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Abstract

An analytical method of studying strong long-range electron–phonon and Coulomb interactions in complex lattices is
presented. The method is applied to a perovskite layer with anisotropic coupling of holes to the vibrations of apical atoms.
Depending on the relative strength of the polaronic shiftEp and the inter-site Coulomb repulsionVc, the system is either
a polaronic Fermi liquid,Vc > 1.23Ep, a bipolaronic superconductor, 1.16Ep < Vc < 1.23Ep , or a charge segregated insulator,
Vc < 1.16Ep . In the superconducting window, the carriers are mobile bipolarons with a remarkably low effective mass. The
model describes the key features of the underdoped superconducting cuprates. 2002 Elsevier Science B.V. All rights reserved.

PACS:74.20.Mn; 71.38.-k; 71.38.Mx

There is clear experimental [1–5] and theoreti-
cal [6–15] evidence for strong electron–phonon (el–
ph) interaction in high-Tc superconducting cuprates
(HTSC). Electron correlations are also important in
shaping the Mott–Hubbard insulating state of par-
ent undoped compounds [16]. The theory of high-Tc
cuprates must treat both interactions on equal foot-
ing as was suggested some time ago [6]. In recent
years many publications addressed the fundamental
problem of competing el–ph and Coulomb interac-
tions in the framework of the Holstein–Hubbard model
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[11–15] where both interactions are short-range (on-
site). The mass of bipolaronic carriers in this model is
very large and the critical temperature is suppressed
down to a Kelvin scale. However, in the cuprates the
screening is poor so that the el–ph interaction neces-
sarily has to be long-range. Motivated by this fact, we
have proposed that a long-range Fröhlich, rather than
short-range Holstein, interaction should be the ade-
quate model for the cuprates [17,18]. Differently from
the usual continuum Fröhlich model (for review see
[6,7]), we introduced a multipolaron Fröhlich-like lat-
tice model with electrostatic forces fully taking into
account the discreteness of the lattice, finite electron
bandwidth, and the quantum nature of phonons. A sin-
gle small polaron with the Fröhlich interaction was
discussed long time ago [19]. Analytical [17] and ex-

0375-9601/02/$ – see front matter 2002 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(02)00684-9

http://www.elsevier.com/locate/pla


A.S. Alexandrov, P.E. Kornilovitch / Physics Letters A 299 (2002) 650–655 651

act Monte-Carlo [18] studies of the simple chain and
plane lattices with a long-range el–ph coupling re-
vealed a several-order lower effective mass of this po-
laron than that of the small Holstein polaron. Later,
the polaron and bipolaron cases of the chain model
were analyzed in more detail in Refs. [20] and [21],
confirming low masses of both types of carriers. Qual-
itatively, a long-range el–ph interaction results in a
lighter mass because the extended lattice deformation
changes gradually as the carrier moves through the lat-
tice.

In this Letter, we study a realisticmulti-polaron
model of the copper–oxygen perovskite layer which is
the major structural unit of the HTSC compounds. The
model includes the infinite on-site repulsion (Hubbard
U term), long-range inter-hole Coulomb repulsionVc,
and long-range Fröhlich interaction between in-plane
holes and apical oxygens. We find that, within a cer-
tain window ofVc, the holes form inter-site bipolarons
with a remarkably low mass. The bipolarons repel and
the whole system is a superconductor with a high crit-
ical temperature. At largeVc, the system is a polaronic
Fermi liquid and at smallVc it is a charge segregated
insulator.

To deal with the model’s considerable complexity
we first describe a theoretical approach that makes
the analysis of complex lattices simple in the strong
coupling limit. The model Hamiltonian explicitly in-
cludes long-range electron–phonon and Coulomb in-
teractions as well as kinetic and deformation energies.
An implicitly present infinite Hubbard term prohibits
double occupancy and removes the need to distinguish
fermionic spins. Introducing fermion operatorscn and
phonon operatorsdmα, the Hamiltonian is written as

H = −
∑
n�=n′

[
T (n − n′)c†

ncn′ − Vc(n − n′)c†
ncnc

†
n′cn′

]

−ω
∑
nm

gα(m − n)(emα · um−n)

× c†
ncn

(
d†

mα + dmα
)

(1)+ω
∑
mα

(
d†

mαdmα + 1

2

)
.

