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Abstract— as MPEG-coded video or VBR video, applying ABC has been
This paper proposes an adaptive bandwidth control algorithm  shown to satisfactorily improve the network utilization. How-
that efficiently provides aggregate loss guarantee to resolve the ever, the resulting performance is difficult to quantify and con-

problem of inefficient bandwidth allocation due to incomplete, in- trol. and one m nd verallocating the bandwidth
accurate traffic descriptors supplied by users. Because the control 0f, and on€ may end up overallocating the :

attempts to allocate the bandwidth only just enough to meet the ~ We develop an ABC algorithm based on fuzzy control to
QoS requirement, the amount of bandwidth saving compared to maintain the aggregate loss QoS. Our proposed ABC algorithm
static allocation can be substantial. Another distinct advantage of belongs to the class of feedback control algorithms. As men-
our control algorithm is that no a priori information on the traffic tioned before, the measured packet loss can be very inaccurate

characteristics of the aggregate is required. From the simulation . o
study, the proposed control can maintain the packet loss QoS while and thus is a poor feedback parameter. On the contrary, a statis

attaining very high utilization, and is robust against different sys- tic such as the average queue length has a much Sm_aller vari-
tem configurations. ance and can be measured more accurately in a short time scale.

Moreover, the increase in the average queue length necessarily
implies higher loss, and vice versa. We therefore convert the
target loss requirement to the target average queue length and
I. INTRODUCTION use it as the control objective. We will demonstrate that adjust-

Recently, aggregate traffic management and control is udag the service rate to maintain the average queue Iength. be-
to address the scalability issue in per-flow traffic treatmerf/€€n two queue thresholds can keep the packet loss relatively
This in turn raises another issue of how to guarantee stati§@nstant. A unique aspect of our approach is that unlike any of
cal QoS in an aggregate level for high utilization. Static banéle Previous work, the short term loss is steadily maintained at
width allocation (see e.g., [1], [2], [3]) is inefficient because the t_arget level even in the face (_)f dynam|c non-s_tanonar_y input
assumes some specific stochastic model on the underlying tiEgfic. Further, the control algorithm is computationally simple
fic as well as accurate traffic parameter values. Such detaiféf! requires only measuring only the long term average arrival
information is unavailable because most of the time the inp@€: @nd the average queue length statistic. Such simplicity al-
aggregate traffic can only be specified roughly in terms of tHaVs efficientimplementation at very high-speed.
average rate or peak rate due to its unpredictable nature. The remainder of this paper is organized as follows. In

The motivation for this research is the need to guarantbl§ Next section, we present a fuzzy controller to maintain the
the aggregate QoS under unknown input traffic characterizatiRfcket loss steadily in a single queue, followed by a descrip-
while being able to attain high link utilization. This researcHon of the performance metrics illl. The performance of
proposes to use Adaptive Bandwidth Control (ABC) on a petlhe proposed controller is eyalu.ated'§|h/ on non-stationary
hop basis to deliver the aggregate loss guarantee. The corl?Bf range dependence traffic with different control parameters
essentially involves the bandwidth adaptation over time to dQ-demonstrate its robustness. The conclusion will be provided

