
- 1 - 

Self-Organizing Control in Planetary-Scale Computing1

                                                           
1 submission to IEEE International Symposium on Cluster Computing and the Grid (CCGrid), Berlin, May 21-24, 2002. 

 
 

 
 

Artur Andrzejak, Sven Graupner, Vadim Kotov, Holger Trinks 
Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304, USA 

{firstname_lastname}@hp.com 
 
 

Abstract 
The explosion in globally connected devices, computers, 
and services ultimately evolves into very large-scale, 
inter-connected systems approaching a new era of 
planetary-scale computing. The backbone of planetary-
scale computing is a global network of data centers. The 
paper provides an overview of research at HP 
Laboratories exploring new approaches under such a 
scenario based on HP’s virtual data center platform 
enabling large-scale distributed virtual data center 
environments. Our approach is founded in a service-
centric system view, and we explore agent technology for 
resource control, system organization, and balancing 
resource demand and supply. 

1 Introduction 
Planetary-scale computing becomes increasingly service-
oriented: groups of interoperable applications provide 
functions or services on request to other groups of 
applications and to users in the end. Services encapsulate 
and isolate functionality from underlying application 
instances, which might be changed, replaced, or moved 
without affecting the use of a service. Service customers 
interact with services as black boxes rather than being 
tightly coupled with individual applications. As 
applications can be grouped, wrapped and encapsulated 
providing services, resources can be treated similarly 
providing virtual resources. 

We refer to this paradigm as service-centric computing 
[1]. The provided degree of abstraction and separation is 
ultimately necessary in systems of planetary scale. A 
notion of layers allows partitioning the space where 
services and virtual resource of equivalent granularity can 
be correlated. Section 3 overviews these notions. 

The background for our research is provided by new 
opportunities that HP’s next generation virtual data 
center platform offers. Section 4 gives an insight into 
basic technical principles and explains the potential 
arising from the capability of total resource virtualization 
in order to create planetary-scale virtual data center 
environments where explicit support is provided for 

enabling applications to be grouped and encapsulated 
(wrapped) as services. As services are expected to be 
always on, they also need to supply sufficient quantity 
meeting demand and quality in an economic manner. 
Better than best-effort demand and supply control is 
inevitable for planetary-scale systems. We describe an 
agent-based approach in section 7. 

2 General Approach 
Traditional system management is facing limits when 
anticipating scale and reactiveness requirements due to: 

- too many managed objects, 

- of large heterogeneity, and 

- of low system level. 

Simple and reactive autonomous control is needed to meet 
the planetary-scale management challenge. The problem 
we are discussing in this paper is how to arrange a simple 
and efficient control for complex systems. By efficiency 
of the control we mean its ability to provide a desired 
balance in the usage of resources with simultaneous 
providing quality of services. The main task is to keep the 
system in balance, providing good resource utilization and 
ensuring the quality of services to the end-user. We are 
not addressing other aspects such as security. 

The main technical hurdle is the large scale combined 
with time constraints. Our general approach is to attack 
this problem simultaneously from several directions: 

- divide the overall control space into interacting 
control layers where services and virtual resources of 
equivalent granularity can be viewed appropriately, 

- reduce the number of controlled objects by making 
them of higher granularity, uniform and simple, 

- represent both controlled systems and control itself as 
uniform, recursive structures,  

- use principles and mechanisms of partially distributed 
autonomous self-control, and 

- exploit the legacy of existing monitoring and 
management systems such as HP OpenView.  



- 2 - 

Stratification of control 

Too many objects and aspects of large-scale systems are 
controlled today. By using a divide-and-conquer strategy, 
we stratify the control space into layers that address those 
tasks that are specific for different levels of abstraction. 
Currently, we consider two control layers: the lower-level 
resource control and higher-level service control.  

The resource control manages physical resources, 
providing the service control with virtual resources. A 
physical resource is a device that has some absolute 
temporal or/and spatial computing parameters. A virtual 
resource is a set of parameters that are mapped onto 
physical resources of a device or a collection of devices.  

Service control allocates the virtual resources among 
groups of applications. It monitors and controls the 
balance between the applications demands of virtual 
resources and the physical resources capacities. The focus 
of this paper is exclusively on service control. 

Higher granularity 

A natural way to reduce the number of controlled objects 
is to increase their granularity and simplify them by 
raising their level of abstraction. They should provide a 
clean separation between individual system components 
and their global role, visibility and behavior within the 
overall system organization.  This separation, together 
with the higher-level abstractions, enhances controllability 
and leads to a system representation that is more tractable 
and more amenable to global analysis and control. 