Here emα is the polarization vector ofαth vibration
coordinate at sitem, um−n ≡ (m − n)/|m − n| is the
unit vector in the direction from electronn to ion m,
and gα(m − n) is a dimensionless el–ph coupling
function. (gα(m − n) is proportional to aforceacting

betweenm and n.) We assume that all the phonon
modes are dispersionless with frequencyω and that the
electrons do not interact with displacements of their
own atoms,gα(0)≡ 0. We also usēh = 1 throughout
the Letter.

In the limit of strong el–ph interaction, it is conve-
nient to perform the Lang–Firsov canonical transfor-
mation [22]. IntroducingS = ∑

mnα gα(m − n)(emα ·
um−n)c

†
ncn(d

†
mα − dmα) one obtains a transformed

Hamiltonian without an explicit el–ph term:

H̃ = e−SHeS
= −

∑
n�=n′

σ̂nn′c†
ncn′ +ω

∑
mα

(
d†

mαdmα + 1

2

)

(2)+
∑
n�=n′

v(n − n′)c†
ncnc

†
n′cn′ −Ep

∑
n

c†
ncn.

The last term describes the energy which polarons gain
due to el–ph interaction.Ep is the familiar polaron
(Franck–Condon) shift,

(3)Ep = ω
∑
mα

g2
α(m − n)(emα · um−n)

2,

which we assume to be independent ofn. Ep is a nat-
ural measure of the strength of the el–ph interaction.
The third term in Eq. (2) is the polaron–polaron inter-
action:

(4)v(n − n′)= Vc(n − n′)− Vpa(n − n′),

Vpa(n − n′)= 2ω
∑
mα

gα(m − n)gα(m − n′)

(5)× (emα · um−n)(emα · um−n′),

whereVpa is the inter-polaronattraction due to joint
interaction with the same vibrating atoms. Finally, the
first term in Eq. (2) contains the transformed hopping
operatorσ̂nn′ :

(6)

σ̂nn′ = T (n − n′)exp

[∑
mα

[
gα(m − n)(emα · um−n)

− gα(m − n′)(emα · um−n′)
]

× (
d†

mα − dmα
)]
.

At large Ep/T (n − n′) this term is a perturbation.
In the first order of the strong coupling perturbation
theory [6], σ̂nn′ should be averaged over phonons
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because there is no coupling between polarons and
phonons in the unperturbed Hamiltonian (the last three
terms in Eq. (2)). For temperatures lower thanω, the
result is

t (n − n′)≡ 〈σ̂nn′ 〉ph

(7)= T (n − n′)exp
[−G2(n − n′)

]
,

G2(n − n′)=
∑
mα

gα(m − n)(emα · um−n)

× [
gα(m − n)(emα · um−n)

(8)− gα(m − n′)(emα · um−n′)
]
.

By comparing Eqs. (3), (5), and (8), the mass renor-
malization exponents can be expressed viaEp andVpa
as follows:

(9)G2(n − n′)= 1

ω

(
Ep − 1

2
Vpa(n − n′)

)
.

This is the simplest way to calculateG2 and (bi)pola-
ron masses once the ‘static’ parametersEp andVpa are
known.

It is easy to see from the above equations that the
long-range el–ph interaction increasesEp andVpa but
reducesG2 (when measured in natural units ofEp/ω).
Thus polarons get tighter and at the same time lighter.
Bipolarons form whenVpa exceedsVc and they are
relatively light too. We note that the Holstein model
is the limiting case with the highest possibleG2 =
Ep/ω. In this respect, the Holstein model isnot a
typical el–ph model.