sure that the allocated bandwidth is just enough to maintain RSV
specified loss requirement. As such, less bandwidth will be
wasted due to overallocation. Il. Fuzzy CONTROLLER
Most existing work in ABC for loss guarantee so far has In this section, we describe a fuzzy controller that maintains
many shortcomings and there is room for improvement. Tho$e average queue length in a single finite buffer queue. For a
based on the feedback control directly measure the packet losatrol system that cannot be adequately described by detailed
or delay to adjust the service rate [4], [5]. The major issue mathematical equations, fuzzy control is a convenient way to
using feedback control is that they may fail to adapt in casgnthesize a non-linear controller whose control law are heuris-
of non-stationary or highly dynamic traffic conditions becausially derived through insight of the process under control. As
the time period needed to acquire accurate loss statistic is ttated earlier, we attempt to maintdjn, between some queue
long. Another approach for ABC is based on traffic predithresholds to achieve the loss requirement. This raises the prob-
tion which allocates bandwidth to match the predicted arrividm of how to derive the queue thresholds from the loss require-
rate, and hence results in negligible loss (see e.g., [6], [7], [Blent. As of the current stage of this work, we manually tune
[9]). For traffic with widely varying bit rate over time suchthe thresholds to get the desired target loss. A more sophisi-
cated mapping scheme will be left for further research.
o70qhs tesearch is supported in part by the NSF CAREER award No. ANI- iy essence, a fuzzy controller consists of fuzzification, in-
tTelecommunication Program, University of Pittsburgh ference, and defuzzification steps. In the fuzzification step, a
fHewlett-Packard Laboratories measured feedback value (called crisp input) is converted into
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linguistic values (such aw or high), each of which repre- Ef’n:l Gg”)(Qk) = 1,YQ, € [0, K] whereK is the buffer
sented by a fuzzy set. Each fuzzy set s associated with a m&Pa in packets. Note that a single value@f can take on
bership function used to characterize how certain the crisp in-
put belongs to the set. For a given crisp input, the membership
function returns a real number @, 1]. The closer the member- (low) (medium) (high)
ship function value is to 1, the more certain the input belongsto c¥) G¥? G%
the set (e.g., morlw or lesshigh). A single crisp input value
can take on more than one linguistic value if the domains of
membership functions overlap as will be seen later. In the in-
ference step, a set of rules callede-base which emulates the 0

decision-making process of a human expert, is applied to the lin b Uin Qr
linguistic values of the inputs to infer the output (fuzzy) set;_.

. . Fig. 1. Membership functions for th@;,
Th re then defuzzifi he cri whi o . .
ese outputs are then defuzzified to the crisp output z?ore than one linguistic value. For instancdif, +up)/2 <

represents the actual control signal for the process. We refer A . . L
the reader to [10] for more complete background informatiop® < "t Q can be botimedium andhigh but with different
on the fuzzy control. egrees of certainty indicated by the outputs of the membership

The rest of this section describes the fuzzification, inferenég,nsc.t'qrsi for AO.. its linquisti lues A™ B
and defuzzication steps of our controller. Let us first define imifarly tor, thH '.JFS llngUIftIC vajues |2 ,md -
the notation. A measurement period for the next control acti h?’ 3’4’_5’ are.(|) igh, (i) B oW, ("'? Zer?n'l)('v) *low, an (\_/)
(i.e., bandwidth adjustment) is denotég, which corresponds *+high, with their membership functions , (AQ) shown in
to the control time scale. Thth time instant, denoted by, Fig. 2. As before, t[]e membersAhlp functions are defined such
refers to real time;, = k7,, and thekth interval refers to a time thaty"> _, G (AQy) = 1,YAQ; € R. Here, the member-
period starting front,_; to ;. Let Q be the average queue
length in packets (including the one in service)sagn by the
arrivals measured over thith interval.

Two state feedback parameters are used as the inputs to the
fuzzy controller, which then computes the bandwidth to be allo-
cated to serve the queue. The first feedback is the Exponential
Weighted Moving Average (EWMA) of);,, denoted byQ;, —ds —dy 0 & d A0«
which is given by

-high o (zerp) o (+high)
St o : (Hisw e
A

Fig. 2. Membership functions for thaQ;,
Qn = Qi+ (1 —a)Qp_1 (1) ship functions ofAQ;, have two tunable parametersd; and

ds. In this paper, these two parameters are respectively set to
The EWMA operation acts as a low-pass filter@pto smooth 0.4 and 0.8. We show later that fairly good control results are
out noise in measurement. The other feedback parameter isgb&ined without any further tuning of the membership func-
normalized change in the EWMA queue length@Q);,), given tions.
by
_ @k — Qi (2) B. Inference and Defuzzification
) ) o After the crisp inputs are mapped to the linguistic values
Let Cj.+1 denote the allocated bandwidth during the time intefrrogh the membership functions in the fuzzification step, in-
val (tx, tr+1]. Based onQy, andAQy, C41 is determined at ference rules are applied to determine the output by using a

ty, k =1,2,..., and remains constant duritg., ¢4 1]. rule-base. The rule-base is a set of rules that emulates the
decision-making process of the human expert controlling the
A. Fuzzification system. The rule is written in the form

