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Bi-stable tunneling current through a molecular quantum dot
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An exact solution is presented for tunneling through a negative-U degenerate molecular quantum
dot weakly coupled to electrical leads. The tunnel current exhibits hysteresis if the level degeneracy
of the negative-U dot is larger than two. Switching occurs in the voltage range V1 < V < V2 as a
result of attractive electron correlations in the molecule, which open up a new conducting channel
when the voltage is above the threshold bias voltage V2. Once this current has been established, the
extra channel remains open as the voltage is reduced down to the lower threshold voltage V1. Possible
realizations of bi-stable molecular quantum dots are fullerenes, especially C60, and mixed-valence
compounds.

PACS: 85.65.+h, 73.63.-b,73.63.Nm, 71.38.Mx

Molecular-scale electronics is currently a very active
area of research [1]. The present goals for this field are
to design and characterize molecules that could be the
“transmission lines” [2,3] and active elements in elec-
tronic circuitry [1,4]. The dominant mechanism of trans-
port through active devices will most likely be resonant
tunneling through electronic molecular states [4](see also
[5,6] and references therein). A few experimental stud-
ies [4,7] provide evidence for various molecular switching
effects, where the current-voltage (I-V) characteristics
show two branches with high and low current for the same
voltage. This remarkable phenomenon can result from a
conformational transformation of certain molecules con-
taining a ”moving part” like a bypyridinium ring, which
changes its position if the voltage is sufficiently high. The
transformation necessarily involves a large displacement
of many atoms so that this ionic switching is rather slow,
perhaps operating on a millisecond scale. Switching has
also been observed for simple molecules (organic molecu-
lar films), and in some cases is strongly dependent on the
choice of contacts and substrates [7]. Molecular devices
that exhibit bi-stability and fast switching could be the
basis of future oscillators, amplifiers and other impor-
tant circuit elements. Thus, further progress in molec-
ular electronics will depend upon finding molecules and
understanding intrinsic mechanisms for their reversible
switching from low- to high-current states.

In this Letter, we study a model quantum dot, which
exhibits an intrinsic electronic switching of the current
state due to attractive electron correlations. We show
that if the degeneracy is larger than two, the tunnel cur-
rent becomes bistable in some voltage range and the dot
exhibits a current hysteresis as a function of bias volt-
age. In the simplest case of a doubly degenerate level,
the bistability does not occur. We present the exact so-
lution of the model, allowing for a detailed analysis of
the current bistability.

Repulsive electron correlations cause the ”Coulomb

blockade” in the I-V characteristics of quantum dots [8].
However, they cannot cause any switching. Here, we
show that a negative Hubbard U of any origin can provide
an intrinsic non-retarded current switching of a molecu-
lar quantum dot. One mechanism that can produce a
negative U in molecular systems is a strong electron-
phonon (vibronic) interaction. If the tunneling time is
comparable to or larger than the characteristic phonon
times, a polaron is formed inside the molecular wire [9].
There is a wide range of bulk molecular conductors with
polaronic carriers. Since the formation of polarons in
polyacetylene (PA) was theoretically discussed [10], they
were detected optically in PA [11], in conjugated poly-
mers such as polyphenylene, polypyrrole, polythiophene,
polyphenylene sulfide [12], Cs-doped biphenyl [13], n-
doped bithiophene [14], polyphenylenevinylene(PPV)-
based light emitting diodes [15], and other molecular
systems. In contrast to bare electrons, polarons attract
each other at short distances of the order of the inter-
atomic spacing and form small bipolarons [16]. Bipo-
laron formation can strongly affect the transport prop-
erties of long molecular wires, as discussed recently [17].
When bipolarons are not formed in molecular quantum
dots because of the short life-time of the carrier inside
the molecule, the attractive correlations between carri-
ers still remain. Moreover, attractive short-range corre-
lations (negative Hubbard U) are feasible even without
electron-phonon interactions. For example, they might
be of a pure “chemical” origin, as in the mixed valence
compounds [18].

Our starting point is the tunnelling Hamiltonian,
which includes a negative Hubbard U in the molecular
eigenstate εµ coupled with the left and right leads by
the hopping integrals tαkµ

H =
∑

µ

εµ n̂µ +
1

2
U
∑

µ 6=µ′
n̂µ n̂µ′ +

∑

k,α

ξαka
†
αkaαk + (1)
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∑

k,µ,α

(tαkµa
†
αkcµ + H.c.).