We propose to augment controlled systems with new 
types of objects of higher system granularity (without any 
modifications of underlying applications and computing 
resources). These objects serve as control points for 
groups of applications or groups of resources, which they 
represent in the control system. Their task is to report 
collective characteristics and to control collective 
behavior of the represented groups. Such control objects 
are introduced in Section 3. 

Uniform recursive structure 

The control system itself is potentially a complex system. 
It is a question how to build an efficient control 
infrastructure that is simple, flexible and yet easily 
adaptable to a large variety of types of systems. We use 
the same type of high-level representation for both 
controlled system and the control infrastructure in a 
hierarchical tree-like structure. It is also recursive in the 
sense that controlling objects are controlled themselves by 
other controllers. 

Self-control 

Self-control means autonomous self-analysis and self-
governing of system parameters and states. Flexible 
mechanisms for coordination among entities in the control 
system (agents) are required that can implement 
centralized, partially distributed, and fully distributed 
models. Different mechanisms and algorithms should be 
used for different scale and reactivity requirements, but 
their number should be small and they will be 
automatically selected by the control infrastructure. 

Legacy management 

Legacy and customized monitoring and management 
systems should be used where it is appropriate to perform 
sensor and actuator tasks. 

3 Service-Centric Organization  
The service-centric view reduces the amount of 
information we want to monitor, the number of objects 
that are controlled, and complexity of these objects 2. 

Our solution is to instrument the systems with control 
objects providing control points. Such control points are: 

- (core) services that represent some set of 
applications implementing some tasks on request 
of other services (or users, in the end), 

- (virtual) servers that represent virtual resources 
provided to services. 

Services are embodiments of the demand and servers are 
embodiments of the capacity in a demand-capacity control 
model. Systems are viewed by the system control as a 
service infrastructure that consists of virtual servers 
hosting services. Aggregating services and servers forms 
hierarchical structures that support both abstraction and 
refinement needed for controlling large-scale systems.  

Control points are described by descriptor XML 
documents that contain the externally visible information 
used for incorporating them into a control infrastructure.  

The service infrastructure [2] includes: 

- deployment mechanisms of service entities, 

- XML-based messaging among server and service 
control objects, 

                                                           
2 The service-centric view of systems was introduced 
initially as an abstraction that makes it possible to design, 
model, and analyze large-scale communicating systems 
[2]. We found that the same concepts are useful in the 
control context what can be referred to more widely as 
service-centric system organization.  



- 3 - 

- repositories, accumulating templates of servers 
and services for subsequent deployment, 

- directories, containing actual information about  
service entities  and their deployment. 

To deploy conveniently aggregated entities, a recursive 
schema of “self-deployment” has been proposed, in which 
deployed aggregated entities deploy their children [3]. 

4 Virtual Data Center 
Large customers, such as big corporations or e-service 
providers, profit from or are required spanning of their 
data and applications over several data centers, potentially 
owned by different organizations, combining the 
resources of these centers. Smaller customers tend to use 
only part of the resources and services of a data center to 
which they outsourced their IT infrastructure. 
Combination of these options may occur in the general 
case. Customers form their private virtual data centers that 
provide for them resource consolidation and location 
independence.  The virtual centers also extend the 
customer's capability to optimize the center for their 
business needs and for particular workloads hiding the 
actual platform architecture and providing a much simpler 
and convenient virtual architecture called a Virtual Data 
Center  (VDC) [4] transparently bridging traditional 
geographic and organizational data center boundaries. 

 

Figure 1: Virtual Data Centers (VDC) 

This approach assumes some support by a platform where 
unmodified application systems can run and yet be 
controlled in the described ways. HP’s virtual data center 
platform [5] provides total resource virtualization and 
expands connection fabrics from LAN to the WAN scope. 
Total resource virtualization is achieved by programming 
the virtually wiring of physical resources (machines and 
storage). 

Customer applications, programs and data, management 
systems, even operating systems, are installed, managed 
and maintained within a customer’s virtual environment 
rather than on physical machines. The control system 
organizes the mapping of customer’s virtualized resources 
onto physical resources. Since current applications, 
management systems and operating systems cannot be 
changed, resource virtualization has to be transparent, 
sitting underneath the abstractions operating systems 
expect as the lowest layer in system stacks similarly to 
virtual machines, but here in a data center context. Three 
types of resources are virtualized: 

• processing; machines with CPU’s and memory, 

• storage with images containing file systems with 
operating systems, application software and data, 
configurations, etc., and 

• a programmable, switched fabric between processing 
and storage units based on programmable Fiber-
Channel (FC) and/or Ultra-Fast SCSI links and 
switched G-Ethernet among the processing machines 
and for the connection to the outside. 

