
ADAPTIVE PHOTO COLLECTION PAGE LAYOUT

C. Brian Atkins

Imaging Technology Department
HP Labs

Palo Alto, CA 94304
cbatkins@hpl.hp.com

ABSTRACT

This paper presents a new photo collection page layout that at-
tempts to maximize page coverage without having photos overlap.
Layout is based on a hierarchical partition of the page, which pro-
vides explicit control over the aspect ratios and relative areas of
the photos. We present an efficient method for finding a hierar-
chical partition that produces a photo arrangement suitable for the
shape of the page. Rather than relying on a stochastic search we
employ a deterministic procedure that mimics the natural process
of adding photos to the layout one by one.

1. INTRODUCTION AND PRIOR WORK

This paper addresses the scenario where a user would like to print
or display a photo collection, without the benefit of any time (or
without the inclination) to arrange the photos for viewing in the
situation at hand. For example, supposing the user had a photo
collection accessible from a server, they might at different times
like to show it displayed on a small monitor; projected onto a large
wall; printed on small booklet pages; and printed on a poster. In
each different situation, any number of factors influences how the
collection should be arranged, such as the size and shape of the
viewable area; the viewing distance; the time available to show the
photos; and the cost to produce each page of output. These facts
point to a need for methods that (1) make it easy to customize how
a photo collection is presented, and (2) generate layouts dynam-
ically to make the best use of available space. In this report, we
present an adaptive photo collection page layout that attempts to
meet both criteria.

We accomplish page layout using a “slicing structure,” or a hi-
erarchical partition of the page as illustrated in Fig. 1, where the
terminal nodes correspond to photos and the interior nodes corre-
spond to horizontal (“H”) and vertical (“V”) divisions. This basic
form has been used in other fields including page layout for mixed
documents [1], data visualization [2] and VLSI floorplan design
[3]. One focus of this work was to use the slicing structure in a
way that allows photos to be large without overlapping, while pro-
viding explicit control over photo aspect ratios and relative areas.
Another focus was to determine the slicing structure itself, so that
the layout takes into account not only the photos, but also the shape
of the page.

In our experience with album and slideshow software, the most
common page layout technique is to use templates, where photos
are inserted into designated regions or “holes.” Templates have the
drawback that if the aspect ratios of photo and hole are not equal,
then the photo must be cropped or shrunk to be visible through the

1

H

V V

1 23H

6H

54

3

6

5

4

2

Fig. 1. Page layout is guided by a hierarchical page partition.

hole. Moreover, new templates need to be added for every addi-
tional page shape, and for each new number of photos per page.

One prior approach, due to Geigel and Loui [4], accomplishes
album page layout using genetic algorithms. This prior approach
shares similarity with the present approach in that both search to
find a layout having a highest score. However, [4] and the present
approach are different in how page layouts are represented inter-
nally. In [4], page layout is specified with independent size and
position parameters for each photo. In the present approach, page
layout is specified using a tree structure that unifies how photos on
the same page are placed and sized, which makes the search and
scoring processes more tractable and intuitive.

This paper focuses strictly on page layout: given a collection
of photos assigned to a single page, we present a method to deter-
mine their precise areas and positions. We have also investigated
pagination, as well as optimization of layouts having the form de-
scribed here, and we hope to report the results separately. The
remainder of this paper is organized as follows. Section 2 pro-
vides a detailed description of our page layout algorithm. Section
3 shows some experimental results, and in Sec. 4 we wrap up with
some discussion and conclusions.

2. PHOTO COLLECTION PAGE LAYOUT

Prior approaches to layout [3, 4, 1] have employed stochastic opti-
mization to find a layout having a highest fitness or score. Our ap-
proach, by contrast, was to see whether something “good enough”
could be obtained using a simpler, deterministic tactic.

The layout score we use is to calculate coverage, or the frac-
tion of the page occupied by photo. More sophisticated layout
scores would be based on user preferences and visual factors like
symmetry, unused space and object alignment. However, we feel
the results obtained using this simple metric are very encouraging.

