httperf(1) httperf(1)

NAME
httperf — HTTP performance measurement tool

SYNOPSIS

httperf [-—add-header R S] [-—burst-length R N] [-—client R | / N] [-—close-with-rese}
[-d|-—debug R N] [-—failure—status R N] [-h|-—help] [-—hog] [-—http—version R S][-—-max—con-
nections R N] [-—max-piped-callsR N] [-—-method R S] [-—no-host-hdr] [-—hum-calls R N]
[-——num-conns R N] [-—period [dJule]T1,T2]] [-—port R N] [——print-reply [headelfbody]]
[-—print-request [headefbody]] [--rate R X] [--recv-buffer R N] [--retry—on-failure]
[-—send-buffer R N] [--sewver R S] [-—sewver-name R S] [-—session—cookie [——ssl|
[-—ssl-ciphers R L] [-—ssl-no-reusg [-—think-timeout R X] [-—timeout R X] [--uri R S]
[-v|-—verbosé [-V|-—version] [-—wlog y|n,F] [-=—wsessR N, N, X][--wsesslogR N, X , F][-—wset
RN, X]

DESCRIPTION
httperf is a tool to measure web server performance. It speaks the HTTP protocol both in its HTTP/1.0
and HTTP/1.1 fleors and ofers a variety of workload generators. While running, it keeps track of a num-
ber of performance metrics that are summarized in the form of statistics that are printed at the end of a test
run. Themost basic operation bttperf is to generate a fed number of HTTP GET requests and to mea-
sure hav mary replies (responses) came back from the server and at what rate the respwedes arri

IMPORTANT: To dbtain correct results, it is necessary to run at mosthttperf process per client
machine. Alsothere should be asvfebackground processes as possible both on the client angr serv
machines.

EXAMPLES
httperf ——hog —-server www
This command causédtperf to create a connection to host wweend a request for the root doc-
ument (http://www/), recge the reply close the connection, and then print some performance
statistics.

httperf ——hog ——server www ——num-conn 100 —-ra 10 ——timeout 5
Like above, except that a total of 100 connections are created and that connections are created at a
fixed rate of 10 per second. Note that option “——rdtas been abbreviated to “—-ra”.

httperf ——hog ——server=www —-wsess=10,5,2 —-rate 1 ——timeout 5
Causedttperf to generate a total of 10 sessions at a rate of 1 session per second. Each session
consists of 5 calls that are spaced out by 2 seconds.

httperf ——hog ——server=www —-wsess=10,5,2 —-rate=1 ——timeout=5 —-ssl
Like ebove, except thatttperf contacts server www via SSL at port 443 (the default port for SSL
connections).

httperf ——hog ——sel r WWwW —-wsess=10,5,2 ——rate=1 ——timeout=5 ——ssl|
—-ssl-ciphers=EXP-RC4-MD5:EXP-RC2-CBC-MD5 —-ssl-no-reuse —-http—version=1.0
Like above, except thathttperf will inform the server that it can only select fromotapher suites
(EXP-RC4-MD5 or EXP-RC2-CBC-MD?5); furthermorkttperf will use HTTP version 1.0
which requires a we TCP connection for each reque#lso, SSL session ids are not reused, so
the entire SSL connection establishment processwikras the SSL handshake) occurs for each
connection.

OPTIONS
The operation ohttperf can be controlled through a number of options. The tool supports both short
(one—character) and long (arbitrary—length) option names. Short options aregwetix a single leading
dash (=), long options with a double—dash (—M)ultiple short options can be grouped together (e.g.,
“—vV" is guivalent to ‘-v =V") and long options can be abkiated so long as tlgeremain unique.
Paameters to options can be specified either by following the long option nhame with an equal sign and the
parameter value (e.g——burst=10) or by sparating the option name and value with whitespace (e.g.,

27 May 2007 1

httperf(1) httperf(1)

——burst 10).

——add-header=S
Specifies to include strin§ as an additional request head#ris necessary to specify the termi-
nating carriage-return/line—feed sequensglieitly. This can be done by using the escape
sequence \n’’. This makes it possible to include multiple request headdfer example,
“ ——add-header "Referer: foo\nAuth: secret\w'buld add tvo request headers'Referer’ and
“Auth”) to each request. Other supported escape sequence$r'arcarriage-return),‘\a”
(line-feed), 4\’ (backslash), and\N'’ where N is the code the character to be inserted (in octal).