To obtain analytical description of themulti-pola-
ron system we restrict our consideration to the strong
coupling case|v| � t . In this regime the polaron
kinetic energy is the smallest energy and thus can be
treated as a perturbation. The system is adequately
described by a purely polaronic model:

(10)Hp =H0 +Hpert,

(11)H0 = −Ep
∑

n

c†
ncn +

∑
n�=n′

v(n − n′)c†
ncnc

†
n′cn′ ,

(12)Hpert= −
∑
n�=n′

t (n − n′)c†
ncn′ .

Fig. 1. Four octahedra of the copper–oxygen perovskite layer. Holes
reside on the in-plane oxygens but interact with apical oxygens.

The many-particle ground state ofH0 depends on
the sign of the polaron–polaron interaction, the car-
rier density, and the lattice geometry. Here we con-
sider a two-dimensional lattice of ideal octahedra that
can be regarded as a simplified model of the copper–
oxygen perovskite layer, see Fig. 1. The lattice pe-
riod is a = 1 and the distance between the apical sites
and the central plane ish = a/2 = 0.5. The hole de-
grees of freedom in the cuprates are the oxygenp-
states. We assume that all in-plane atoms, both copper
and oxygen, are static but apical oxygens are indepen-
dent three-dimensional isotropic harmonic oscillators.
Thus there are six lattice degrees of freedom per cell.
Because of poor screening the hole–apical interaction
is purely Coulombic,

gα(m − n)= κα/|m − n|2, α = x, y, z.
To account for the experimental fact that the holes
couple stronger toz-polarized phonons than to the
others [3], we chooseκx = κy = κz/

√
2. The direct

hole–hole repulsion is

Vc(n − n′)= Vc/
√

2

|n − n′|
so that the repulsion between two holes in the NN
configuration isVc. We also include the bare nearest
neighbor (NN) hoppingTNN, the next nearest neighbor
(NNN) hopping across copperTNNN, and the NNN
hopping between octahedraT ′

NNN.
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According to Eq. (3), the polaron shift is given by
the lattice sum (after summation over polarizations):

Ep = 2κ2
xω

∑
m

(
1

|m − n|4 + h2

|m − n|6
)

(13)= 31.15κ2
xω,

where the factor 2 accounts for the two layers of
apical sites. (For reference, Cartesian coordinates
are n = (nx + 1/2, ny + 1/2,0), m = (mx,my,h),
nx,ny,mx,my being integers.) The polaron–polaron
attraction is

(14)

Vpa(n − n′)= 4ωκ2
x

∑
m

h2 + (m − n′) · (m − n)
|m − n′|3|m − n|3 .

Performing lattice summations for the NN, NNN,
and NNN′ configurations one findsVpa = 1.23Ep,
0.80Ep, and 0.82Ep, respectively. Substituting these
results in Eqs. (4) and (9) we obtain the full inter-
polaron interaction:vNN = Vc − 1.23Ep, vNNN =
Vc/

√
2 − 0.80Ep, v′

NNN = Vc/
√

2 − 0.82Ep, and the
mass renormalization exponents:G2

NN = 0.38(Ep/ω),
G2

NNN = 0.60(Ep/ω),G′2
NNN = 0.59(Ep/ω).

Let us now discuss different regimes of the model.
At Vc > 1.23Ep, no bipolarons are formed and the
systems is a polaronic Fermi liquid. The polarons
tunnel in thesquare lattice with NN hoppingt =
TNN exp(−0.38Ep/ω) and NNN hoppingt ′ = TNNN ×
exp(−0.60Ep/ω). (SinceG2

NNN ≈G′2
NNN one can ne-

glect the difference between NNN hoppings within
and between the octahedra.) The single-polaron spec-
trum is therefore

E1(k)= −Ep − 2t ′[coskx + cosky]
(15)± 4t cos(kx/2)cos(ky/2).

The polaron mass ism∗ = 1/(t+2t ′). Since in general
t > t ′, the mass is mostly determined by the NN
hopping amplitudet .

