name="capabilityTest"/>
 </card>
 </wml>
 </xsl:template>

 <xsl:template name="capabilityTest">
 <p>
 Device capability test supported by DELI in Cocoon.
 <xsl:if test="$deli-capabilities/browser/ColorCapable">
 This device can display colors.
 </xsl:if>
 </p>
 </xsl:template>

</xsl:stylesheet>

6

Server-side adaptation

Server-side adaptation offers maximum author control over the delivered content, including the
ability to radically change the content amount and its styling, navigation, and layout. In order to
produce the most appropriate adaptation, however, the server must have sufficient information
about the delivery context, including the delivery device’s capabilities.

There are many techniques for achieving server-side adaptation. Web site designers have been
delivering different versions of their content for years to accommodate nonstandard browser
implementations. The author might provide multiple versions of the content and let the server
select which to deliver; more typically, the author will include explicit variants within server-side
coding, such as within Java Server Pages.

A standards-based approach — supported, for example, by the Apache Cocoon server — uses an
Extensible Stylesheet Language Transformation (XSLT) to generate appropriate delivery markup
from a common XML content representation. Figure 3 shows an example, outlining a
transformation using different templates, depending on whether the target device accepts WML
markup or the default HTML. The author might provide several XSL style sheets to generate
markup suitable for different delivery devices; the server then selects the appropriate style sheet
based on the delivery context.

Delivery Context
Wherever adaptation takes place, it must be based on information about the delivery context.
This can include the delivery device’s capabilities, the delivery network’s characteristics, user
preferences, and other optional application-specific parameters such as users’ preferred language
or their location.

Some of this information is available in the Web page request’s standard HTTP protocol header
(see Figure 4). Currently, there are no standards for expressing arbitrary device capabilities in the

Figure 4: Example HTTP request headers.(a) A PDA’s HTTP request header from a Pocket IE
2002 browser; (b)A PC’s HTTP request header from a Netscape 6.2.3 browser.

User-Agent: Mozilla/2.0 (compatible; MSIE 3.02; Windows CE; PPC; 240x320)
UA-OS: Windows CE (POCKET PC) - Version 3.0
Accept-Encoding: gzip, deflate
UA-CPU: ARM SA1110
UA-pixels: 240x320
(a)

User-Agent: Mozilla/5.0 (Windows; U; Windows NT 5.0; en-GB; rv:0.9.4.1)
Gecko/20020508 Netscape6/6.2.3
Accept: text/xml, application/xml, application/xhtml+xml, text/html;q=0.9,
image/png, image/jpeg, image/gif;q=0.2, text/plain;q=0.8, text/css,
/;q=0.1
Accept-Encoding: gzip, deflate, compress;q=0.9
Accept-Language: en-gb
(b)

7

header, though servers can use existing headers to try guessing the client’s nature. The Accept
header field, for example, identifies the response’s acceptable representations (MIME types),
while the User-Agent header field identifies the requester’s Web browser.

Composite capabilities/preferences profile (CC/PP) is a specific data format for expressing
delivery context information and is the basis for the user agent profile (UAProf), which is part of
the Open Mobile Alliance’s current mobile phone standard. Figure 5 shows an example of a
UAProf.

Figure 5: Example user agent profile. UAProf is based on the composite capabilities/preferences
profile (CC/PP), which proposes a framework for expressing delivery context information.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010430#">
 <rdf:Description rdf:ID="ExamplePhone">
 <prf:component>
 <rdf:Description rdf:ID="HardwarePlatform">
 …
 <prf:BitsPerPixel>12</prf:BitsPerPixel>
 <prf:ScreenSize>190x200</prf:ScreenSize>
 <prf:ColorCapable>Yes</prf:ColorCapable>
 <prf:ImageCapable>Yes</prf:ImageCapable>
 <prf:Keyboard>PhoneKeypad</prf:Keyboard>
 <prf:Model>Example</prf:Model>
 <prf:StandardFontProportional>Yes</prf:StandardFontProportional>
 <prf:TextInputCapable>Yes</prf:TextInputCapable>
 …
 </rdf:Description>
 </prf:component>
 <prf:component>
 <rdf:Description rdf:ID="SoftwarePlatform">
 …
 <prf:CcppAccept>
 <rdf:Bag>
 <rdf:li>application/vnd.wap.wmlc</rdf:li>
 <rdf:li>application/vnd.wap.wmlscriptc</rdf:li>
 <rdf:li>image/vnd.wap.wbmp</rdf:li>
 <rdf:li>image/jpeg</rdf:li>
 <rdf:li>image/bmp</rdf:li>
 <rdf:li>image/gif</rdf:li>
 <rdf:li>image/png</rdf:li>
 </rdf:Bag>
 </prf:CcppAccept>
 …
 </rdf:Description>
 </prf:component>
 </rdf:Description>
</rdf:RDF>

8

CC/PP uses XML namespaces so that different profiles can use different or even multiple
vocabularies to describe context information. The data format is based on RDF and represents
capabilities as a two-level hierarchy consisting of components and properties. The latest
generation of mobile phones is already deploying the data format through UAProf. The W3C
plans further work on protocols and vocabularies, and the Java Specification Request 188 Expert
Group is defining a server-based application programming interface for CC/PP.

The “CC/PP Tool Support” side-bar gives pointers to tools that are currently available for
handling CC/PP and UAProf. This support for conveying richer delivery context information
between client and server opens the way to better content adaptation.