——burst-length=N
Specifies the length ofubsts. Eachburst consists ofN calls to the ser. The exact meaning of
this parameter depends on therkWoad generatorFor regular request—oriented workloads, see
the description of option—-wsess

——no—host-hdr
Specifies that the "Host:" header should not be included when issuing an HTTP request.

——num-calls
For session—oriented workloads, see the description of optioveess

——client=I/N
Specifies that the machimgtperf is running on is client out of a total ofN clients. | should be
in the range from 0 t&R N —1. Some of the workload generators (e-g=wset) use the client
identity as a biasalue to ensure that not all clients generate perfectly identm&leads. When
performing a test that wlves sgeral client machines, it is generally a good idea to specify this
option.

——close-with-reset
Requests thatttperf closes TCP connections by sending a RESET instead of going through the
normal TCP connection shutdown handshalurning on this option can fea il effects such as
data corruption, stuck TCP control blocks, or wrong res#ts.this reason, the option should not
be used unless absolutely necessary aad then it should not be used unless its implications are
fully understood.

~d=N

——debug=N
Set debug hel to R N . Larger values oN will result in more output.

——failure—status=N
Specifies that an HTTP response status codé sifiould be treated as ailfire (i.e., treated as if
the request had timed out, facaenple). Br example, with‘~—failure-status=504 r esponses
with an HTTP status of “504 Gatey Time-out’ would be consideredaflures. Caeat: this
option is currently supported for sessiomridoads only (see the—-wsessand ——wsesslog
options).

-h

——help Prints a summary ofvailable options and their parameters.

——hog This option requests to use up as MACP ports as necessarWithout this optionhttperf is
typically limited to using ephemeral ports (in the range from 1024 to 5004k limited port
range can quickly become a bottleneck so it is generally a good idea to specify this option for seri-
ous testing. Also, this option must be specified when measuring Nérseiuce it eids a TCP
incompatibility between NT and UNIX machines.

——http—version=S
Specifies the version string that should be included in the requests sent to éneBedefault,
version string “1.1" is used. Thisoption can be set tGl'0” to force the generation of HTTP/1.0
requests. Settinghis option to ap value other than‘1.0” or ‘“1.1” may result in undefined
behavior.

27 May 2007 2

httperf(1) httperf(1)

——max-connectionsN
Specifies that at modd connections are opened for each sessifinis option is meaningful in
conjunction with options—-wsessand--wsesslognly.

——max-piped-calls=N
Specifies that at mo$ pipelined calls are issued on each connection. This option is meaningful
in conjunction with options—-wsessand—--wsesslognly.

——method=S
Specifies the method that should be used when issuing an HTTP request. If this option is not spec-
ified, the GET method is used. The mett®chn be an arbitrary string but is usually one of GET
HEAD, PUT, POST, etc.

——num-calls=N
This option is meaningful for request-oriented workloads .ofthyspecifies the total number of
calls to issue on each connection before closing iN is greater than 1, the server must support
persistent connections. The defaudiue for this option is 1If ——burst-length is set toR B,
then theN calls are issued in bursts 8f pipelined calls each. Thus, the total number of such
bursts will beN/B (per connection).

——num-conns=N
This option is meaningful for request-oriented workloads .ofthyspecifies the total number of
connections to creat€dn each connection, calls are issued as specified by optionsn—calls
and--burst-length. A test stops as soon as tReconnections hae dther completed ordiled.
A connection is considered toveafailed if ary activity on the connection fails to makorward
progress for more than the time specified by the timeout optietisieout and ——think-time-
out. The default value for this option is 1.