All connector fabrics, switched Ethernet and Fiber 
Channel, are programmable by the VDC control system. 
This programmability provides resource virtualization 
similarly as programmability of page tables provides 
memory virtualization in operating systems. Processing 
elements may be dynamically mapped into a customer or 
service domain with their customer-defined identity (IP 
address). Fiber Channel connectivity allows the 
programmability of which portions of storage appear as 
disk images on FC or SCSI interfaces in processing 
elements containing the operating system being booted 
and file systems being mounted later. It is assumed that 
customer state is entirely maintained in the storage 
system. Processing and storage elements are regular 
machines and systems currently available from HP or 
other vendors. The control system performing the 
mapping of virtual to physical resources and maintaining 
customer states in form of portions of disk images is the 
key element for operating such an environment. 

5 Controlling the Demand and Supply 
Balance 

In order to keep demand and supplied capacity in balance, 
the control system needs to optimize the placement of the 
services on servers, monitor the balance, and then 
eventually re-deploy them if the balance is lost. 

Arising questions are: What metrics can be used to 
describe the resource demand and supplied capacity? Is it 



- 4 - 

possible to use one “generic” metric? How complex 
should it be? 

We use simple parameter sets to express processing, 
storage and communication resources in a format 
normalized to a chosen base unit specific to a given 
environment, see [2] for more detail. 

Given a VDC environment, decision-making refers to 
keeping resource demands and supply capacities in 
balance as a permanent process and as part of VDC’s 
control system. We assume that demand will drive this 
control. Demand may occur sporadically, unpredictably or 
may follow known patterns. Demand may strongly 
fluctuate or may change rather steadily. Four basic 
controls are applicable: 

1. adding capacity transparently to given resources; an 
example might be adding disk space to a file system, 

2. re-directing demand to locations where resources are 
available; load balancing is an example here, 

3. finding a better arrangement or placement of 
demands on supplied capacities reducing the overall 
demand; an example is bringing data closer to 
locations where it is accessed in order to keep traffic 
local and by thus reducing or avoiding traffic in the 
overall system. 

4. rejecting demands above certain thresholds known as 
admission control. 

A combination of all these approaches is typically chosen. 
Decisions need to be made in the control system how to 
react on changing demand conditions. Demand-driven 
resource control means permanently monitoring the 
system and comparing observed with expected behavior 
in order to detect misbalances between current resource 
capacities and current resource demands. Decisions may 
then be further evaluated and refined and finally be 
implemented in the system, manually or partially 
automated. [2] shows a prior model-based approach we 
investigated in the System Factory framework. 

6 Agent-Based Control Infrastructure 
The proposed control infrastructure is itself organized as a 
service-centric system built of special monitoring and 
control agent-services.  They may be aggregated and 
communicate with each other as any other services. This 
supports recursive control, as services may control other 
services and are being controlled by other services. 

To manage automatically a large number of services and 
servers in a changing distributed environment, the control 
system should be distributed as well. The main control 
functions, such as monitoring, decision-making, and 

control execution, are delegated to agent-services of the 
appropriate functionality and multiplicity. They may form 
hierarchical aggregations and may, in their turn, be 
controlled by higher-ordered control entities. This results 
in a distributed recursive schema of control.  Monitoring 
is also distributed among various levels of granularity, 
and control decisions are also decentralized. 

The agent- and service-based control  

- collects, monitors the information needed for 
control,correlates services’ demands  with current 
servers’ capacities at appropriate levels of 
granularity, and 

- uses smart algorithms to predict, optimize and decide 
about arrangements keeping systems in balance. 

7 Decision-Making 
We now focus on decision-making for managing the 
resource demand and supplied capacity. Optimal 
placement of services on servers is the primary factor for:  

- economic  utilization of the underlying resources, 

- preventing overloading servers or the communication 
infrastructure, 

- keeping resource utilization and response time in 
balance, and 

- high-availability and fault-tolerance. 

The biggest challenge is to find such algorithms that are 
both reactive and deliver high-quality solutions for the 
control scale we are dealing with. In practice, the 
responsiveness of an algorithm must be traded against the 
quality of a solution. Thus, responsiveness constitutes one 
parameter of the design space. Another parameter is the 
type of the control system, ranging from centralized to 
completely distributed. Since it is not realistic to find one 
algorithm, which can be parameterized in both 
dimensions, we look at several approaches covering most 
of the design space.  

