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Abstract— Class-based traffic treatment frameworks such as
Differentiated Service (DiffServ) have been proposed to resolve the
poor scalability problem in the flow-based approach. Although
the performance is differentiated in a class-based basis, the perfor-
mance seen by individual flows in the same class may differ from
that seen by the class and has not been well understood. We in-
vestigate this issue by simulation in a single node under FIFO,
static priority, waiting time priority, and weighted fair queueing
scheduling schemes. Our results indicate that such performance
discrepancy occurs especially when flows joining the same class
are heterogeneous, which is not uncommon considering that the
same type of applications can generate traffic having very differ-
ent statistical behaviors such as video traffic with different activ-
ity levels, or voice traffic with different compression schemes. We
found that per-flow delay statistics, including the average and the
99th percentile delay, can be very different from the corresponding
class delay statistics, depending on flow burstiness, overall traffic
load, as well as the queue discipline. We also propose a solution to
reduce the mean delay variance experienced by flows in the same
class.
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I. INTRODUCTION

To overcome poor scalability and high complexity in per-flow
traffic handling, per-aggregate or class-based packet scheduling
has been suggested (as in the DiffServ architecture [1]), where
QoS differentiation is made on a per-class basis. However, the
implicit assumption is that the per-flow performance and the
aggregate/class performance is close, which may not hold un-
der certain circumstances, as shown in this paper. Equating the
per-flow QoS and the class performance when they in fact could
disagree degrades the perceived application performance, or de-
teriorates the integrity of service differentiation. For instance, if
the packet delay bound or mean delay of class B is supposed to
be twice that of class A, it could happen that some flow in class
A sees a delay bound 20% worse than the class while some in
class B sees a delay bound 20% better than the class. This cer-
tainly is unfair to class A users since the ratio of the delays is
now 1.33 instead of 2, as expected. This phenomenon calls for
the attention to identify quantitative deviations between the per-
flow QoS and the class QoS so that applications can be made
aware of what QoS levels to expect from the network. More
importantly, understanding what dominant factors impact the
degree of deviation could help minimize the differences in the
perceived performance among flows.

Despite its importance, relatively little emphasis has been put
on the understanding of the per-flow QoS under the per-class
traffic treatment. Analysis based on Markovian sources allows
the computation of per-flow performance [2], [3], [4] but have
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severe computational limitation due to state space explosion
and is only available for First-in-First-out (FIFO) scheduling.
Nevertheless, results for an aggregate of two MMPP flows [3],
[4] and an aggregate of many on-off sources [5] (under FIFO
scheduling) reveal that the per-flow packet losses can be very
different from each other and that of the class, depending on
the buffer size, flow burstiness, utilization, and peak rate. For
EDF scheduling, the simulation results in [6] show that burstier
flows experience higher losses, and their probability of delay vi-
olation does not agree with that of the class. For the delay QoS
parameter, Trecordi and Verticale develop a mapping function
between per-flow bounding delay distributions and the overall
delay distribution for a multiplex of flows characterized by the
arrival curve in a FIFO queue [7]. The simulation with regu-
lated MPEG traces show that individual flows have very close
99th or higher percentile delay, but not necessarily true at lower
percentiles. The proposed bounding, however, tends to be con-
servative compared to the simulation results at the tail of the
distribution.

In this paper, we study the performance of the average de-
lay and the 99th percentile delay in a queue with heteroge-
neous types of flows under FIFO, Static Priority (SP), Waiting
Time Priority (WTP) [8], and Weighted Fair Queueing (WFQ)
scheduling, which are some important mechanisms in the con-
text of DiffServ. Having heterogeneous flows in the same class
is not uncommon because even the same type of applications
which normally go into the same class can have very different
traffic characteristics. For instance, video conferencing with
high activity level or movement has different traffic patterns
from those with low activity level, so do voice applications us-
ing different compression schemes. Obtaining an exact quan-
titative mapping between the per-flow and the class delay in a
large scale is very difficult, if not impossible, due to the compu-
tational intractability mentioned earlier. We instead attempt to
identify in general the factors that impact the disagreement be-
tween the per-flow and class performance. This hopefully will
provide us with more information and insights regarding when
we are able to rely on the class performance to represent the
per-flow performance. We show by simulation that (1) using
the class performance may not always be enough to achieve the
per-flow delay requirement because they differ considerably in
some cases, (2) one type of flows may see higher delay statistics
than the others, depending on its traffic burstiness, and (3) the
choice of queue disciplines affects the difference between the
per-flow and class performance.