——period=[D]T1[,T2]
Specifies the time inteal between the creation of connections or sessions. Connections are cre-
ated by dedult, sessions if optior—wsessor ——wsessloghas been specified. This connec-
tion/session‘interarrival time” can alternatiely be specified by the—rate option, although more
flexibility is available with——period. The D parameter specifies the interaatitime distrilution.
If omitted or set to'd”, a deterministic (i.e., fixed) period is used as specified by pararRetér
in units of secondslf D is set to “€”, an &ponential (i.e., Poisson) distribution is used with a
mean interartial time of R TL . If D is set to“u”, a wiform distribution @er the interval T1,T2)
is used for the interamdl time. Finally if D is set to‘v’’, a number of rates can be specified as
follows: ——period=vT1,D1,T2,D2...Tn,DnWhere n <= NUM_RATES in httperf.h arid,Di rep-
resent the period time (i.e., 1/rate) and duration to maintain that rate-{iperiod=v1,2,0.5,4
will generate 1 request/seconds for 2 seconds then 2 requests/seconds for 4 seconds). In all cases,
a period of O results in connections or sessions being generated sequentially ¢anmec-
tion/session is initiated as soon as the previous one completes). The default value for this option is
0. Notethat specifying, for Xample,——rate=5 is equvalent to specifying——period=d0.2 or
——period=0.2 By specifying ——period=ul,3 the interarna times will be randomly chosen
from the interval between 1 and 3 seconilke specific sequence of (pseudo—)random inteshrri
times are identical from onlettperf run to another as long as the values for-thperiod and
——client options are identical.

——port=N
This option specifies the port numiéron which the web seev is listening for HTTP requests.
By default,httperf uses port number 80.

——print-reply [=[headelbody]]
Requests the printing of the reply headers, pbagy summary The output is directed to standard
output. Replyheader lines are preéd by "RH", reply body lines are prefixed by "RB", and the
reply—size summary is prefixed by "RSThe prefix is followed by a serial number that uniquely
identifies the call that the reply line is for and a colon (":") character that marksginaibg of
the actual reply lineTo print only reply headers, passggamentheaderto this option. To print
only the reply bodypass argumertiody to this option.

27 May 2007 3

httperf(1) httperf(1)

——print-request[=[headelbody]]
Requests the printing of the request headers, body (if one is present), and sulmaanytput is
directed to standard outpuRequest header lines are prefixed by "SH", request body lines are pre-
fixed by "SB", and the request summary is prefixed by "SS". The prefix is followed by tke call’
serial number and a colon (":") character that marks tgmbieg of the actual reply lineTo print
only request headers, pasguanentheaderto this option. To print only the request bogyass
argumenbody to this option.

——rate=X
Specifies the fixed rate at which connections or sessions are cr€ategections are created by
default, sessions if optior—wsessor ——wsessloghas been specified. In both cases a rate of O
results in connections or sessions being generated sequentially assgon/connection is initi-
ated as soon as the previous one completes). The default value for this option is 0.

——recv—buffer=N
Specifies the maximum size of the seckeceve huffers used to rece2 HTTP replies. By
default, the limit is 16KB.A smaller value may help memory—constrained clients whereagex lar
value may be necessary when communicating with a seveeradigh—bandwidth, high-lateryc
connection.

——retry—on-failure
This option is meaningful for sessiororkloads only (see the-wsessand——wsesslogptions).
If specified, a call that results in a failure response (as defined by-taidure—status option) is
retried immediately instead of causing the session to fail.

—-send-buffer=N
Specifies the maximum size of the socket seauftets used to send HTTP requests. Byadéf
the limit is 4KB. A smaller \alue may help memory—-constrained clients whereas a laajee v
may be necessary when generating large requests to a server connected via a high—bandwidth,
high—lateng connection.

——sewver=S
Specifies the IP hostname of the senBy default, the hostnaméldcalhost’ is used. This
option should atays be specified as it is generally not a good idea to run the client and e serv
on the same machine.

——sewver—-name=S
Specifies the (default) server name that appears in the "Host:" headaryofezjuest sent by
httperf. Without this option, the host name (or IP address) specified by optesver is used
instead.

—-session—cookie
When this option is turned on, cookie managment is enabled on a per—session basis. What this
means is that if a reply to a request thaswenerated by sessiBnX contains a cookie, then all
future requests sent by sessimwill include this cookie as well. At present, the cookie manager
in httperf supports only one cookie per session. If a second cookie isvagctie ne cookie
overwrites the existing one and a warning message is printed if “~—debisgof’.

——ssl Specifies that all communication betwdwgtperf and the server should utilize the Secure 8tk
Layer (SSL) protocol.This option is gailable only if httperf was compiled with SSL support
enabled.