While the infinite HubbardU prevents the simplest
on-site bipolaron the coupling to apical oxygens al-
lows an inter-site NN bipolaron ifVc < 1.23Ep. The
inter-site bipolarons tunnel in the plane via four res-
onating (degenerate) configurationsA, B, C, andD,
see Fig. 2. In the first order inHpert, one should re-
tain only these lowest energy configurations and dis-
card all the processes that involve configurations with

Fig. 2. Top view on the perovskite layer. The apical sites are not
shown. The four bipolaron configurationsA, B, C, andD all have
the same energy. Some possible single-polaron hoppingst ′ are
indicated by arrows. Note that the bipolaron movement is first-order
in t ′ .

higher energies. The result of such a projection is the
bipolaronic Hamiltonian

Hb = (Vc − 3.23Ep)

×
∑

l

[
A

†
lAl +B†

l Bl +C†
l Cl +D†

l Dl
]

− t ′
∑

l

[
A

†
l Bl +B†

l Cl +C†
l Dl +D†

l Al + h.c.
]

(16)

− t ′
∑

n

[
A

†
l−xBl +B†

l+yCl +C†
l+xDl +D†

l−yAl

+ h.c.
]
,

wherel numbers octahedra rather than individual sites,
x = (1,0), and y = (0,1). A Fourier transformation
and diagonalization of a 4× 4 matrix yields the
bipolaron spectrum:

E2(k)= Vc − 3.23Ep

(17)± 2t ′
[
cos(kx/2)± cos(ky/2)

]
.

There are four bipolaronic subbands combined in
a band of width 8t ′. The effective mass of the lowest
band ism∗∗ = 2/t ′. The bipolaron binding energy
is ∆ = 2E1(0) − E2(0) = 1.23Ep − Vc − 8t − 4t ′.
Because of an infinite Hubbard repulsion, the energy
splitting between the singlet and triplet inter-site bipo-
laron states is zero.
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We would like to emphasize that the inter-site bi-
polaron moves already in thefirst order in polaron
hopping. This remarkable property is entirely due to
the strong on-site repulsion and long-range electron–
phonon interaction that leads to a nontrivial connectiv-
ity of the lattice. This situation is unlike all other mod-
els studied previously. (Usually the bipolaron moves
only in the second order in polaron hopping and there-
fore is very heavy.) In our model, this fact combines
with a weak renormalization oft ′ yielding asuperlight
bipolaron with massm∗∗ ∝ exp(0.60Ep/ω). We recall
that in the Holstein modelm∗∗ ∝ exp(2Ep/ω). Thus
the mass of the Fröhlich inter-site bipolaron scales ap-
proximately ascubic rootof that of the Holstein on-
site bipolaron.

At even stronger el–ph interaction,Vc < 1.16Ep,
NNN bipolarons become stable. More importantly,
holes can now form 3- and 4-particle clusters. The
dominance of the potential energy over kinetic in
Hamiltonian (10) enables us to readily investigate
these many-polaron cases. Three holes placed within
one oxygen square have four degenerate states with
energy 2(Vc − 1.23Ep) + Vc/

√
2 − 0.80Ep. The

first-order polaron hopping processes mix the states
resulting in a ground state linear combination with
energyE3 = 2.71Vc − 3.26Ep − √

4t2 + t ′2. It is
essential that between the squares such triads could
move only in higher orders in polaron hopping. In the
first order, they are immobile. A cluster of four holes
has only one state within a square of oxygen atoms. Its
energy is

E4 = 4(Vc − 1.23Ep)+ 2

(
Vc√

2
− 0.80Ep

)

= 5.41Vc − 6.52Ep.

This cluster, as well as all the bigger ones, is also
immobile in the first order of polaron hopping. We
conclude that atVc < 1.16Ep the system becomes
a charge segregated insulator within the first-order per-
turbation theory with respect to the kinetic energy.
A more accurate characterization of the charge seg-
regated state and the phase boundary requires higher-
order corrections.