Here aαk and cµ are the annihilation operators in the left
(α = 1) and right (α = 2) leads, and in the molecule,
respectively, n̂µ = c†µcµ, ξαk is the energy dispersion in
the leads, and U < 0. The current through the molecular
quantum dot is conveniently expressed in terms of the
molecular density of states (DOS) ρµ(ω) as [8]

I = e

∫ ∞

−∞
dω [f1(ω) − f2(ω)]

∑

µ

Γ
µ
(ω)ρµ(ω), (2)

where f1,2(ω) = {exp[(ω + ∆ ∓ eV/2)/T ] + 1}−1,
∆ is the position of the lowest unoccupied molec-
ular level with respect to the chemical potential,
Γµ(ω) = Γ1µ(ω)Γ2µ(ω)/[Γ1µ(ω))+Γ2µ(ω)], and Γαµ(ω) =
2π
∑

k t
2
αkµδ(ω−ξαk).Molecular DOS is given by ρµ(ω) =

−(1/π) ImG
(1)
µ (ω), where G

(r)
µ (ω) is the Fourier trans-

form of the r-particle retarded Green’s function (GF)
defined as

G(r)
µ (t) = −iΘ(t)

∑

µ1 6=µ2 6=...µ

〈{
cµ(t)

r−1∏

i=1

n̂µi(t), c
†
µ

}〉

(3)

for r ≥ 2 and G
(1)
µ (t) = −iΘ(t)

〈{
cµ(t), c†µ

}〉
. Here {}

is the anticommutator, and Θ(t) = 1 for t > 0 and zero
otherwise. In the following, we apply perturbation the-
ory with respect to the hopping integrals, neglecting any
contribution to the current other than t2, but keeping all
orders of the negative Hubbard U. Terms of higher order
in t cannot change the gross I-V features for any voltage
except the narrow transition regime from one branch to
another. Then, applying the equations of motion for the
Heisenberg operators cµ(t), n̂µ(t) and aαk(t) we obtain a
finite set of coupled equations for the molecular GFs as

i
dG

(r)
µ (t)

dt
= δ(t)

∑

µ1 6=µ2 6=...µ

r−1∏

i=1

nµi(0) +

[ε
µ

+ (r − 1)U ]G(r)
µ (t) + UG(r+1)

µ (t), (4)

where nµ(t) =
〈
c†µ(t)cµ(t)

〉
is the expectation number

of electrons on the conducting molecular level. For the
sake of analytical transparency we solve this system for a
molecule having one d-fold degenerate energy level with
εµ = 0. Fourier transforming the set Eq.(4) we find the
one-particle GF as

G(1)
µ (ω) =

d−1∑

r=0

Zr(n)

ω − rU + iδ
, (5)

where δ = +0, n = nµ(0), and

Zr(n) =
(d− 1)!

r!(d− 1− r)!n
r(1 − n)d−1−r .

This is the exact solution with respect to correlations,
which satisfies all sum rules. The electron density nµ(t)
obeys the rate equation, which is obtained by using the
equations of motion as

dnµ(t)

dt
= 2

∑

α,k

tαkµ ImA
(1)
αkµ(t), (6)

where

A
(r)
αkµ(t) =

∑

µ1 6=µ2 6=...µ

〈
c†µ(t)

r−1∏

i=1

n̂µi(t)aαk(t)

〉
. (7)

These correlation functions should be calculated to first
order with respect to the hopping integrals t. In this
order, they satisfy the finite set of coupled equations

i
dA

(r)
αkµ(t)

dt
= tαkµ[nµ(t)− f(ξαk)]

∑

µ2 6=...µ

r−1∏

i=1

nµi(t) +

UA
(r+1)
αkµ (t) + [ξαk − (r − 1)U ]A

(r)
αkµ(t). (8)

One readily solves this set in the stationary case, when

nµi(t) and A
(r)
αkµ(t) become time-independent. For a d-

fold degenerate energy level, the one-particle correlation
function is found as

A
(1)
αkµ = [n− f(ξαk)]tαkµ

d−1∑

r=0

Zr(n)