—-ssl-ciphers+
This option is only meaningful if SSL is in use (seessloption). Thisoption specifies the lidt
of cipher suites thdittperf may use in negotiating a secure connection with theeselfithe list
contains more than one cipher suite, the ciphers must be separated by a colon. If the server does
not accept anof the listed cipher suites, the connection establishment aillahd httperf will
exit immediately If this option is not specified when thessloption is present themttperf will
use all of the SSLv3 cipher suites provided by the underlying SSL library.

27 May 2007 4

httperf(1) httperf(1)

—-ssl-no-reuse
This option is only meaningful if SSL and sessions are in use-(ses ——wsess——wsesslo}
When an SSL connection is established the clientwesai £ssion identifier (session id) from the
server On subsequent SSL connections, the client normally reuses this session id in oxaét to a
the expense of repeating the (slow) SSL handshakestablish a ne@ SSL session and obtain
another session id\en if the client attempts to re-use a session id, the server may force the client
to renegotiate a session). By delt httperf reuses the session id across all connections in a ses-
sion. Ifthe——ssl-no-reuseoption is in effect, thehttperf will not reuse the session id, and the
entire SSL handshalwill be performed for each meconnection in a session.

——think—-timeout= X
Specifies the maximum time that the server may need to initiate sending the reply iem a gi
request. Notehat this timeout value is added to the normal timealue/(see optior—timeout).
When accessing static web content, it is usually not necessary to specify this bjaveever,
when performing tests with long-running CGI scripts, it may be necessary to use this option to
allow for larger response-time§he default value for this option is zero seconds, meaning that
the server has to be able to respond within the normal timeout value.

——timeout=X
Specifies the amount of timé thathttperf is willing to wait for a server reaction. The timeout is
specified in seconds and can be a fractional number {efimeout 3.5. Thistimeout value is
used when establishing a TCP connection, when sending a request, aitieg for a replyand
when receiving a replylf during ary of those activities a request fails to redkrward progress
within the alloted timehttperf considers the request toveaded, closes the associated connec-
tion or session and increases tient-timo error count. The actual timeout value used when
waiting for a reply is the sum of this timeout and the think—-timeout (see optititink—time-
out). By default, the timeout value is infinity.

——uri=S
Specifies that URS should be accessed on the senFor some of the workload generators (e.g.,
——wse), this option specifies the prefix for the URIs being accessed.

——use-timer—cache
This feature allows the user to specify whethey thiant to cache timestamps or ndimestamps
are not cached by default, but the user can enable caching if higher performance is more important
than timing accurac For small response sizes, disabling timer caching reduced the performance
of httperf by about 10%; for larger response sizes there was little or no effect.

-V

—-verbose
Putshttperf into verbose mode. In this mode, additional output such as thedudli reply rate
samples and connection lifetime histogram are printed.

-V

—-version
Prints the version dittperf.

—-wlog=B,F
This option can be used to generate a specific sequence of URI acdésses.useful to replay
the accesses recorded in a server log file,Xample. RrameterF is the name of a file contain-
ing the ASCII NUL separated list of URIs that should be acced$grarameterB is set to“y”,
httperf will wrap around to the lggnning of the file when reaching the end of the list (so the list
of URIs is accessed repeatedly)ith B set to “n”, the test will stop no later than when reaching
the end of the URI list.

——wsessfNI1, N2, X
Requests the generation and measurement of sessions insteadid@idhdequests.A session
consists of a sequence of bursts which are spaced out by the user thinkeditheburst consists

27 May 2007 5

httperf(1)

httperf(1)

of a fixed numbeL of calls to the servel(is specified by optior—burst-length). Thecalls in

a hurst are issued as follows: at first, a single call is issued. Once the reply to this first call has
been fully receied, all remaining calls in the burst are issued concurrefithe concurrent calls

are issued either as pipelined calls on an existing persistent connection or as individual calls on
separate connectiondVhether a persistent connection is used depends on whether the serv
responds to the first call with a reply that includes a “Connection: tlosader line. If such a

line is present, separate connections are used.

The option specifies the following paramete¥4:is the total number of sessions to generiit2,

is the number of calls per session, ahi the user think—time (in seconds) that separates consec-
utive all bursts. Br example, the options+-wsess=100,50,10 ——burst-leri’ Bv ould result in

100 sessions with a total of 50 calls each. Since eah bhas a length of 5 calls, a total of 10 call
bursts would be generated per sessidhe user think-time between call bursts would be 10 sec-
onds. Notehat user think—-timeX denotes the time between receiving the last reply of tha-pre
ous call burst and the sending of the first request of the next burst.