One approach we pursue is a centralized heuristic 
algorithm based on integer programming. This algorithm 
yields high-quality solutions but at a cost of longer 
running time. For improved responsiveness, we explore 
agent-based and distributed algorithms described below. 
Such algorithms are composed of several simple parts, 
each potentially residing in a separate control service.  
They communicate with each other directly or indirectly 
in order to obtain an approximate solution. Each part has, 
in general, only partial knowledge of the whole system.  
This facilitates scalability of such approaches. 
Furthermore, failure of any of the parts does not make the 
overall algorithm fail. The work includes the design of a 



- 5 - 

hierarchical overlay control structure, which determines 
how the parts of the distributed algorithms are placed and 
how they communicate with one another. 

One agent-based approach is based on the “ant-based“ 
control [6], [7]. This fully distributed algorithm has 
medium responsiveness and can be used for periodical 
reassignments of services onto servers. 

As an alternative approach, we evaluate an agent system 
based on a paradigm known as Broadcast of Local 
Eligibility (BLE), used for coordination of robot teams 
[8]. This partially distributed algorithm allows faster 
rebalancing of the managed services for the price of a 
possibly lower-quality assignment. 

Optimization Objectives 

As discussed in the beginning of this section, the goals for 
optimal placement might vary in general. Therefore, the 
following algorithms are designed to be generic enough to 
support new objectives without fundamental changes. 
However, we focus on only few aspects to be achieved by 
the optimization. These are: 

1. Balancing the server load such that the utilization of 
each server is in a desired range. 

2. Placing services in such a way that communication 
demand among them does not exceed the capacity of 
the links between the hosting servers. 

3. Minimizing overall network traffic aiming to place 
services with high traffic among each other on nearby 
servers (nearby in the sense of low number of hops). 

Ant-Based Control Algorithm 

In the classical Ant Colony Optimization [6] the path 
taken by an ant on its way between objects (e.g. cities in 
the Traveling Salesman Problem) represents a possible 
solution to the optimization problem. In our case, the 
objects would be both servers and services, and the 
alternating path would represent an assignment of services 
to servers. However, this approach is centralized and not 
really scalable for the following reasons: 

1. The ant must “remember” the whole path it has taken; 
this information might become very large in the end. 

2. The ant must visit all objects on its tour. In a 
changing system, this could pose a serious drawback. 

3. Finally, each solution (path) must be evaluated 
against others. This requires central knowledge. 

Due to these reasons, we evaluate another approach 
resembling the ant-based control for network management 
described in [7]. 

In our system, for each service s to be placed on a new 
server due to an overload condition or a new service has 
arrived, an ant (“agent”) is created. This ant knows the 
requirement attributes of the service it represents, such as 
processing and storage requirements. It also carries a list 
of services cooperating with s, together with their 
communication requirement attributes. 

The ant then travels from one server to another choosing 
the servers along the path based on a probability 
computed as described below. The ant then finally makes 
a decision based on the knowledge it has accumulated on 
its travel on which server the service will be placed. 

On each server, the ant evaluates the score of the server in 
respect to s. This score expresses how well the currently 
visited server is suitable for the placement of s. Once 
evaluated, a data structure of the current server called 
multimark is updated with the score of s and with flags 
indicating services cooperating with s. The multimarks of 
the nearby servers are updated as well, both with the score 
for the placement of a cooperating service and with 
related flags for s.  

The score for a server in respect to s is computed by the 
following criteria: 

• How well the server meets the requirement attributes 
of s depending on its recent utilization history? 

• Can cooperating services be placed on nearby 
servers? 

• What is the amount of the weighted traffic between 
the current server and the servers potentially hosting 
the cooperating services? The weight factors here are 
the distances between all server pairs. 

Thus, the computed score represents fairly well the 
optimization objectives stated above. 

The choice of an ant which server to visit next is based on 
the current utilization of the considered server (the 
probability decreases with higher utilization) as well as on 
the value of the multimark for s (or for one of the 
cooperating services, if the multimark for the targeted 
server has no entry for s). Here, we use the fact that 
multimark records contain both the score of the ants, 
which visited this server as well as information of the ants 
corresponding to its cooperating services. 

The termination of the walk of an ant is determined by a 
parameter set upon its creation – the maximum number of 
servers to be visited. It gives us a partial control of the 
trade-off between responsiveness and the solution quality. 
Upon termination, the ant determines the server with the 
highest score from an internal (limited length) priority list. 
It then sends a message to the managing agent of this 
server with the suggestion to install s on it. 