Fuzzification is the process of translating crisp inputs for IF premis€THEN consequent/action
each input variablé into linguistic values. We defin&/; lin- wherepremiseis a combination of input linguistic values and
guistic vaIues4§m), m=1,2,..., N; as well as their member- consequents an action to be taken. Because there are three
ship functions. Fof)y,, its linguistic valuesAgm),m —1,2,3, linguistic values forQ,. and five forAQ;, the total number of

are (i) low, (i) medium, and (iii) high, with the correspond- fules is 15. If the premise is true, we call the rule as being
ing membership function@é)m)(é)k) shown in Fig. 1. Besides active In our case, the rule-base is in a form called functional

a triangular shape, many other choices for the shape of {Hézy system wAhere efliCh ru]esAwntten down as:
membership functions also exist, including trapezoidal, Gaus- Rulei: IF Qy is AP andAQy is A, )

sian, and etc. However, the triangular shape is a standard THEN b; = Gg)(Qk) * GX”)(AQk) * @T;

choice used in most industry applications due to its simplgherez; is the service rate adjustment associated with iule
expression. The membership functions are defined such thsta resultp; is the change in the service rate if rdlis active,



with the termGg;(-) * Gan(-) being the weight. The valuessystem operating period of lengih we define the loss perfor-
of the z;’s are established based on insights of the queue lbeance index as

havior. For example, if); is low and AQy, is zero, thenz; o T
should be some small negative number in order to decrease the =7 Z €ks 3)
service rate and hence would likely incre@gg, ;. Intuitively, k=1

; should be related to the long-term average rate of the inryy}aich captures the short term loss behavior. The coefficient of
traffic, which can be easily obtained from on-line measuremeM@riation (C.0.V),Var(e;) /¢, will also be used to indicate the
Their values selected for use in the simulation study are taplyctuation of the short term loss.

lated in Table | as the percentage of the long-term input rate.

In generalxz;’s can be made adaptive but they are fixed at this IV. EXPERIMENTAL RESULTS

stage of the work. Oncg;’s have been determined from the In this section, we study performance of the fuzzy con-
inference step, the defuzzification is performed to obfajn, troller on Long Range Dependence (LRD) aggregate traffic
by usingCj+1 = Cj + 2321 b;. constructing from a number of identical Pareto on-off flows.
To model a highly dynamic condition, we make the aggregate
non-stationary in the sense that flows in the aggregate arrive and

A . AQk - depart over time. The Pareto on-off source alternates between
Qrk -high ‘ -low ‘ zero ‘ +low ‘ +high .

on and off states. During the on state, packets are generated
low -10% | -5% | -2.5% 0 0
ediom T 2% 1% 0T 1% % at a constant rat& packets/second and the number of gener-
high 1% 1 1% 2% | 5% | 10% ated packets has a Pareto distribution with mEBauring the

off state, the source stays idle for a Pareto distributed length

TABLE |

of time. The mean off periods used is 2 seconds. The shape

parameter4) of 1.5 for the Pareto distribution is used. An ag-

gregate of such Pareto on-off sources contributes LRD traffic
We have not attempted to tune our fuzzy controller to previth the Hurst parametell = (3 — ~v)/2 [12]. The values

vide optimal performance because this appears to be very dif= 192 and R = 160 are used, corresponding to the source

ficult due to the many degrees of freedom associated with theerage rate of 60 packets/sec. The packet size is exponentially

membership functions, rule-base, and the parameters therdgstributed with mean 53 bytes. The source arrival process in

However, as we show later, any further tuning beyond the lthe connection level is Poisson with rate 2 per second and has

sic intuitive ideas is not necessary and the fuzzy controller peam exponential holding time of 100 seconds. This is equivalent

forms well. Tuning the fuzzy controller to provide optimal perto 200 active sources inside the aggregate on the average, and

formance will be the subject of future research. the long-term aggregate average rate of 12,000 packets/sec.
We considemp,ss = 1073, the buffer size X) of 30 and