A test irvolving sessions finishes as soon as the requested nudibef sessions hee dther

failed or completed.A session is considered toVeafailed if ary operation in a session tak

longer than the timeouts specified by optierdimeout and ——think—-timeout. In addition, a

session also fails if the server returns a reply with a status code matching the one specified by
option—-—failure-status.

——wsesslogil, X,F

This specifies a session workload generator similar-tesesyplease read that description first).
With ——wsessloghough, man aspects of user sessions, including the number and sequence of
URI's, request method, think-time angr&t-length parameters, can be specified in an inplk file
Two other parameters are retained frermwsessnamely N, the number of sessions to initiate,
and X, the hurst—to—lurst user think time (note that this becomes a default time since the input file
F can also specify user think time on a persh basis.A small example input file can most-eas-

ily show the settable parameters:

Comment lines start with a “#as the first

character Lines with only whitespace delimit
sessions (multiple blank lines do not generate
“null’’ sessions). Albther lines specify a

uri-sequence (1 uri per line). If the first

character of the line is whitespace (e.g. space
or tab), the uri is considered to be part of a

burst that is sent out after the previous

non-burst uri.

session 1 definition (this is a comment)
/foo.html think=2.0
Ipictl.gif
Ipict2.gif
/foo2.html method=POST contents="Post data’
Ipict3.gif
Ipict4.gif

session 2 definition
/foo3.html method=POST contents="Multiline\ndata"
/foo4.html method=HEAD

The abee cescription specifies 2 sessionghe first session will start with a request for /foo.html.
When the /foo.html response comes back, a burst of 2 requests will f@ictl.gif and

27 May 2007 6

httperf(1) httperf(1)

/Ipict2.gif). Whenthe last of those responses is reegj a two second user think time is inserted
before the next request of /foo2.html is issued. This request is sent as a R@Sjosted data

can be contained between single— or double—quadtiesidines can appear within posted data as
“\n” or as a \<CR>". The /foo2.html response is followed by a burst request of /pict3.gif and
[pict4.gif, which concludes this sessiofihe second session is started some time after the first, as
specified by the-—rate or ——period options.

The second session consists of 2 requests separated by the default user think time as specified by
the X parameter of the—wsesslogoption. Ifthe N parameter of--wsesslogs greater than the

number of sessions defined in input filé- , then the defined sessions are used repeatedlyNintil
sessions hee been created (i.e., the defined sessions are used in a round-robin fashion).

One should woid using——wsesslogn conjunction with othehttperf options that also control
session behavior and workload URI’s, namehourst-length, ——wsess, ——wlogand—-wset.

——wset=N, X
This option can be used taalk through a list of URIs at awgin rate. RrameteN specifies the
number of distinct URIs that should be generatedarspecifies the rate at whichwéJRIs are
accessed. Aate of0.25would mean that the same URbuld be accessed four times in avro
before moving on to the next URI. This type of access pattern is useful in generatinigaad/
that induces a relatly predictable amount of trfi in the disk 1/O subsystem of the serv
(assumingN and the accessed files are big enough to exceed tleg'sénifer cache). The URIs
generated are of the forR prefix / path .htmlwhere prefix is the URI prefix specified by
option—-uri and pathis generated as follows: for tikei —th file in the working set, write dan i
in decimal, prefixing the number with as rpaeroes as necessary to get a string that has as man
digits asR N —1. Then insert a slash character between each digitexample, the 103rd file in
a working set consisting of 1024 filesowld result in a path of0/1/0/3' . Thus, if the URI-prefix
is /lwset1024 then the URI being accessed wouldNyeet1024/0/1/0/3.html In cther words, the
files on the server need to bgarized as a 10ary tree.

OUTPUT
This section describes the statistics output at the end of each teSthmibasic information shown belo
is printed independent of the selected workload generator.