- 6 - 

BLE-Based Control Algorithm 

We adapt the concept of the Broadcast of Local Eligibility 
used for coordination of robots [8] for the placement of 
services. This concept can be used to create highly fault-
tolerant and flexible frameworks for coordination of 
systems of agents. However, the originally proposed 
framework has a drawback of limited scalability. To 
overcome this problem, we use a hierarchical control 
structure discussed below. 

We consider a cluster of servers with a distinguished 
server called cluster head. Each member of the cluster has 
the ability to broadcast a message to all other members of 
the cluster. (This can be done either directly or via the 
cluster head). The placement of services in this cluster is 
periodically re-evaluated by arbitration between peer 
servers in so-called decision cycles. The time between 
two cycles is determined by the required responsiveness 
to fluctuations in server utilization and by the induced 
communication between cluster members. 

In each decision cycle, the following actions take place: 

1. Each server broadcasts the list of services it hosts 
with all new emerged services, and simultaneously 
collects a list of all services in the cluster. 

2. Each server evaluates its own suitability to host each 
service and sorts the list according to the computed 
score. The criteria are similar to those for the ant-
based control system. In addition, a service already 
running on a server highly increases the score. 

3. Each server broadcasts a list ordered by scores of 
those services the server can host simultaneously 
without exceeding its capacity.  

4. When a server receives a score list from a peer, it 
compares the score with its own score for a service. 
Each server now knows whether it is the most eligible 
one for hosting a particular service. 

5. The changes in the service placement are executed. 
Notice that each server knows already whether it has 
to install new or remove current services. In addition, 
the cluster head compares the initial list of the 
services with those, which will be hosted at the end of 
this decision cycle. The remaining services are passed 
on to the next hierarchy level as explained below. 

Obviously, the scalability of this approach is limited by 
the size of the cluster, the communication capacity in the 
cluster and the processing capacity of the cluster head.  

We propose a following hierarchical approach to extend 
the scalability. Basically, the cluster heads of the clusters 
at level k are treated as “normal” members of a cluster of 
level k+1. However, they compete only for services, 
which could not be installed in their own cluster (see 5. 

above). After a decision round in the cluster of level k+1, 
these pending services are possibly moved to another 
peer, which is a cluster head for a cluster of level k. (The 
cluster head evaluates the eligibility of the servers in its 
own cluster, not its own eligibility). In the cluster of level 
k, these services become part of the list of services to be 
installed and participate in the normal decision cycle. 

The cluster size is essential for the balance between the 
responsiveness of the system and flexibility. Identifying a 
correct hierarchical structure can be done similarly to 
clustering algorithms used in sensor networks [9].  

Decentralized control algorithms appear to be promising 
for decision-making in large-scale virtual data centers as 
part of their control systems. 

References 
[1] Kotov, V.: Towards Service-Centric System Organization, 

HP Labs Technical Report, HPL-2001-54, March 2001. 

[2] Graupner, S., Kotov, V., Trinks, H.: A Framework for 
Analyzing and Organizing Complex Systems, Proceedings 
of the 7th IEEE International Conference on Engineering 
of Complex Computer Systems (ICECCS 2001), pp. 155-
165, Skövde, Sweden, June 11-13, 2001. 

[3] Graupner, S., Kotov, V., Trinks., H.: Recursive 
Deployment of Management Agents in Planetary-scale 
Control Systems, HP Labs Technical Report, to be 
published in December 2001. 

[4] Kotov, V.: On Virtual Data Centers and Their Operating 
Environments, HP Labs Technical Report3, HPL-2001-44, 
March 2001. 

[5] Rolia, J., Singhal, S., Friedrich, R.: Adaptive Data 
Centers, Proceedings of SSGRR 2000 Computer and 
eBusiness Conference, L'Aquila, Italy, August 2000. 

[6] Dorigo, M., Maniezzo, V., Colorni, A.: The Ant System: 
Optimization by a Colony of Cooperating Agents. IEEE 
Transactions on Systems, Man, and Cybernetics-Part B, 
26(1):29-41, 1996. 

[7] Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, 
L.: Ants for Load Balancing in Telecommunications 
Networks, Adaptive Behavior 2:169-207, 1996. 

[8] �������� ��� ���� 	
�
��
�� 	��� From Insect to Internet: 
Situated Control for Networked Robot Teams, to appear in 
Annals of Mathematics and Artificial Intelligence, 2000. 

[9] Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next 
century challenges: Scalable coordination in sensor 
networks, Proceedings of MOBICOM, pp. 263-270, 
Seattle, USA, August 1999. 

[10] HP Utility Data Center, http://www.hp.com/go/hpudc, 
http://www.hp.com/go/always-on, November 2001. 

                                                           
3 HPL-TR are available: http://lib.hpl.hp.com/techpubs. 