1024. The controller has three adjustable parameters — the

EWMA weight «, the control time scal€’,,, and the thresh-

old pairly,,us,. The performance will be evaluated undeof
Primary performance metrics considered are the bandwigfh gnq 0.3, and}, of 0.5, 1, and 5 seconds. From a rough off-

utilization and the average short term packet loss. The utilizgye tuning, we found that a threshold paix = 10% andi;, =

tion is simply a fraction of the server busy period determineggos of the buffer size approximately yields the desipgg, at

over a given operating period of the system. For the loss pgf-— 30. To provide comparative evaluation, we compare our

formance index, we consider the time-average of the short tefgats to optimal static allocation and Equivalent Bandwidth
packet loss. Here we define the short-term loss as the Qa®) aliocation.

evaluated from the minimum number of observatioiy e-

VALUES OF z; FOR RULE-BASE (AS A FRACTION OF THE LONG TERM
AVERAGE RATE)

Ill. PERFORMANCEMETRICS

« Inthe optimal static allocation, we determine by trial-and-

quired to obtain-% relative precision on thed0(1 — )% con-

fidence interval of the target loss probabilip ). In particu-

lar, N > Zl_a/QW, wherez; _ /» is the(1 — a/2)-
100 Ploss

quantile of a unit normal variate [11, p.217]. g = 1073,

r = 5%, and95% confidence interval)N is 2.17 x 10¢ pack-

ets. The relative precision 6% at95% confidence interval is

used in our simulation study presented next. Then the approx-

imated measurement period/( for the short term loss ié},
where) is the long-term average packet arrival rate. ¢etle-
note the short term loss observed over the pHsseconds at
the loss measurement time instagpt.e., (max(0, tx — W), t1].
Assuming that the measurement instants also movg, bgec-

error through simulation the (approximated) optimal, i.e.,
smallest amount of static bandwidth required to attain the
cumulative lossat the givenp,.ss. Such optimal value is
infeasible to obtain in practice and is given here as a best
case scenario.

For the EB allocation, we use the EB formula for LRD
traffic presented in [13], in which case the bandwidth is
reallocated based on the EB formula at every flow arrival
and departure instants. Note also that the use of EB allo-
cation is a hypothetical scenario where the flow arrival and
departure process within the aggregate is assumed known.

In either cases, if the fuzzy control can achieve more or less the

onds. That is, we measure the loss over moving windows sgme amount of allocated bandwidth, it is considered superior
length W that are shifted byl},, at the time. Then, for the in that no knowledge of traffic characteristics is required.
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Fig. 3. Fuzzy control K = 30, T5, = 1 secondy = 0.1) Fig. 4. Optimal static allocationf{ = 30)

Fig. 3 and 4 show the sample paths of the short-term loss
andQ;, averaged across five runs for the proposed fuzzy con-
trol and the optimal static allocation @, = 1 second. We higher utilization
found that the average allocated bandwidth from the fuzzy cond '
trol are less than 1% different from the optimal value for every ; . . .
; . . We can infer some properties of our algorithm from the simu-
T,, anda used. With the static allocation, however, the short,. i . . )
T : . f(atlon results shown in Table Il. First, at a given buffer size, the
term loss cannot be maintained steadily as shown in the f

ure. This can be undesirable because the variation in short teme]zrage of short term loss s robust over a wide range,obut

o -Its variation is not. In particular, higher variation (C.0.V) in the
loss can adversely affect QoS-sensitive transport of real'm&'?ort term loss is observed @5, increases, which is intuitive

traffic [14]. In addition, this kind of optimal bandwidth allo_lz)i(tacause the bandwidth is adjusted too slow. Using sniler

cation is impossible to determine in real-time. Note also the ables finer control and hence better performance. However
the behavior of the average queue length and packet loss arefhae"choice off,, is not easily chosen because too srijiwil '
m

rectly related. By increasing to 1024, the fuzzy control still lead to bandwidth thrashing whereby the effect of bandwidth
performs relatively well in maintaining the average length an ; :
: .~ 'changes has not reflected in the average queue length perfor
hence the shortterm loss (Fig. 5) even though the resulting Ion?gnce This implies that there should be some optimal value of
is somewhat higher than the desired value. This deviation can )

be addressed by tuning the thresholds to the right values, whléﬁ.to use. Nevertheless, t.he results indicate that our control al-
: ) gorithm still performs relatively well across a wide range of the
is our ongoing research work.