Total: connections 30000 requests 29997 replies 29997 test—duration 299.992 s

Connection rate: 100.0 conn/s (10.0 ms/conn, <=14 concurrent connections)
Connection time [ms]:min 1.4 avg 3.0 max 163.4 median 1.5 stdd&
Connection time [ms]:connect 0.6

Connection length [replies/conn]:1.000

Request rate:100.0 req/s (10.0 ms/req)
Request size [B]75.0

Reply rate [replies/s]:min 98.8 avg 100.0 max 101.2 stdde3 (60 samples)
Reply time [ms]: response 2.4 transfer 0.0

Reply size [B]:header 242.0 content 1010.0 footer 0.0 (total 1252.0)
Reply status: 1xx=0 2xx=29997 3xx=0 4xx=0 5xx=0

CPU time [s]: user 94.31 system 205.26 (user 31.4% system 68.4% total 99.9%)
Net I/O: 129.6 KB/s (1.1*1076 bps)

Errors: total 3 client—timo 0 socket—timo 0 connrefused 3 connreset 0
Errors: fd—unavail 0 addrunaail O ftab—full O other O

There are six groups of statisticszerll results (Total’”), connection related results'@onnection”),
results relating to the issuing of HTTP requesRe(uest), results relating to the replies reesd from
the server (Reply”), miscellaneous results relating to the CPGRU") and network (“Net I/O”) utiliza-
tion and, last but not least, a summary of errors encountered (“Errors”).

27 May 2007 7

httperf(1) httperf(1)

Total Section
This section summarizes Wwomary TCP connections were initiated bytperf, how many
requests it sent out, Wwomary replies it receied, and what the total test duratiorasv Inthe
example output shen abawe, 30,000 connections were created, 29,997 requests were sent out and
29,997 replies were resed. Theduration of the test was almost exactly 5 minutes (300 sec-
onds).

Connection Section
This section coveys information related to TCP connections generated by the Suecifically,
the “Connection raté'line shows that me connections were initiated at a rate of 100.0 connec-
tions per second. This rate corresponds to a period of 10.0 milliseconds per connection. The last
number in this line shows that at most 14 connections were opepngvemtime.

The first line labeled “Connection timejives lifetime statistics for successful connectio$he

lifetime of a connection is the time between a TCP connection is initiated and the time the connec-
tion is closed.A connection is considered successful if it had at least one call that completed suc-
cessfully In the example output, the line indicates that the minimtmir(*’) connection lifetime

was 14 milliseconds, thevarage (‘avg”) lifetime was 3.0 milliseconds, the maximunn{ax”)

was 163.4 milliseconds, the mediarinfedian’) lifetime was 1.5 milliseconds, and that the stan-
dard deviation of the lifetimes was 7.3 milliseconds. The median lifetime is computed based on a
histogram with one millisecond resolution and a maximum lifetime of 100 secdils, the
median is accurate to within half a millisecond if at least half of the successful connecti®@s ha
lifetime of no more than 100 seconds.

The next statistic in this section is theaage time it took to establish a TCP connecti@mly
successful TCP connection establishments are counted. In the example, the second line labeled
“ Connection time'shows that, on\gerage, it took 0.6 milliseconds to establish a connection.

The final line in this section is labeleConnection lengthi. 1t gives the average number of
replies receied on each connection that reeed at least one reply (i.e., connections thaitefd

before yielding the first reply are not counted). This number can be bigger than 1.0 due to persis-
tent connections.

Request Section
The line labeled “Request ratgives the rate at which HTTP requests were issued and the period
that this rate corresponds to. In th@mple abwe, the request rate was 100.0 requests per second,
which corresponds to 10.0 milliseconds per requé&.long as no persistent connections are
employed, the results in this section amery similar or identical to results in the connection sec-
tion. However, when persistent connections are usedersé calls can be performed on a single
connection in which case the results would be different.

The line labeled “Request sizajives the average size of the HTTP requests in bytds.the
example abwe, the average request size was 75 bytes.

Reply Section
For simple measurements, this section is often the most interesting one as the line 1Replgd *
rate’ gives various statistics for the reply rate. In the examplevaltbe minimum ('min’’) reply
rate was 98.8 replies per second, therage (‘avg”) was 100 replies per second, and the maxi-
mum (*max”) rate was 101.2 replies per second. The standard deviation was 0.3 replies per sec-
ond. Thenumber enclosed in parentheses shows that 60 reply rate samples were aéquired.
presenthttperf collects a rate sample onceesy five seconds. @ obtain a meaningful standard
deviation, it is recommended to run tests long enough so at least thirty samples are obtaimed.
corresponds to a test duration of at least 150 seconds.