The rest of the paper is organized as follows. We define in §II
a performance metric to compare the per-flow and the class de-
lay performance, and describes the system and the traffic mod-
els used in this work. We then present the simulation results



and analyze them in §III. We also propose a method to reduce
the difference between the per-flow and class performance, fol-
lowed by the conclusion in §V.

II. PERFORMANCE METRIC AND SYSTEM MODEL

A. Performance Comparison Metric

To quantify as well as visualize the variability among the
per-flow and the class delay statistics, we look at the percent-
age differences and their absolute mean (or normalized mean
absolute deviation), which is denoted by δi and δ respectively.
Let N be the number of flows a given class. Let di be the de-
lay statistic of interest, e.g., average or 99th percentile, of the
ith flow, i = 1, 2, · · · , N , and D be the corresponding class
or overall delay statistic taken from all the N flows. We have
δi = di−D

D ×100 to represent the percentage difference between
the per-flow delay statistic di and the class delay statistics D.
Then, δ, the average of |δi|, is given by δ = N−1

∑N
i=1 |δi|.

For convenience, we denote respectively Davg and D0.99 as the
average class delay and the 99th percentile class delay.

B. System Model

The system model under consideration is a single node with
the output link capacity of 45 Mbps supporting two traffic
classes, where each class is allocated an infinite buffer. The
queue disciplines considered are FIFO, SP (with class 1 having
higher priority), WTP, and WFQ. For WTP, we use the delay
differentiation ratio of c2

c1
= 2. For WFQ, the same weight is

assigned to both classes.
Each queue or class is fed by a number of Interrupted Pois-

son Process (IPP) flows with different characteristics. The IPP
source alternates between on and off states, and the time spent
in the on (off) state is exponentially distributed with rate α (β).
During the on state, packets arrive according to a Poisson pro-
cess with rate λ and the source stays idle during the off state.
The IPP model has been used to model various types of appli-
cations including voice and data (e.g., [9], [10]).

C. Traffic Source Parameters

In our study, the individual IPP flows belong to either one
of the two types: type A and type B . The parameter values of
these two types of IPP sources are adapted from [10], which
are derived from realistic voice and data traffic. Obviously, real
voice and data sources have very differing QoS requirements
and would normally not be aggregated. We use them here only
as examples of traffic flows with specific characteristics. As
mentioned earlier, even the same type of applications which
typically go into the same class can have very different traf-
fic characteristics. Further, in a realistic operational network,
the traffic class may support flows of different traffic types with
different arrival processes but with some common QoS goals.
The issue of deciding which types of flows belong to a par-
ticular class is out of the scope of this paper, though some of
our results will provide some insights on this. We also do not
consider in this paper the issue of dimensioning resources to
provide a specific level of QoS. We emphasize that voice and

data are used as only two examples of traffic flows with specific
characteristics. Our intent is to solely compare the class and the
per-flow performance by heterogeneous flows joining the same
queue.

The type A source parameters are: α = 1.538 sec−1, β =
2.841 sec−1, λ = 55.55 packets/sec. Type A packets have a
fixed size P of 144 bytes. The average rate of type A source
(λP · β

β+α ) is thus 22.48 Kbps. The type B source parameters
are: α = 5.0 sec−1, β = 1.25 sec−1, λ = 26.67 packets/sec.
Type B packets have a fixed size P of 1,500 bytes. Note that the
flow average rate of type B source is approximately three times
higher than that of type A source, and also has higher burstiness.
We define burstiness as the peak bit rate over the average bit
rate (α+β

β ), which is equal to 1.54 for type A source and 5.2 for
type B source. In our experiments, we assume that each type of
aggregates contributes the same amount of the offered load (ρ)
when joining the same queue. That is, half of the offered load
in the class comes from type A flows while the other half comes
from type B flows.

III. SIMULATION RESULTS AND ANALYSIS

In this section, we look at the the per-flow performance in dif-
ferent scenarios under different scheduling mechanisms. Note
that we are not comparing the performance of scheduling dis-
ciplines themselves. The simulation is implemented in CSIM.
The simulation period lasts until approximately 250,000 pack-
ets per type A flow have been collected.

A. Traffic Burstiness

Intuitively, we expect that per-flow delay performance of the
smooth traffic flows such as Poisson or constant bit rate will
be closer to that of the class than traffic flows exhibiting bursty
behavior. We consider two scenarios where a FIFO queue is fed
with (1) two types of Poisson flows, and (2) a mix of type A
flows and type B flows. In case of Poisson input flows, the first
type has the mean packet arrival rate (λ · β

β+α ) and the packet
size equal to those of type A source and equal to those of type
B source for flows of the second type. Fig. 1 compares the δi

of the 99th percentile delay for the above two scenarios. We
can see that having Poisson flows with different rates as well as
packet sizes in the same queue does not at all affect the per-flow
performance, as the individual flows practically experience the
same delay bound. In contrast, the per-flow performance for
burstier traffic such as IPP depends on the degree of burstiness,
as some of the type B flows experience the delay bound as high
as 15% larger than the overall, and most of the type B flows
tends to see higher delay than the type A flows do.