Authoring for device independence
Authors can use the technologies we’ve described to offer device-specific presentations based on
common HTML or XML content. However, such technologies do not necessarily reduce the
author’s burden. Each Web site page, depending on its content, typically has a different layout
that might require adaptation to match device capabilities. Authors might thus need a different
style sheet for each page layout on each device type. For a large site with many pages — each of
which must be delivered to many different devices — the authoring burden is still too great.

CC/PP Tool Support
Public-domain tools are now available to support the composite capabilities/
preferences profile (CC/PP) framework for expressing delivery context information.

• HP Labs’ Delivery Context Library (Deli) Toolkit (http://delicon.
sourceforge.net/) offers Java-based server-side support for CC/PP and UAProf,
as well as conventional HTTP headers. Deli provides a simple API that lets
servlet developers use CC/PP information without having to worry about data
format, protocol, or processing issues. It also supports legacy devices so that
developers can create CC/PP-aware applications today, even when most devices
are not yet CC/PP-capable. As Figure 3 in the main article shows, Deli has also
been integrated into the XML Stylesheet Language Transformation (XSLT)
adaptation environment on the Apache Cocoon server (http://xml.apache.org/
cocoon/developing/deli.html).

• Intel’s CC/PP Toolkit (www.intel.com/pca/developernetwork) is available as
an Intel PCA Developer Network software download and includes a client-side
proxy and profile manager written in Java aimed at Pocket PC devices, as well
as a server-side profile repository and Apache server module. The profile
repository stores profiles in an SQL database, while the Apache module
provides a CGI interface to adapt content and support content redirection, which
lets the server use the CC/PP profile to select content variants in a similar way to
HTTP content negotiation.

The W3C CC/PP Working Group offers a list of other related resources at
www.w3.org/Mobile/CCPP.

9

We can reduce this burden by maximizing reuse of content, navigation, layout templates, and
application logic across as many devices as possible. The ultimate goal is “single authoring,” in
which a sufficiently rich description of all application and presentation aspects is provided to
permit automatic adaptation to any delivery device.

Currently, there are several proprietary device-independent markup languages and associated
adaptation platforms that offer different approaches to a single-authoring solution. Also, within
the W3C, several working groups are addressing aspects of authoring problems.

• The XForms working group has adopted a device-independent approach to defining
application interaction through XML-based forms. The standard they are developing
separates the semantic aspects of form field definition and submission from the presentation
aspects of how the form appears to a user on a particular device.

• The Multimodal Interaction working group is investigating how authors can combine
different modalities (visual, speech, and so on) to provide a richer user interface.

Related resources
The World Wide Web Consortium supports several standardization activities relevant to Web
content across different devices.

W3C activities

• CC/PP — www.w3.org/Mobile/CCPP

• Device independence — www.w3.org/2001/di

• Multimodal interaction — www.w3.org/2002/mmi

• Style — www.w3.org/Style

• Web accessibility — www.w3.org/WAI

• XForms — www.w3.org/MarkUp/Forms/

Other resources

• Device-independence principles — www.w3.org/TR/di-princ

• Authoring scenarios for device independence — www.w3.org/2001/di/public/as/

• W3C Delivery Context Workshop — www.w3.org/2002/02/DIWS

• W3C Device Independent Authoring Techniques workshop —
www.w3.org/2002/07/DIAT/

• CSS media types — www.w3.org/TR/ REC-CSS2/media.html

• Open Mobile Alliance’s UAProf specification —
www.wapforum.org/what/technical.htm

• Java Community Process JSR-188 specification — www.jcp.org/jsr/detail/188.jsp

10

• The Device Independence working group covers overall issues related to authoring and
adaptation techniques, and is addressing some of the remaining gaps. It has produced
working documents on device-independence principles and authoring scenarios, has held a
delivery-context workshop, and is about to hold a workshop on device-independent authoring
techniques.

Conclusion
Device manufacturers, users, and authors have differing needs and expectations when it comes to
Web content. Web software and hardware manufacturers naturally try to differentiate their
products by supporting a special combination of capabilities, but few can expect Web authors to
create content for their product alone. Users, however, do expect to access the same content from
any device with similar capabilities. Even when device capabilities differ, users might still want
access to an adapted version of the content. Due to device differences, the adaptation might not
produce an identical presentation, but device-independence principles suggest it should be
sufficiently functional to let users interact with it successfully. Web application authors cannot
afford to create multiple content versions for each of the growing range of device types. Authors
would rather create their content once, and adapt it to different devices — but they also want to
retain control of presentation quality.

Device independence is about trying to satisfy these differing needs, spanning the delivery path
between author and user by way of diverse manufacturers’ devices. The field’s continued
evolution within the broader Web standards framework aims to find solutions that are beneficial
for all.

Authors
Mark Butler is a researcher at HP Labs Bristol. He is chair of the W3C CC/PP working group
and creator of the DELI CC/PP toolkit.

Fabio Giannetti is a researcher at HP Labs Bristol. He is creator of FOA and WH2FO,
authoring tools for XSL Formatting Objects.

Roger Gimson is a senior researcher at HP Labs Bristol. He is chair of the W3C Device
Independence working group.

Tony Wiley is a project manager at HP Labs Bristol.

Readers can contact the authors at
{mark-h_butler,fabio_giannetti,roger_gimson,anthony_wiley}@hp.com