The line labeled “Reply ime” gives information on ha long it took for the server to respond
and haev long it took to receie the reply In the example, it took onvarage 2.4 milliseconds

27 May 2007 8

httperf(1)

httperf(1)

between sending the first byte of the request and receiving the first byte of theTreplyme to
“transfer’, or read, the reply as too short to be measured, so it shows up as zero. The is typical
when the entire reply fits into a single TCP segment.

The next line, labeled “Reply siZetontains statistics on thevaage size of the replies—-all
numbers are in reported byteSpecifically the line lists the arage length of reply headers, the
content, and footers (HTTP/1.1 uses footers to realizécienked’ transfer encoding)For con-
venience, the werage total number of bytes in the replies is als@gin parentheses. Ithe
example, the werage header length'lfeader) was 242 bytes, thevarage content length‘¢on-
tent”) was 1010 bytes, and there were no footéfsater” | ength is zero). The total reply length
of 1252 bytes onwerage.

The final line in this section is a histogram of the major status codeseteoeihe replies from
the serer. The major status code is tHaundreds-digit of the full HTTP status code. In the
example, all 29,997 replies had a major status code df 2.a @od guess that all status codes
were “200 OK’ but the information in the histogram is not detailed enough tevalistinguish-
ing status codes with the same major code.

Miscellaneous Section

This section starts with a summary of the CPU utilization on the client madhiree example,
the line labeled “CPU timé’shows that 94.31 seconds were sperécating in user mode
(“user”), 205.26 seconds were speneeuting in system mode‘gystem’) and that this corre-
sponds to 31.4% user modereeution and 68.4% systenxeeution. Thetotal utilization vas
99.9%, which is expectedwghn thathttperf is a CPU hog.A total CPU utilization of significantly
less than 100% is a sign that there were competing processes that interfered with the test.

The line labeled “Net I/O'gives the average network throughput in kilobytes per second (where a
kilobyte is 1024 bytes) and in mabits per second (where a gabit is 1076 bits). In thexample,

an aerage network usage of about 129.6 kilobytes per secasdswstained. The number in
parentheses shows that this corresponds to about Hditseper second. This network band-
width is computed based on the number of bytes sent andagaai he TCP connectionsin
other words, it does not account for the r@twheaders or TCP retransmissions that mase ha
occurred.

Errors Section

The last section contains statistics on the errors that were encountered durindratbesxam-

ple, the tvo lines labeled‘Errors” show that there were a total of three errors and that all three
errors were due to the servrefusing to accept a connectioltghnrefused). A description of
each error counter follows:

client-timo: The number of times a session, connection, or addld due to a client timeout (as
specified by the-—timeout and—-think—timeout) options.

socket-timo: The number of times a TCP connectioaildd with a soc&t—level timeout
(ETIMEDOUT).

connrefused: The number of times a TCP connection atteraged with a “connection refused
by server’error ECONNREFUSED).

connreset: The number of times a TCP connectiaildd due to a RESET from the servTypi-
cally, a RESET is recaied when the client attempts to send data to theeseat/a time the sesgv
has already closed its end of the connection. NTesgralso send RESETs when attempting to
establish a ne connection when the listen queue is full.

fd—unavail: The number of times thiettperf process was out of file descriptord/heneer this
count is non-zero, the test results are meaningless because the atiemenivaded (see section

27 May 2007 9

httperf(1) httperf(1)

"CHOOSING TIMEOUT VALUES").

addrunavail: The number of times the clientas out of TCP port numbers (EADDRNAVAIL).
This error should ner occur. If it does, the results should be discarded.

ftab—full: The number of times the systeniile descriptor table is fullAgain, this error should
never occur. If it does, the results should be discarded.

other: The number of times some other type of error occurfdtheneer this counter is
non-zero, it is necessary to track down the real cause of the ®oressist in doing thishttperf
prints the error code (errno) of the first unknown errors that occurs during a test run.

When--wsessor ——wsesslogs specifiedhttperf generates and measures sessions instead woidinali
calls and additional statistics are printed at the end of a test. An example output is shawn belo

Session rate [sess/sinin 0.00 avg 0.59 max 2.40 stadd@37 (240/450)
Sessionawy 6.45 connections/session

Session lifetime [s]:123.9

Session failtime [s]:58.5

Session length histogram4 7 4 .. 3 3 240

The line labeled “Session rateshows the minium, @erage, and maximum rate at which sessions com-
pleted (based on a 5 second sampling imfervt also shows the standard deviation of the session comple-
tion rate. The numbers in parenthesesashow mary sessions succeeded andahmary sessions were
initiated. Inthe example ab@, the minimum, gerage, and maximum session completion rates were 0.00,
0.59, and 2.40 sessions per second, resghctiThe standard deviationas 0.37 sessions per second and
240 out of 450 sessions completed successfully (210 failed due to errors such as timeouts).

