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Abstract—
This paper proposes an adaptive bandwidth control algorithm

that efficiently provides aggregate loss guarantee to resolve the
problem of inefficient bandwidth allocation due to incomplete, in-
accurate traffic descriptors supplied by users. Because the control
attempts to allocate the bandwidth only just enough to meet the
QoS requirement, the amount of bandwidth saving compared to
static allocation can be substantial. Another distinct advantage of
our control algorithm is that no a priori information on the traffic
characteristics of the aggregate is required. From the simulation
study, the proposed control can maintain the packet loss QoS while
attaining very high utilization, and is robust against different sys-
tem configurations.
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I. I NTRODUCTION

Recently, aggregate traffic management and control is used
to address the scalability issue in per-flow traffic treatment.
This in turn raises another issue of how to guarantee statisti-
cal QoS in an aggregate level for high utilization. Static band-
width allocation (see e.g., [1], [2], [3]) is inefficient because it
assumes some specific stochastic model on the underlying traf-
fic as well as accurate traffic parameter values. Such detailed
information is unavailable because most of the time the input
aggregate traffic can only be specified roughly in terms of the
average rate or peak rate due to its unpredictable nature.

The motivation for this research is the need to guarantee
the aggregate QoS under unknown input traffic characterization
while being able to attain high link utilization. This research
proposes to use Adaptive Bandwidth Control (ABC) on a per-
hop basis to deliver the aggregate loss guarantee. The control
essentially involves the bandwidth adaptation over time to en-
sure that the allocated bandwidth is just enough to maintain the
specified loss requirement. As such, less bandwidth will be
wasted due to overallocation.

Most existing work in ABC for loss guarantee so far has
many shortcomings and there is room for improvement. Those
based on the feedback control directly measure the packet loss
or delay to adjust the service rate [4], [5]. The major issue in
using feedback control is that they may fail to adapt in case
of non-stationary or highly dynamic traffic conditions because
the time period needed to acquire accurate loss statistic is too
long. Another approach for ABC is based on traffic predic-
tion which allocates bandwidth to match the predicted arrival
rate, and hence results in negligible loss (see e.g., [6], [7], [8],
[9]). For traffic with widely varying bit rate over time such
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as MPEG-coded video or VBR video, applying ABC has been
shown to satisfactorily improve the network utilization. How-
ever, the resulting performance is difficult to quantify and con-
trol, and one may end up overallocating the bandwidth.

We develop an ABC algorithm based on fuzzy control to
maintain the aggregate loss QoS. Our proposed ABC algorithm
belongs to the class of feedback control algorithms. As men-
tioned before, the measured packet loss can be very inaccurate
and thus is a poor feedback parameter. On the contrary, a statis-
tic such as the average queue length has a much smaller vari-
ance and can be measured more accurately in a short time scale.
Moreover, the increase in the average queue length necessarily
implies higher loss, and vice versa. We therefore convert the
target loss requirement to the target average queue length and
use it as the control objective. We will demonstrate that adjust-
ing the service rate to maintain the average queue length be-
tween two queue thresholds can keep the packet loss relatively
constant. A unique aspect of our approach is that unlike any of
the previous work, the short term loss is steadily maintained at
the target level even in the face of dynamic non-stationary input
traffic. Further, the control algorithm is computationally simple
and requires only measuring only the long term average arrival
rate, and the average queue length statistic. Such simplicity al-
lows efficient implementation at very high-speed.

The remainder of this paper is organized as follows. In
the next section, we present a fuzzy controller to maintain the
packet loss steadily in a single queue, followed by a descrip-
tion of the performance metrics in§III. The performance of
the proposed controller is evaluated in§IV on non-stationary
long range dependence traffic with different control parameters
to demonstrate its robustness. The conclusion will be provided
in §V.