ﬁ;)ntrol time scale. Second, for a given target packet loss, the

Table Il provides the performance comparisons amaong t ffesholds does notincrease linearly with the buffer size. In this

fuzzy control, optimal static allocation, and EB allocation — _ . .
different buffer sizes and control parameters. All the numt?ﬁ?se’lm = 10% andu;, = 18% of the buffer size ) yields
0

shown are averaged from five runs and the short-term pac, g{desired loss at’ = 30 but noti” = 1024 packets. This calls
9 PacKGta more sophisicated mapping between the loss requirement

loss as well as the utilization have the relative precision of Iegﬁd the queue thresholds. Finallv. the control performance ap-
than 5% at 95% confidence intertalln every cases, the EB e?rs ingensitive o the EWMA W)gight By increpasinggé the p

method overallocates the bandwidth and results in zero pa . . .
loss. Compared to the EB allocation, the fuzzy control intro—ev,vIA queue length will change more rapidly, which should

X . provide the controller more faster response to traffic dynam-
duces the bandwidth saving arousibs, as seen from much;.o However, the results indicate no obvious difference for dif-

*Except in case of static optimal allocationZdt= 1024, which requires 20 feren_t values ofy, which facilitates the parameter selection in
runs. practice.




1000

EWMA Queue Length (Qk)
w 58 0 9 N @ ©
g &8 & 8 3 8 8
=] S (=] i<} (=} =] =}

N
o
S

i
o
S

T
- - Cumulative loss
—— Short term loss
R 0 e e i

o

L L L 5
4000 6000 8000 10000 0
Time (s)

(a) Average Queue Length

2000

o

Fig. 5. Fuzzy controlK = 1024, T,, = 1 secondpx = 0.1)

4000 6000 8000

Time (s)

(b) Loss

2000 10000

Fuzzy Control Optimal Static EB
Parameters Avg.Loss €) | Var(ex)/é [ Ut Avg.Loss €) [ Var(e)/é ] Util. Util.
Tn,=05] a=0.1 0.84¢-3 0.43 0.812
a=0.3 0.70Ce-3 0.43 0.814
K =30 Tn=1 | =01 0.7%-3 0.47 0.812 1.04¢-3 2.00 0.796 || 0.380
a=0.3 0.68-3 0.48 0.813
T.=5 | =01 0.86e-3 0.82 0.808
a=0.3 0.68-3 0.56 0.812
T,=05] a=0.1 3.6%-3 0.40 0.860
a=0.3 2.4%-3 0.44 0.895
K=1024| T,,=1 | a=0.1 3.66-3 0.45 0.877 1.1C-3 3.61 0.862 || 0.488
a=0.3 3.7%-3 0.44 0.903
Tn=5 | a=0.1 3.66-3 0.73 0.899
a=0.3 5.3%-3 0.60 0.904
TABLE Il

PERFORMANCE COMPARISONS OF FUZZY CONTROL WITH OPTIMAL STATIC ALLOCATION AND EQUIVALENT BANDWIDTH

V. CONCLUSION [3]

We address the problem of bandwidth allocation to guaran-
tee the aggregate loss QoS by using adaptive bandwidth camt
trol. The control adapts the allocated bandwidth such that trlg]
loss QoS is maintained while being able to achieve high ut
lization. A major appealing aspect of the control is that it
does not require the knowledge of traffic characteristics. Wf%]
develop a simple fuzzy logic controller and evaluate its per-
formance under a highly dynamic traffic condition. The pro-
posed control allocates the bandwidth that is slightly lower thal{!
the optimal static allocation and introduces significant amount
of bandwidth saving compared to equivalent bandwidth allo]
cation. Further, the controller is shown to be robust against
different control parameters, rendering it tolerant to suboptimad)
parameter selections. We are aware that our preliminary results
with only one traffic type may not be used to generalize the cqfg
troller performance, and hence we plan to experiment on otlii
different kinds of traffic mixes in the aggregate and real traff'[(f |
traces. In addition, two major issues of control time scale ané
the queue thresholds selection require further investigation.

(13]
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