The superconductivity window that we have found,
1.16Ep < Vc < 1.23Ep, is quite narrow. The fact,
that within this window there are no three or higher
polaron bound states, implies that bipolarons repel

each other. The system is effectively the charged
Bose gas, which is a well known superconductor (for
a review, see Ref. [6]). It follows from our model
that superconductivity in cuprates should be very
sensitive to any external factor that affects the balance
betweenVc andEp . For instance, pressure changes the
octahedra geometry and henceEp andVpa. Chemical
doping enhances internal screening and consequently
reducesEp .

We now assume that the superconductivity condi-
tion is satisfied and show that our ‘Fröhlich–Coulomb’
model possesses many key properties of the under-
doped cuprates. The bipolaron binding energy∆
should manifest itself as a normal state pseudo-
gap with size of approximately half of∆ [6]. Such
a pseudogap has indeed been observed in many cu-
prates. There should be a strong isotope effect on
the (bi)polaron mass becauset, t ′ ∝ exp(−const

√
M).

Therefore the replacement of O16 by O18 increases
the carrier mass [24]. Such an effect has been ob-
served in the London penetration depth of the isotope-
substituted samples [1]. The mass isotope exponent,
αm = d lnm∗∗/d lnM, was found to be as large as
αm = 0.8 in La1.895Sr0.105CuO4. Our theoretical ex-
ponent isαm = 0.3Ep/ω, so that the bipolaron mass
enhancement factor is exp(0.6Ep/ω) � 5 in this ma-
terial. With the bare hopping integralTNNN = 0.2 eV
we obtain the in-plane bipolaron massm∗∗ � 10me.
Calculated with this value the in-plane London pene-
tration depth,

λab = [
m∗∗/8πne2]1/2 � 316 nm

(n is the hole density), agrees well with the measured
one λab � 320 nm. Taking into account thec-axis
tunneling of bipolarons, the critical temperature of
their Bose–Einstein condensation can be expressed in
terms of the experimentally measured in-plane andc-
axis penetration depths, and the in-plane Hall constant
RH as

Tc = 1.64f
(
eRH/λ

4
abλ

2
c

)1/3
.

Heref ≈ 1, andTc, eRH andλ are measured in K,
cm3 and cm, respectively [25]. This expression ne-
glects both the hard-core and long-range electrostatic
repulsion of bipolarons. The relevant atomic density
of bipolarons is well below 1, and the static lattice di-
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electric constant is very large in the cuprates, which
justifies the ideal Bose-gas approximation forTc [6].
Using the experimentalλab = 320 nm,λc = 4160 nm,
andRH = 4 × 10−3 cm3/C (just aboveTc) one ob-
tains Tc = 31 K in striking agreement with the ex-
perimental valueTc = 30 K. The recent observation
of the normal state diamagnetism in La2−xSrxCuO4
[26] also confirms the prediction of the bipolaron the-
ory [27]. In this Letter we have not addressed the im-
portant issue of the symmetry of the superconducting
order parameter. In the bipolaron theory the symme-
try of the pseudogap may be different from that of the
superconducting order parameter. The latter could be
d-wave [23]. Many other features of the bipolaronic
(super)conductor, e.g., the unusual upper critical field,
electronic specific heat, optical and tunneling spectra
match those of the cuprates (for a recent review, see
Ref. [28]).

In conclusion, we have studied a many-polaron
model with strong long-range electron–phonon and
Coulomb interactions. The model shows a rich phase
diagram depending on the ratio of the inter-site Cou-
lomb repulsion and the polaronic (Franck–Condon)
level shift. The ground state is a polaronic Fermi liq-
uid at large Coulomb repulsion, a bipolaronic high-
temperature superconductor at intermediate Coulomb
repulsion, and a charge-segregated insulator at weak
repulsion. In the superconducting phase, inter-site
bipolarons are remarkably light leading to a high criti-
cal temperature. The model describes many properties
of the underdoped cuprates.
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