II. FUZZY CONTROLLER

In this section, we describe a fuzzy controller that maintains
the average queue length in a single finite buffer queue. For a
control system that cannot be adequately described by detailed
mathematical equations, fuzzy control is a convenient way to
synthesize a non-linear controller whose control law are heuris-
tically derived through insight of the process under control. As
stated earlier, we attempt to maintainQk between some queue
thresholds to achieve the loss requirement. This raises the prob-
lem of how to derive the queue thresholds from the loss require-
ment. As of the current stage of this work, we manually tune
the thresholds to get the desired target loss. A more sophisi-
cated mapping scheme will be left for further research.

In essence, a fuzzy controller consists of fuzzification, in-
ference, and defuzzification steps. In the fuzzification step, a
measured feedback value (called crisp input) is converted into



linguistic values (such aslow or high), each of which repre-
sented by a fuzzy set. Each fuzzy set is associated with a mem-
bership function used to characterize how certain the crisp in-
put belongs to the set. For a given crisp input, the membership
function returns a real number in[0, 1]. The closer the member-
ship function value is to 1, the more certain the input belongs to
the set (e.g., morelow or lesshigh). A single crisp input value
can take on more than one linguistic value if the domains of
membership functions overlap as will be seen later. In the in-
ference step, a set of rules calledrule-base, which emulates the
decision-making process of a human expert, is applied to the
linguistic values of the inputs to infer the output (fuzzy) sets.
These outputs are then defuzzified to the crisp output which
represents the actual control signal for the process. We refer
the reader to [10] for more complete background information
on the fuzzy control.

The rest of this section describes the fuzzification, inference,
and defuzzication steps of our controller. Let us first define
the notation. A measurement period for the next control action
(i.e., bandwidth adjustment) is denotedTm, which corresponds
to the control time scale. Thekth time instant, denoted bytk,
refers to real timetk = kTm and thekth interval refers to a time
period starting fromtk−1 to tk. Let Qk be the average queue
length in packets (including the one in service) asseen by the
arrivals measured over thekth interval.

Two state feedback parameters are used as the inputs to the
fuzzy controller, which then computes the bandwidth to be allo-
cated to serve the queue. The first feedback is the Exponential
Weighted Moving Average (EWMA) ofQk, denoted byQ̂k,
which is given by

Q̂k = αQk + (1− α)Q̂k−1 (1)

The EWMA operation acts as a low-pass filter onQk to smooth
out noise in measurement. The other feedback parameter is the
normalized change in the EWMA queue length(∆Q̂k), given
by

∆Q̂k =
Q̂k − Q̂k−1

uth − lth
(2)

Let Ck+1 denote the allocated bandwidth during the time inter-
val (tk, tk+1]. Based onQ̂k and∆Q̂k, Ck+1 is determined at
tk, k = 1, 2, . . ., and remains constant during(tk, tk+1].

A. Fuzzification

Fuzzification is the process of translating crisp inputs for
each input variablei into linguistic values. We defineNi lin-
guistic valuesA(m)

i , m = 1, 2, . . . , Ni as well as their member-

ship functions. For̂Qk, its linguistic valuesA(m)
1 ,m = 1, 2, 3,

are (i) low, (ii) medium, and (iii) high, with the correspond-
ing membership functionsG(m)

Q (Q̂k) shown in Fig. 1. Besides
a triangular shape, many other choices for the shape of the
membership functions also exist, including trapezoidal, Gaus-
sian, and etc. However, the triangular shape is a standard
choice used in most industry applications due to its simple
expression. The membership functions are defined such that

∑3
m=1 G

(m)
Q (Q̂k) = 1, ∀Q̂k ∈ [0,K] whereK is the buffer

size in packets. Note that a single value ofQ̂k can take on
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Fig. 1. Membership functions for thêQk

more than one linguistic value. For instance, if(lth +uth)/2 <
Q̂k < uth, Q̂k can be bothmedium andhigh but with different
degrees of certainty indicated by the outputs of the membership
functions.