ξαk − rU + iδ
. (9)

Substituting Eq.(9) into Eq.(6), we obtain the stationary
rate equation for the electron density on the molecule as

∑

α

d−1∑

r=0

Γα(rU)[n− fα(rU)]Zr(n) = 0. (10)

Here we assume that Γαµ(ω) = Γα(ω) does not depend
on µ, otherwise the degeneracy would be removed. To
simplify the mathematics further, we now assume that
Γα(ω) = Γ is a constant. Then applying Eq.(2) and
Eq.(5) the current is found as

j =

d−1∑

r=0

[f1(rU)− f2(rU)]Zr(n), (11)

where j = I/I0 with I0 = edΓ/2. Let us consider two-
fold, four-fold, and six-fold degenerate molecular level.
For d = 2 the kinetic equation is linear in n, and there is
only one solution,

n =

∑
α fα(0)

2 +
∑

α[fα(0)− fα(U)]
. (12)

The current through a two-fold degenerate molecular dot
is found as

j = 2
f1(0)[1− f2(U)]− f2(0)[1− f1(U)]

2 +
∑
α[fα(0)− fα(U)]

. (13)
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There is no current bistability in this case. Moreover,
if the temperature is low (T � ∆, |U |) there is prac-
tically no effect of correlations on the current, j ≈
VΘ(e|V |−2∆)/|V |. Remarkably, four-fold or higher- de-
generate negative U dots reveal a switching effect. In
this case, the kinetic equation is nonlinear, allowing for
a few solutions. If eV < 2(∆ − |U |), the only physically
allowed solution of Eq.(10) for d = 4 and d = 6 at zero
temperature is n = 0. If 2(∆ − |U |) < eV < 2∆, and
T = 0, the kinetic equation is reduced to

2n = 1− (1− n)d−1. (14)

For d = 4 it has two physical roots, n = 0 and n = (3 −
51/2)/2 ≈ 0.38. In this voltage range f1(0) = f2(rU) = 0,
but f1(U) = f1(2U) = f1(3U) = 1 at T = 0. Using the

sum rule
∑d−1

r=0 Zr(n) = 1 and the kinetic equation (10),
the current is simplified in this voltage range as j = 2n.
Hence we obtain two stationary states of the molecule
with low (zero at T = 0) and high current, I ≈ 0.76I0 for
the same voltage in the range 2(∆−|U |) < eV < 2∆. For
d = 6, the kinetic equation has two physical roots in this
voltage range, n = 0 and n ≈ 0.48, which corresponds to
I = 0 and I ≈ 0.96I0, respectively. Above the standard
threshold, eV > 2∆, where f1(rU) = 1 and f2(rU) = 0
there is only one solution, n = 0.5 with the current I =
I0.

One can better understand the origin of the switching
phenomenon by taking the limit d >> 1. The physical
roots to Eq.(14) are n = 0 and n = 0.5 in this limit
with the current I = 0 and I = I0, respectively. This
is precisely the solution of the problem in the mean-
field approximation (MFA), which is a reasonable ap-
proximation for d � 1. Indeed, using MFA one re-
places the exact two-body interaction in the Hamilto-
nian for a mean-field potential as 1

2
U
∑

µ 6=µ′ n̂µ n̂µ′ ≈
U
∑

µ 6=µ′ n̂µnµ′ −
1
2
U
∑

µ 6=µ′ nµnµ′ . Then the MFA DOS

is given by ρµ(ω) = δ[ω − U(d − 1)n]. Using the Fermi-
Dirac Golden rule the rate equation for n becomes

dn

dt
= −2Γn+ Γ

∑

α

fα[nU(d− 1)]. (15)

For T = 0 there are two stationary solutions of Eq.(15),
n = 0 and n = 0.5 in the voltage range 2(∆ − |Ũ |) <
eV < 2∆, and only one solution, n = 0.5 for eV > 2∆,
where Ũ = U(d− 1)/2. The MFA current is found as

j = f1(2nŨ)− f2(2nŨ). (16)

Combining this equation and the rate equation (15) with
dn/dt = 0 , we obtain the I-V characteristic equation as

|Ũ |
∆

(1−R) = 1− T

∆
×

ln

[
(1 + R) sinh (eV/2T )

j
− cosh (eV/2T )

]

0.0 1.0 2.0
eV/∆

0.0

0.2

0.4

0.6

0.8

1.0

I/I
0

V1 V2
T/∆=0.2

T/∆=0.05

FIG. 1. The current-voltage hysteresis loop in the degen-
erate negative-U model of a molecular quantum dot for two
temperatures.

where

R =

{
[1− j coth(eV/2T )]

1/2 − j2

sinh2(eV/2T )

}1/2

.