Since one goal of this work is to allow the output form factor
to be arbitrary, it would be useless for the user to specify absolute
photo sizes. To address this, we replace the notion ofabsolute

photo area withrelativephoto area. Put more precisely, we assume
each photo has assigned to it a positive scalar-valuedrelative area
proportion. Denoting the relative area of a photo ase and the area
of the rendered output photo asA, for any two photosi andj on the
same page, the ratio of relative areas equals the ratio of rendered
areas:

Ai

ei
=

Aj

ej
.

Of course, if the user is not inclined to set a relative area for each
photo, then numerical values can be assigned.

In this paper, we regard photo aspect ratios as fixed. This re-
flects the assumption that the user has already framed or cropped
photos to their satisfaction, any any further cropping would not be
desirable.

As mentioned above, our method amounts to the construction
of a certain kind of tree structure, and this description is divided
into two parts. Section 2.1 describes how to obtain the tree; and
Sec. 2.2 describes how to render an output page from a tree (i.e.,
compute a location and an absolute area for each photo).

2.1. Generating the binary tree

We generate the binary tree by adding photos one at a time, as
illustrated in Fig. 2. We will fill in more details about the tree
structure as we go along; but for now, it is sufficient to know that
each node corresponds to a box in the layout: each interior node
represents a bounding box around the boxes of its children; and
each terminal node represents a cell where a photo is placed.

T(2):

V

B(1)

A(1) C(2)

H

V

B(1)

A(1)

C(2) D(3)

V

H

V

A(1) B(1)

T(3):

T(4):

Fig. 2. Page layout generation process. Numbers in parentheses
are relative areas.

We start with a page layout having only one photo, and we add
photos one at a time until all photos are included. Formally, denot-
ing the total number of photos asN , the page layout is determined
as the last in an increasing sequence of binary trees

T (1), T (2), · · · , T (N)

whereT (k) for k ≥ 1 denotes a tree withk terminal nodes. Notice

that each of the intermediate trees{T (k) : 1 ≤ k ≤ N − 1}
generates a viable layout.

The way we add the next photo to the page is to introduce a
new cell in the previous layout. Formally, this is accomplished
by augmenting the previous tree. As illustrated in the figure, we
select a subtree, and then displace the subtree with a new internal
node. The new internal node becomes the parent of (a) a new
terminal node corresponding to the new cell, and (b) the subtree
that was displaced. (In the figure, the “selected subtrees” happen
to be terminal nodes; but generally, any subtree could be selected,
including subtrees rooted at internal nodes.)

To choose which cell which we introduce in the previous lay-
out, we evaluate a collection of candidate layouts, where each can-
didate layout is the previous layout with the next photo inserted
into a different new cell, and we select the cell for which the re-
sulting layout has a highest score. To put this formally, assume
that thek–th intermediate layout, represented with the treeT (k),
has a setL of possible new cells. We will write the tree structure
T (k) augmented by adding new celll ∈ L asT (k; l). Then the
next intermediate layout is determined as

T (k + 1) = T (k; L)

where

L = arg max
l∈L

[score (T (k; l))]

and wherescore(·) is the scoring function mentioned above.
Notice that the cost of adding each next photo to the layout

increases linearly with the number of photos. To be more precise,
for intermediate treeT (k), ‖L‖ = 2(2k − 1), since there are
(2k − 1) nodes inT (k) and the new cell can be positioned either
vertically or horizontally relative to the box of the displaced sub-
tree. However, pages tend to have sufficiently few photos that the
computational cost of evaluating all possible candidate layouts is
not excessive.

2.2. Rendering the output page from the binary tree

The input to this process, illustrated in Fig. 3, is a tree structure
where each terminal node has an aspect ratio and a relative area
proportion, and each interior node indicates either a horizontal or
vertical division. The first step is to characterize bounding boxes
for the nodes, and the second step is to allocate a precise region
of page space to each node. These regions are nested like the tree
structure. We will refer to the regions allocated to terminal nodes
ascells. Once a cell is known, the position of the photo assigned
to it is determined by centering the photo in the cell. The area of
the photo is figured using a formula given below.

characterize allocate space
on page

and area
page aspect ratio

e=2
a=1

H

Va=2/3
e=3

a=3/2
e=3

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��bounding boxes

Fig. 3. How to render an output page from a tree structure.