Similarly for ∆Q̂k, its linguistic values A
(m)
2 ,m =

1, 2, 3, 4, 5, are (i) -high, (ii) - low, (iii) zero, (iv) +low, and (v)
+high, with their membership functionsG(m)

∆ (∆Q̂k) shown in
Fig. 2. As before, the membership functions are defined such
that

∑5
m=1 G

(m)
∆ (∆Q̂k) = 1, ∀∆Q̂k ∈ R. Here, the member-
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ship functions of∆Q̂k have two tunable parameters:d1 and
d2. In this paper, these two parameters are respectively set to
0.4 and 0.8. We show later that fairly good control results are
obtained without any further tuning of the membership func-
tions.

B. Inference and Defuzzification

After the crisp inputs are mapped to the linguistic values
through the membership functions in the fuzzification step, in-
ference rules are applied to determine the output by using a
rule-base. The rule-base is a set of rules that emulates the
decision-making process of the human expert controlling the
system. The rule is written in the form

IF premiseTHEN consequent/action
wherepremiseis a combination of input linguistic values and
consequentis an action to be taken. Because there are three
linguistic values forQ̂k and five for∆Q̂k, the total number of
rules is 15. If the premise is true, we call the rule as being
active. In our case, the rule-base is in a form called functional
fuzzy system where each rulei is written down as:

Rulei: IF Q̂k is A
(l)
1 and∆Q̂k is A

(m)
2 ,

THEN bi = G
(l)
Q (Q̂k) ∗G

(m)
∆ (∆Q̂k) ∗ xi

wherexi is the service rate adjustment associated with rulei.
As a result,bi is the change in the service rate if rulei is active,



with the termGQl(·) ∗ G∆m(·) being the weight. The values
of the xi’s are established based on insights of the queue be-
havior. For example, ifQ̂k is low and∆Q̂k is zero, thenxi

should be some small negative number in order to decrease the
service rate and hence would likely increaseQ̂k+1. Intuitively,
xi should be related to the long-term average rate of the input
traffic, which can be easily obtained from on-line measurement.
Their values selected for use in the simulation study are tabu-
lated in Table I as the percentage of the long-term input rate.
In general,xi’s can be made adaptive but they are fixed at this
stage of the work. Oncebi’s have been determined from the
inference step, the defuzzification is performed to obtainCk+1

by usingCk+1 = Ck +
∑15

i=1 bi.

∆Q̂k

Q̂k -high -low zero +low +high

low -10% -5% -2.5% 0 0
medium -4% -1% 0 1% 4%
high 1% 1% 2% 5% 10%

TABLE I
VALUES OF xi FOR RULE-BASE (AS A FRACTION OF THE LONG TERM

AVERAGE RATE)

We have not attempted to tune our fuzzy controller to pro-
vide optimal performance because this appears to be very dif-
ficult due to the many degrees of freedom associated with the
membership functions, rule-base, and the parameters thereof.
However, as we show later, any further tuning beyond the ba-
sic intuitive ideas is not necessary and the fuzzy controller per-
forms well. Tuning the fuzzy controller to provide optimal per-
formance will be the subject of future research.

III. PERFORMANCEMETRICS

Primary performance metrics considered are the bandwidth
utilization and the average short term packet loss. The utiliza-
tion is simply a fraction of the server busy period determined
over a given operating period of the system. For the loss per-
formance index, we consider the time-average of the short term
packet loss. Here we define the short-term loss as the one
evaluated from the minimum number of observations (N ) re-
quired to obtainr% relative precision on the100(1−α)% con-
fidence interval of the target loss probability (ploss). In particu-
lar, N ≥ z1−α/2

ploss(1−ploss)
( r
100 ploss)2

, wherez1−α/2 is the(1 − α/2)-
quantile of a unit normal variate [11, p.217]. Forploss = 10−3,
r = 5%, and95% confidence interval,N is 2.17 × 106 pack-
ets. The relative precision of5% at 95% confidence interval is
used in our simulation study presented next. Then the approx-
imated measurement period (W ) for the short term loss isNλ ,
whereλ is the long-term average packet arrival rate. Letεk de-
note the short term loss observed over the pastW seconds at
the loss measurement time instanttk i.e.,(max(0, tk−W ), tk].
Assuming that the measurement instants also move byTm sec-
onds. That is, we measure the loss over moving windows of
length W that are shifted byTm at the time. Then, for the

system operating period of lengthT , we define the loss perfor-
mance index as

ε̂ =
1
T

bT/Tmc∑

k=1

εk, (3)

which captures the short term loss behavior. The coefficient of
variation (C.o.V),Var(εk)/ε̂, will also be used to indicate the
fluctuation of the short term loss.