B. Static Priority

Unless stated otherwise, we assume herein that each class is
fed by a mix of type A flows and type B flows, where each type
of flows contributes an equal amount of the class load, and the
total nodal load (ρ) is equally split between the two classes. The
δ’s over the range of ρ from 0.15 to 0.9 are well below 5% (not
shown here). However, those numbers could be misleading be-
cause the actual percentage differences of individual flows (δi)
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(a) Poisson Traffic, D0.99 = 7010 µs
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(b) IPP Traffic, D0.99 = 11011 µs

Fig. 1. δi of heterogeneous Poisson and IPP flows in FIFO

can be far from their average value and fluctuate highly espe-
cially in the high load condition. Fig. 2 and 3 plot the δi of the
per-flow average delay and the 99th percentile delay at ρ = 0.9.
Apparently, the per-flow performance in the two classes as well
as between two types of traffic within the classes are not the
same. The δi of flows in the low priority class are higher and
have more variation, and within the same class, the burstier traf-
fic, namely type B flows, tend to see worse delay performance
than the class. In a low to medium load range, the per-flow per-
formance in the two classes are similar (not shown here due to
space limitation) with negligible values of δi but still, the type
B flows see higher delay.
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(a) High Priority, Davg = 242 µs
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(b) Low Priority , Davg = 3586 µs

Fig. 2. δi of the per-flow average delay under SP

C. WTP

In WTP, the delay performance is of major interest because
the main goal of WTP is to achieve the delay differentiation
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(a) High Priority, D0.99 = 1584 µs
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(b) High Priority, D0.99 = 29573 µs

Fig. 3. δi of the per-flow 99th percentile delay under SP

among classes. At ρ = 0.9, WTP is able to attain a good delay
differentiation ratios for both average delay (1485

786 = 1.89) and
99th percentile delay (14042

7084 = 1.98). Fig. 4 and 5 plot the δi

of the per-flow average delay and the 99th percentile delay at
ρ = 0.9. In contrast to SP where the per-flow performance in
the high priority class fluctuates much less from the class, the
per-flow delay behaviors of both classes are similar in WTP.
However, as in SP, the burstier traffic evidently still experiences
higher delay as indicated by the δi of the type B flows clustered
above those of the type A flows in the same class. Again, at
a low to medium load condition, the δi’s are well below 5-6%
(not shown here) but the type B flows still see higher delay.
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(a) Class 1, Davg = 786 µs
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(b) Class 2, Davg = 1485 µs

Fig. 4. δi of the per-flow average delay under WTP

D. WFQ

Since we assume that both classes are assigned the same
weight, only the results for class 1 are presented. In contrast to
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(a) Class 1, D0.99 = 7084 µs
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(b) Class 2, D0.99 = 14042 µs

Fig. 5. δi of the per-flow 99th percentile delay under WTP

SP and WTP, the per-flow performance discrepancy in WFQ is
somewhat less as shown in Fig. 6, noticing that the type B flows
perceive the delay performance that are closer to the class.
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(a) WFQ Class 1, Davg = 919 µs
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Fig. 6. δi of the per-flow average and 99th percentile delay under WFQ

E. Remarks

The simulation study in [11] indicates that when the QoS
guarantee is to be satisfied, mixing voice traffic with other kinds
of traffic such as TCP into the same queue can appreciably re-
duce the maximum achievable utilization compared to the case
when having voice traffic alone. On the other hand, having
voice and real-time video traffic in the same queue still yields
acceptable utilization levels. However, the QoS guarantee is
made in a class basis, not individual flow. In such a case, our
results suggest that the differences between the class and the
per-flow delay statistics can be different, potentially leading to
the per-flow QoS requirements not being satisfied.

It is interesting to point out that in the various scenarios
studied above, up to 50% of overall flows receive a delay QoS
that is better than the corresponding class QoS (characterized
by negative δi values). The type A flows receive disproportion-
ately better performance, with up to 80% of the type A flows
in some cases receiving better performance than the class QoS.
The type B flows on the other hand are penalized, with only at
most 20% of the type B flows having negative δi. In most cases,
less than 5% of the type B flows received better performance
than the class.

