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ABSTRACT

In this paper we introduce a class of linear �lters called \donut �lters" for the design of halftone screens that

enable robust printing with stochastic clustered dots. The donut �lter approach is a simple, yet eÆcient method

to produce pleasing stochastic clustered-dot halftone patterns (a.k.a AM-FM halftones) suitable for systems

with poor isolated dot reproduction and/or signi�cant dot-gain. The radial pro�le of a donut �lter resembles the

radial cross section of a donut shape, with low impulse response at the center that rises to a peak and drops o�

rapidly as the pixel distance from the center is increased. A simple extension for the joint design of any number

of colorant screens is given. This extension makes use of several optimal linear �lters that may be treated as

a single donut multi-�lter having matrix-valued coeÆcients. A key contribution of this paper is the design of

the parametric donut �lters to be used at each graylevel. We show that given a desired spatial pair-correlation

pro�le (a.k.a. spatial halftone statistics), optimum donut �lters may be generated, such that the donut �lter

based screen design produces patterns possessing the desired pro�le in the maximum-likelihood sense. In fact,

\optimal green-noise" halftone screens having the spatial statistics described by Lau, Arce and Gallagher may

be produced as a special case of our design. We will also demonstrate donut �lter designs that do not use an

\optimum green-noise" target pro�le in the design and yet produce excellent stochastic clustered-dot halftone

screens.

Keywords: image halftoning, screen design, AM-FM halftones

1. INTRODUCTION

Conventional screens rely on dot size modulation (a.k.a. amplitude modulation (AM)) to reproduce tones since

the dot centers are laid out on a �xed grid. The dot sizes increase to represent a darker tone and decrease to

represent a lighter tone. Halftoning methods such as error di�usion use a �xed dot size (of typically one pixel)

and modulate the density or frequency of the dots (frequency modulation (FM)) to reproduce grayscale . Thus

the dots get closer together to represent a darker tone and further apart to represent a lighter tone. AM-FM

halftones are hybrid halftones that aim to achieve a balance that takes advantage of the desirable qualities of

both AM and FM halftones.

Laser printers su�er from the problem that the electro-photographic (EP) process is not able to reliably

produce isolated pixel dots. This translates to dot dropouts in the highlights, plugging in the shadows and

grainy appearance due to dot clumping in the mid-tones. Typically laser printers use conventional clustered-dot

screens which are a periodic arrangement of pixel clusters on a grid that provide a stable dot transfer. However,

since the grid frequency can interact with texture in the image or with other color planes or with a scanning

grid an undesirable beat pattern called Moire could be produced. For these reasons researchers have worked

on producing halftones that are formed from aperiodic spatial point processes with clusters of pixels of variable

size and density.1{10 Such AM-FM halftones, typically are able to provide better tone transitions and detail

rendition than clustered-dot screens since their dot clusters are not con�ned to lie on a �xed frequency grid and

o�er a more stable printing process than FM halftoning for EP printing.

In this paper we introduce a method of generating AM-FM halftone screens using a class of linear �lters

that we call donut �lters. The radial pro�le of a donut �lter resembles the radial cross section of a donut shape,

with low impulse response at the center that rises to a peak and drops o� rapidly as the pixel distance from the
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Figure 1. Radial impulse response of a donut �lter using di�erence of Gaussians: D(r) = 4
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center is increased. We relate the donut �lter method to the optimum maximum likelihood screen design method

proposed by Lau, Arce and Gallagher5, 10 and establish that either method could be used to generate halftone

patterns based on a probabilistic de�nition of the spatial statistics of the underlying point processes.

Section 2 introduces and motivates the donut �lter method of dither array generation. Section 3 reviews

notions of optimum AM-FM patterns4, 10 and optimum green-noise halftone screen design5, 10 based on spatial

statistics proposed by Lau, Arce and Gallagher. In section 4 we relate the donut �lter method to the optimum

green-noise construction method and show that the donut �lter method can indeed produce optimal monochrome

and color green-noise halftone patterns based on the criteria described as optimum by Lau et. al.. Section 5

analytically compares an empirically optimized donut �lter designed without the notion of optimal statistics to

the optimized donut �lters of section 4. Finally section 6 concludes the paper by summarizing the contributions.

2. SCREEN DESIGN USING DONUT FILTERS

Donut �lters, �rst proposed for screen design by Lin3 have a spatial pro�le with a characteristic impulse response

that is low at dc and exhibits a peak(s) away from dc, and drops o� rapidly as the pixel distance from the center

is increased. Fig. 1 shows an example donut �lter. The �lter shown in Fig. 1 may be described by a simple

di�erence of Gaussians as D(r) = 

h
e��

r
2

2 � e�� r2
i
as a radial function of the average inter-minority pixel

distance r for � = 5:5 and 
 = 4. The parameter 
 scales the donut �lter to have a peak response of unity.

The motivation for using a donut shaped impulse response is that it encourages dot clusters to form close to dot

centers while inhibiting dot clusters especially strongly midway between dot clusters. The construction of an L

level, M �N screen S[i; j], using donut �lters is a simple process.

1. Set starting level l = l0

2. Set n = 0, g = l=L. Generate donut �lter Dg[i; j] for graylevel g.

3. Filter minority pixel pattern �[i; j](locations where minority pixels exist are set to 1 and majority pixel

locations are set to 0) for graylevel g using the donut �lter Dg [i; j] to produce an output O
(n)
g [i; j].