IV. EXPERIMENTAL RESULTS

In this section, we study performance of the fuzzy con-
troller on Long Range Dependence (LRD) aggregate traffic
constructing from a number of identical Pareto on-off flows.
To model a highly dynamic condition, we make the aggregate
non-stationary in the sense that flows in the aggregate arrive and
depart over time. The Pareto on-off source alternates between
on and off states. During the on state, packets are generated
at a constant rateR packets/second and the number of gener-
ated packets has a Pareto distribution with meanP . During the
off state, the source stays idle for a Pareto distributed length
of time. The mean off periods used is 2 seconds. The shape
parameter (γ) of 1.5 for the Pareto distribution is used. An ag-
gregate of such Pareto on-off sources contributes LRD traffic
with the Hurst parameterH = (3 − γ)/2 [12]. The values
P = 192 andR = 160 are used, corresponding to the source
average rate of 60 packets/sec. The packet size is exponentially
distributed with mean 53 bytes. The source arrival process in
the connection level is Poisson with rate 2 per second and has
an exponential holding time of 100 seconds. This is equivalent
to 200 active sources inside the aggregate on the average, and
the long-term aggregate average rate of 12,000 packets/sec.

We considerploss = 10−3, the buffer size (K) of 30 and
1024. The controller has three adjustable parameters – the
EWMA weight α, the control time scaleTm, and the thresh-
old pair lth,uth. The performance will be evaluated underα of
0.1 and 0.3, andTm of 0.5, 1, and 5 seconds. From a rough off-
line tuning, we found that a threshold pairlth = 10% anduth =
18% of the buffer size approximately yields the desiredploss at
K = 30. To provide comparative evaluation, we compare our
results to optimal static allocation and Equivalent Bandwidth
(EB) allocation.
• In the optimal static allocation, we determine by trial-and-

error through simulation the (approximated) optimal, i.e.,
smallest amount of static bandwidth required to attain the
cumulative lossat the givenploss. Such optimal value is
infeasible to obtain in practice and is given here as a best
case scenario.

• For the EB allocation, we use the EB formula for LRD
traffic presented in [13], in which case the bandwidth is
reallocated based on the EB formula at every flow arrival
and departure instants. Note also that the use of EB allo-
cation is a hypothetical scenario where the flow arrival and
departure process within the aggregate is assumed known.

In either cases, if the fuzzy control can achieve more or less the
same amount of allocated bandwidth, it is considered superior
in that no knowledge of traffic characteristics is required.
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Fig. 3. Fuzzy control (K = 30, Tm = 1 second,α = 0.1)

Fig. 3 and 4 show the sample paths of the short-term loss
andQk averaged across five runs for the proposed fuzzy con-
trol and the optimal static allocation atTm = 1 second. We
found that the average allocated bandwidth from the fuzzy con-
trol are less than 1% different from the optimal value for every
Tm andα used. With the static allocation, however, the short
term loss cannot be maintained steadily as shown in the fig-
ure. This can be undesirable because the variation in short term
loss can adversely affect QoS-sensitive transport of real-time
traffic [14]. In addition, this kind of optimal bandwidth allo-
cation is impossible to determine in real-time. Note also that
the behavior of the average queue length and packet loss are di-
rectly related. By increasingK to 1024, the fuzzy control still
performs relatively well in maintaining the average length and
hence the short term loss (Fig. 5) even though the resulting loss
is somewhat higher than the desired value. This deviation can
be addressed by tuning the thresholds to the right values, which
is our ongoing research work.