The neat line, labeled‘Session” shows the &erage length of a session measured in connections. In the
example abwe, an arerage of 6.45 connections were required to complete a session.

The line labeled “Session lifetimejives the average time it took to complete a successful session. In the
example abwge, it took an &erage of 123.9 seconds.

The line labeled “Sessiorailtime” gives the arerage time it took before an unsuccessful sessided. In
the example abe, it took on aerage 58.5 seconds for a session to fail.

Finally, the line labeled “Session length histogragives a histogram of the number of replies reci by

each session. In the example ehal £ssions ended after receiving no reply at all, 7 ended aftevirerei

one reply and so on (the ellipsis indicates additional histogram counts that were omitted from this manual
for space reasons). Note that this histogram does not distinguish between successful and failed sessions.

CHOOSING TIMEOUT VALUES
Since the machine thhttperf runs on has only a finite set of resoureailable, it can not sustain arbitrar
ily high HTTP loads.For example, one limitingdctor is that there are only roughly 60,000 TCP port num-
bers that can be in use ayagiven time. Sinceon most UNIX systems it takes one minute for a TCP con-
nection to be fully closed (lga the TIME_WAIT state), the maximum rate a client can sustain is at most
1,000 requests per second.

The actual sustainable rate is often much lower than that because before running out of TCP ports, the
machine is likely to run out of file descriptors (one file descriptor is used up for each open TCP connec-
tion). By default, HP-UX 10.20 allows 1,024 open file descriptors per process. This means that without
extra precautionghttperf could potentially very quickly use up allalable file descriptors, at which point

it could not induce anadditional load on the seev To avoid this problem,httperf provides option
——timeout to set a timeout for all communication with the senif the server does not respond before the
timeout expires, the client considers the corresponding session, connection, or catleaadjecioses the

27 May 2007 10

httperf(1) httperf(1)

associated TCP connection, and increasesdlient-timo” error count. The only exception to this rule is
that after sending an entire request to theeseghitperf allows the serer to tale some additional time
before it starts sending the replyhis is to accommodate HTTP requests that takbng time to complete
on the sergr. This additional time is called thésener think time” and can be specified by option
——think—-timeout. By default, this additional think time is zero seconds, so theesevould alvays hae

to respond within the time alloted by optieatimeout.

Timeouts allev httperf to sustain high déred loads wen when the server isverloaded. Br example,

with a timeout of 2 seconds and assuming that 1,000 file—-descriptorgagable, the offered load could

be up to 500 requests per second (in practice, the sustainable load is often somewhat smaller than the theo-
retical \alue). Onthe davnside, timeouts artificially truncate the connection lifetime distidim. Thus,t

is recommended to pick a timeout value that is aglas possible yet small enough towalsoistaining the

desired offered rateA timeout as short as one second may be acceptable, but larger timeouts (5-10 sec-
onds) are preferable.

It is important to kep in mind that timeouts do not guarantee that a client can sustain a partfeoéat of
load———there are marother potential resource bottlenecksor example, in some cases the client machine
may simply run out of CPU timeTo ensure that a gen test really measured the serg capabilities and

not the client’s, it is a good idea to vary the number of machines participating in a test. If observed perfor
mance remains the same as the number of client machines is varied, the test results are likely to be valid.

AUTHOR
httperf was devdoped by David Mosberger and was heavily influenced by an earlier tool writteaiby T
Jin. Stephan&ranian contributed the log—file based URI generdiick Carter contribted the-—wsess-
log workload generatoithe support behind the-period option, and bug fies. All four authors are with
Hewlett—Packard Research Laboratories.

BUGS

Probably map Always be sure to double—check results and wfall prey to measuring client—perfer
mance instead of server performance!

The user—-interface definitely could be impad. A simple workload description language might be more
suitable than the dozens of little command-line options the tool has right no

27 May 2007 11