2.2.1. Characterizing bounding boxes

The objective of this step is to compute an aspect ratio and a rela-
tive area for each node in the tree. In this paper, we regard relative
areas and aspect ratios of photos as fixed, so the bounding boxes of
terminal nodes remain unchanged. Each bounding box is a func-
tion of the boxes it encloses, so this process starts at the terminal
nodes and works toward the root, following a depth-first search as
illustrated in Fig. 4.

e=6

a=5/4
e=10

e=2
a=1

a=2/3
e=3

a=3/2
e=3
(A) (B)

(C)

e=2
a=1

H

Va=2/3
e=3

a=3/2
e=3
(A) (B)

(C)
(C)

(B)(A)

(A) (B)

a=3/4

Fig. 4. Computing bounding boxes.

The aspect ratioa and relative area proportione for any inte-
rior node are determined from the aspects and relative areas of its
two children. Denote as(ar, er) the aspect and relative area of the
right-hand child, and(al, el) for the left. Then if the two children
represent boxes arranged side by side,

a =

√
a′e′√

el
al

+
√

er
ar

(1)

e =
√

a′e′
(√

el

al
+

√
er

ar

)
(2)

where
√

a′e′ = max
i∈{r,l}

[
√

aiei] . (3)

On the other hand, if the two children children represent boxes
arranged one on top of the other,

a =

√
alel +

√
arer√

e′
a′

e =

√
e′

a′
(
√

alel +
√

arer)

where
√

e′

a′
= max

i∈{r,l}

[√
ei

ai

]
. (4)

To interpret these formulas, it is useful to think of the quantities√
ae and

√
e
a

as “relative height” and “relative width,” respec-
tively, in the same way thate is a relative area. For example, the
aspect ratio in (1) is the ratio of a relative height divided by the sum
of two relative widths, and the relative area in (2) is the product of
the same. Finding the maximum in (3) determines which box is
taller, and therefore governs the height of the box. An analogous
discussion holds for the case of vertically arranged boxes, where
(4) determines which box is wider, and therefore governs the width
of the box.

The bounding box of the root is particularly important because
it conveys the shape and relative area of the entire layout. We refer
to it as theprincipal bounding box.

Since relative areas are consistent throughout the tree, we can
score a layout as soon as the bounding boxes are known. For a tree
T , the fraction of the page covered by photo is

score(T) = G
∑N

i=1 ei

epbb

min{apbb, apage}
max{apbb, apage}

whereG is a positive constant described below;N is the number
of photos;ei is the relative area of photoi; epbb andapbb are the
relative area and aspect of the principal bounding box; andapage

is the aspect of the page.

2.2.2. Allocating regions of space to nodes

This process, which is illustrated in Fig. 5, has two steps. The first
step is to divide the page into cells; and the second is to position
each photo in its cell.

2

box
a=5/4

bounding
principal

cm2

cm2
24

cm2
16

24

cm2

2(24*0.95)

cm2

2(24*0.95)

cm2

2(16*0.95)

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

page
a=1

100 cm

Fig. 5. Allocating space on the page.

To divide the page into cells, we split rectangles as illustrated
in Fig. 1, starting with the entire usable area of the page as the first
rectangle. Each split is accomplished by drawing a line segment
for a corresponding interior node. Starting at the root, we work
down, following the order of a breadth-first search.

In the case of an interior node corresponding to a vertical di-
vision, the task is to select a horizontal position along the width
of the available region. Denoting the position with a scalarx ∈
(0, 1), wherex = 0 would represent the leftmost position and
x = 1 the rightmost, we compute

x =

√
el
al√

el
al

+
√

er
ar

whereal, el andar, er are the aspects and relative areas of the
bounding boxes for the left and right children of the interior node.
Notice this formula uses the relative widths of the bounding boxes
of the children of the interior node as proportions. The analogous

formula for a horizontal division uses the relative heights. Denot-
ing the position with a scalary ∈ (0, 1), wherey = 0 would
represent the bottom position andy = 1 the top, we compute

y =

√
ebab√

ebab +
√

etat

whereab, eb andat, et are respectively the aspect and relative area
of the bounding boxes for the bottom and top children of the inte-
rior node.