Table II provides the performance comparisons among the
fuzzy control, optimal static allocation, and EB allocation at
different buffer sizes and control parameters. All the number
shown are averaged from five runs and the short-term packet
loss as well as the utilization have the relative precision of less
than 5% at 95% confidence interval∗. In every cases, the EB
method overallocates the bandwidth and results in zero packet
loss. Compared to the EB allocation, the fuzzy control intro-
duces the bandwidth saving around35%, as seen from much

∗Except in case of static optimal allocation atK = 1024, which requires 20
runs.
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Fig. 4. Optimal static allocation (K = 30)

higher utilization.

We can infer some properties of our algorithm from the simu-
lation results shown in Table II. First, at a given buffer size, the
average of short term loss is robust over a wide range ofTm but
its variation is not. In particular, higher variation (C.o.V) in the
short term loss is observed asTm increases, which is intuitive
because the bandwidth is adjusted too slow. Using smallerTm

enables finer control and hence better performance. However,
the choice ofTm is not easily chosen because too smallTm will
lead to bandwidth thrashing whereby the effect of bandwidth
changes has not reflected in the average queue length perfor-
mance. This implies that there should be some optimal value of
Tm to use. Nevertheless, the results indicate that our control al-
gorithm still performs relatively well across a wide range of the
control time scale. Second, for a given target packet loss, the
thresholds does not increase linearly with the buffer size. In this
case,lth = 10% anduth = 18% of the buffer size (K) yields
the desired loss atK = 30 but notK = 1024 packets. This calls
for a more sophisicated mapping between the loss requirement
and the queue thresholds. Finally, the control performance ap-
pears insensitive to the EWMA weightα. By increasingα, the
EWMA queue length will change more rapidly, which should
provide the controller more faster response to traffic dynam-
ics. However, the results indicate no obvious difference for dif-
ferent values ofα, which facilitates the parameter selection in
practice.
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Fig. 5. Fuzzy control (K = 1024, Tm = 1 second,α = 0.1)

Fuzzy Control Optimal Static EB
Parameters Avg.Loss (̂ε) Var(εk)/ε̂ Util Avg.Loss (̂ε) Var(εk)/ε̂ Util. Util.
Tm = 0.5 α = 0.1 0.84e-3 0.43 0.812

α = 0.3 0.70e-3 0.43 0.814
K = 30 Tm = 1 α = 0.1 0.79e-3 0.47 0.812 1.04e-3 2.00 0.796 0.380

α = 0.3 0.68e-3 0.48 0.813
Tm = 5 α = 0.1 0.86e-3 0.82 0.808

α = 0.3 0.68e-3 0.56 0.812
Tm = 0.5 α = 0.1 3.65e-3 0.40 0.860

α = 0.3 2.49e-3 0.44 0.895
K = 1024 Tm = 1 α = 0.1 3.66e-3 0.45 0.877 1.10e-3 3.61 0.862 0.488

α = 0.3 3.75e-3 0.44 0.903
Tm = 5 α = 0.1 3.66e-3 0.73 0.899

α = 0.3 5.33e-3 0.60 0.904

TABLE II
PERFORMANCE COMPARISONS OF FUZZY CONTROL WITH OPTIMAL STATIC ALLOCATION AND EQUIVALENT BANDWIDTH

V. CONCLUSION

We address the problem of bandwidth allocation to guaran-
tee the aggregate loss QoS by using adaptive bandwidth con-
trol. The control adapts the allocated bandwidth such that the
loss QoS is maintained while being able to achieve high uti-
lization. A major appealing aspect of the control is that it
does not require the knowledge of traffic characteristics. We
develop a simple fuzzy logic controller and evaluate its per-
formance under a highly dynamic traffic condition. The pro-
posed control allocates the bandwidth that is slightly lower than
the optimal static allocation and introduces significant amount
of bandwidth saving compared to equivalent bandwidth allo-
cation. Further, the controller is shown to be robust against
different control parameters, rendering it tolerant to suboptimal
parameter selections. We are aware that our preliminary results
with only one traffic type may not be used to generalize the con-
troller performance, and hence we plan to experiment on other
different kinds of traffic mixes in the aggregate and real traffic
traces. In addition, two major issues of control time scale and
the queue thresholds selection require further investigation.
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