IV. VARIABILITY REDUCTION

We have previously shown that traffic flows in the same class
receive unequal treatment depending on their statistical charac-
teristics. For the average delay performance, we propose ap-
plying the Mean Delay Proportional (MDP) scheduling [12]
to equalize the mean delay experienced by different types of
flows within a class. While the algorithm and implementation
given in [12] assumes a fixed packet size and slotted time as-
sumptions, we present them in a more general form to handle a
variable packet size. MDP can be combined with an interclass
scheduling (e.g., SP, WTP, WFQ) as follows. Assume that traf-
fic flows in the same class can be classified into different queues
according to their statistical characteristics. Note that this clas-
sification can be quite coarse, e.g., based on the peak to mean
burstiness ratios, the mean rate, etc. Such classification could be
performed by looking up transport port numbers because traffic
flows using the same port tend to be generated from the same
type of applications and very likely to have similar statistical
properties. This kind of classification will only add minor com-
plexity. The interclass scheduling picks the class that is eligible
to transmit a packet. Then, intraclass MDP scheduling decides
which queue in that class to retrieve an eligible packet from.

For the intraclass MDP scheduling, a separate FIFO queue
is assigned to each traffic type, where the Head-of-Line (HOL)
packets are the candidates to be eligible. The queueing delay
of all the previously departing packets as well as the queue-
ing delay of those waiting in the queue are added together,
and then averaged. The HOL packet from the queue with
higher average delay is selected for that class. The sum of
the queueing delay of the previously departing packets can di-
rectly be obtained. However the queueing delay of those wait-
ing in the queue is unknown because it depends on future ar-
rivals. Therefore, this delay is calculated by using the best-case
approximation where the packets are serviced back to back.
Denote t the current time. Considering the ith packet in the
queue counted from the head (including the one being in ser-
vice), its approximated queueing delay at time t is given by
di(t) = (t−ai)+Time to serve (i − 1) packets ahead, where
ai is its arrival time to the queue. Since we assume that all
the packets are served back to back after time t, it follows that
di(t) = (t− ai) + Qi(t)

C , where Qi(t) is the queue size seen by
the ith packet at time t, and C is the link capacity. Therefore
the delay sum of N(t) packets waiting in the queue at time t is

D(t) =
N(t)∑

i=1

di(t) = Nt −
N(t)∑

i=1

ai + C−1 ∗
N(t)∑

i=1

Qi(t) (1)



To maintain the term
∑N(t)

i=1 Qi(t), we can cumulatively add the
queue size at every packet arrival instant and decrease it by the
packet size of every packet departure instant. Such operations
are very simple and thus should not hinder the implementation
at high speed. In the special case of fixed packet size, (1) re-
duces to

D(t) = Nt −
N(t)∑

i=1

ai + Tp
N(t)(N(t) − 1)

2
. (2)

where Tp is one packet transmission time. So D(t) is easily
calculated because all the variables are readily obtained. Note
that both the terms

∑N(t)
i=1 ai and N(t)(N(t)−1)

2 can be easily
updated. Applying MDP as an intraclass scheduling with WTP
equalizes the mean delay of flows in the same class very well
compared to WTP alone, as shown in Fig. 7.
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(b) MDP + FIFO, Davg = 960.15 µs
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(c) MDP + WTP (Class 1), Davg = 711.5 µs
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Fig. 7. δi of the average delay when applying MDP within the class

V. CONCLUSION

We have investigated the per-flow average and 99th delay
performance compared to the class delay performance in a
queue with two different types of flows under FIFO, SP, WTP,
and WFQ scheduling. Our study indicates that traffic hetero-
geneity, load condition, and the scheduling discipline affect the
per-flow delay performance. When a traffic class supports het-
erogeneous flows, the main findings are that flows with rela-
tively high burstiness tend to experience higher delay and the
performance discrepancy between individual flows and the class
increases with the amount of offered load. The per-flow behav-
ior also depends on the scheduling discipline used. For exam-
ple, the per-flow behaviors in different classes are similar in
WTP and WFQ but not in SP. Flow characteristics seem to have
less effect to the per-flow performance in WFQ than the oth-
ers. We also propose using MDP as an intraclass scheduling
scheme to equalize the mean delays seen by the diverse flows in
the same class. Our study suggests that we may not be able to
achieve delay guarantees for some individual flows based solely
on the class delay performance when the flows are heteroge-
neous in a high load condition. If we were to admit flows based
on the class delay performance, very possibly some differences
in the perceived per-flow performance could be expected. This
implies we should avoid mixing traffic with different statistical
behaviors into the same class, even if they belong to the same
application type.
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