(17)

The I/V curves are shown in Fig.1 for different temper-
atures and |Ũ | = 0.9∆. Interestingly, the temperature
narrows the voltage range of the hysteresis loop, but the
transition from the low (high)-current branch to the high
(low)-current branch remains discontinuous.

Let us examine the stability of each branch in the
framework of the MFA rate equation (15). Introduc-
ing small fluctuations of the electron density as n(t) =
n+ δn exp(γt) and linearizing Eq.(15) with respect to δn
we find the increment γ,

γ = −2Γ +
|Ũ |Γ
2T

cosh−2

(
∆− 2n|Ũ | − eV/2

2T

)

+
|Ũ |Γ
2T

cosh−2

(
∆− 2n|Ũ |+ eV/2

2T

)
. (18)

One can see from this equation that at temperatures T �
|Ũ | the low-current branch (n = 0) looses its stability at
the threshold V2 = 2∆/e, while the high-current branch
looses its stability at V1 = 2 (∆− |Ũ |)/e. In the voltage
range V1 < V < V2 both branches are stable, γ ≈ −2Γ <
0.

Finally, let us analyze the effect of a splitting of the
degenerate molecular level on the bi-stability. The de-
generacy could be removed because of Jahn-Teller dis-
tortions and/or the coupling with the leads. We assume
that d � 1 levels are evenly distributed in a band of a
width W . Then the MFA rate equation (15) is modified
as
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dnµ
dt

= −2Γnµ + Γ
∑

α

fα(εµ + NU), (19)

where N =
∑

µ′ nµ′ . For T = 0 in the stationary regime
(dnµ/dt = 0) it has two solutions, N = 0 and N = d/2,
in the voltage range V1 + W < V < V2 with the current
j = 0 and j = 1, respectively. We conclude that the level
splitting W < |U | leads to a narrowing of the voltage
range of the bi-stability similar to the temperature nar-
rowing shown in Fig.1. A parameter-free estimate of the
negative Hubbard U in some oxides yields |U | about a
few tens of eV [19]. We expect a negative U of the same
order of magnitude in carbon-based compounds. Among
potential candidates for the negative U quantum dot are
a single C60 molecule (d = 6), where the electron-vibronic
coupling proved to be particularly strong [20], or other
fullerenes including short nanotubes (d � 1) connected
to metal electrodes. Other likely candidates are mixed-
valence molecular complexes [18]. There should be no
retardation of the switching on the time scale above the
inverse vibron (phonon) frequency, which is 10−14s or
less in carbon-based compounds.

In conclusion, we have introduced and solved a model
for tunneling through a negative-U degenerate molecu-
lar dot weakly coupled to electrical leads. The exact
many-particle Green’s functions of a d−fold degenerate
molecular level, the density of states and the nonlinear
rate equation for the electron density on the molecule
have been derived. We have found the exact solutions
for the carrier population in the dot and the current for
d = 2, 4, 6, and d � 1. The current-voltage character-
istics show a hysteretic behavior for d > 2 over a finite
voltage range. When the voltage increases from zero, the
molecule remains in a low-current state until the thresh-
old V2 is reached. Remarkably, when the voltage de-
creases from the value above the threshold 2∆/e, the
molecule remains in the high-current state down to the
voltage V1 =(2∆ − |U |)/e, well below the threshold V2.
This mechanism for electronic molecular switching with-
out retardation requires many-particle attractive correla-
tions, which can arise from strong electron-vibronic cou-
pling and/or mixed valence states. Experimental verifi-
cation of such bi-stable systems will require careful col-
lection and analysis of both forward and reverse volt-
age sweeps of the tunneling current through candidate
molecules. The forward voltage sweep by itself will re-
semble a standard Coulomb blockade I-V characteristic
with a turn-on voltage of V2, whereas the reverse sweep
should reveal hysteresis.
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