The areaAi for photoi is computed from the relative area of
the photo assigned to it, as follows:

Ai = G ei

epbb
Apbb ,

whereApbb is an area for the principal bounding box, computed

Apbb = Apage
min{apbb, apage}
max{apbb, apage}

with Apage the area of the usable page space.G is a scalar used to
shrink each photo from the maximum area it could have as dictated
by parameters of the tree, SettingG to a value between 0 and 1 has
the effect of creating a buffer of space around the photo. We used
G = 0.952.

3. RESULTS

Figure 6 presents three different layouts of the same collection of
eight photos. For the first layout, we divided the photos into two
groups of four, and we used a page aspect ratio of8 1

2
× 11. For

the second layout, we used a square page to simulate printing on
an album page or a CD case insert; and for the third, we used
an aspect of2× 5 to simulate printing a large banner. Notice that
because of the hierarchical scheme described above, the photos are
arranged efficiently; for example, the short, wide photo at bottom
of the first8 1

2
× 11 page is situated low, affording greater space

for the other three photos to be rendered larger. Also notice that
on any given page in this figure, all photos have the same area,
regardless of their aspect ratios. This is a deliberate result of the
fact that we fixed the photo relative areas to be equal.

See Fig. 7 for three layouts that have the same photos, but
different assignments of relative areas. For example, in the layout
at left, the area of photo A is twice that of photo B, and2

3
the area

of photo D.

4. DISCUSSION AND CONCLUSIONS

A number of factors that could contribute to a more complex scor-
ing function (e.g., aspect ratios and relative areas) are not allowed
to vary. Photos are not allowed to overlap, and they are not ro-
tated. Allowing any of these attributes to change while developing
improved score functions may improve our results. In particular,
notice that we could allow thea’s ande’s of terminal nodes to vary
within tolerances. Allowinge’s to change would affect the area ra-
tios, and allowinga’s to vary would require cropping photos. As
long as the tolerances are not excessive, this may afford far greater
layout scores without adversely affecting perceived layout quality.

We have assumed photos may be scaled to arbitrary rendered
area. This means we assume there is sufficient pixel resolution
to guarantee satisfactory image quality, and we ignore restrictions

around rendered pixels per inch. Empirically, this has not been a
problem in our experiments with 3-, 4- and 5-megapixel photos
rendered on typical displays and8 1

2
× 11 printed pages.

This work has presented a fast method for arranging a group of
photos on a page. We have found this is a reliable method to gen-
erate a satisfactory layout quickly. However, many layouts appear
to leave some room for improvement, and one of our next steps for
this work is to explore ways these layouts can be optimized.

2 x 5

11 x 11
one page

two pages
8.5 x 11

one page

Fig. 6. Three different layouts of the same eight-photo collection.
For each page, the relative areas of the photos were all equal.

Fig. 7. Layouts of the same four photos, with different assignments
of relative areas.

5. REFERENCES

[1] E. Goldenberg, “Automatic Layout of Variable-Content Print
Data,” M.S. thesis, University of Sussex, Brighton, UK, 2002.

[2] B. Shneiderman, “Tree Visualization with Tree-Maps: 2-d
Space-Filling Approach,” ACM Transactions on Graphics,
vol. 11, no. 1, pp. 92–99, January 1992.

[3] D. F. Wong and C. L. Liu, “A New Algorithm for Floorplan
Design,” in23rd Design Automation Conference, Las Vegas,
NV, 1986, IEEE, pp. 101–107.

[4] J. Geigel and A. Loui, “Using Genetic Algorithms for Album
Page Layouts,” IEEE Multimedia, vol. 10, no. 4, October–
December 2003.