4. Find location [i�; j�] where O
(n)
g [i; j] is minimum (maximum) subject to the constraint that O

(n)
g [i; j] is a

majority (minority) pixel when g � 0:5 (g >= 0:5). Set S[i�; j�] = l.

5. If g � 0:5 the majority pixel at [i�; j�] is selected and that majority pixel is converted to a minority pixel.

�g [i
�; j�] = 1

6. If g > 0:5 the minority pixel at [i�; j�] is selected and that minority pixel is converted to a majority pixel.

�g [i
�; j�] = 0
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Figure 2. Ideal pair correlation function for a green-noise halftone pattern. The radial distance is in units of principle

wavelength �g

7. If the desired concentration of minority pixels is achieved ie: if n = ndesired, update l  l + 1 and go to

step 2. If not go to the next step. If all graylevels are processed, we are done.

8. Update �lter output as

O(n+1)
g [i; j] 

(
O
(n)
g [i; j] +Dg [mod(i

�

� i;M);mod(j� � j;N)] ; g � 0:5

O
(n)
g [i; j]�Dg [mod(i

�

� i;M);mod(j� � j;N)] ; g > 0:5

9. increment n as n n+ 1

10. goto step 4.

Since the �ltering is linear, instead of performing step 3 every time a pixel is added, we may update the past �lter

output using one addition per pixel. This is encapsulated in step 8. For every new graylevel the �ltering could

be performed by a di�erent donut �lter using FFTs. The use of the FFTs implies that a circular convolution is

used to perform the �ltering, hence there designed screen tiles smoothly without boundary artifacts. Typically

the pattern upto the level l0 is produced using blue-noise methods11.12

3. HALFTONE STATISTICS AND OPTIMUM AM-FM SCREENS

Lau Arce and Gallagher4, 10 analyzed the spatial patterns produced by AM-FM halftones in the spatial and

frequency domains. They found that the pattern power spectra exhibited a strong mid-frequency component

and hence they coined the term "green-noise" halftoning as opposed to conventional "blue-noise"13 halftone

patterns that had pattern spectra with strong high frequency components. Lau Arce and Gallagher4, 10 also

formulated criteria for \optimum green-noise" patterns by extending Ulichney's optimum homogeneous packing

argument for isolated dots to dot clusters.13 An optimum green-noise pattern for a graylevel g is characterized

by the average distance between the dot-centers of minority pixel clusters also called the principle wavelength

�g .

�g =

8<
: 1=

q
g=M ; 0 < g � 1=2

1=

q
1� g=M ; 1=2 < g � 1

(1)

whereM is the average number of minority pixels per cluster. Following up on their work, Lau Arce and Gallagher

presented a method to construct green-noise masks having this property.5 Lau et. al. used spatial statistics

such as the pair correlation function commonly employed in stochastic geometry14 to characterize green-noise

halftones. The pair correlation function K(r) is de�ned as the ratio of the expected number of minority pixels
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Figure 3. Evaluating majority pixel locations at which to add a minority pixel for 0 < g � 0:5. The pixels drawn with

thick lines indicate current minority pixels. The pixel drawn with thin lines represents a candidate majority pixel location

for adding the next minority pixel.

at distance r given that the distance is measured from a minority pixel to the expected number of minority

pixels at a distance r from an arbitrary pixel. Fig. 2 shows the pair correlation function for an optimum

green-noise pattern. The pair correlation function for an optimum green-noise pattern exhibits a peak near

the origin and has multiple peaks at positive integer multiples of �g with valleys in between . As the distance

from a dot-cluster increases the pair correlation function asymptotically equals 1. Lau et. al.5 use the pair

correlation function shown in Fig. 2 to construct optimum green noise screens using their binary pair correlation

construction algorithm (BIPCCA). The algorithm is essentially a maximum likelihood algorithm that initially

assigns probabilities to pixels in an uncorrelated manner. As each new minority pixel is added, the probabilities

of all neighboring majority pixels is adjusted according to the desired pair correlation of the desired pattern.

The probability of a majority pixel to become a minority pixel is increased if the majority pixel is at a distance r

from the newest minority pixel and K(r) > 1. The probability of a majority pixel to become a minority pixel is

decreased if the majority pixel is at a distance r from the newest minority pixel and K(r) < 1. Lau et. al. also

use a multiplicative concentration matrix derived from the normalized output of a Gaussian �lter to promote

dot growth in areas where large voids exist, by increasing the probability of majority pixels in such regions to

become minority pixels. Imposing the stacking constraint, BIPCCA was extended to construct a screen.5

4. OPTIMUM DONUT FILTERS

In this section we show that given a spatial halftone statistics we may use appropriately designed donut �lters

to construct halftone patterns possessing that statistic in the maximum likelihood sense. This uni�es the theory

of �lter based screen design methods (ex. void and cluster) and the optimal maximimum likelihood method

proposed by Lau et. al. The optimum screen design problem reduces to the design of the optimum donut �lter

to be used at each graylevel. In section 4.1 we consider the case of monochrome screen design using optimum

donut �lters. Section 4.2 generalizes this result to joint color screen design using optimized donut �lters.

4.1. Optimum AM-FM monochrome screen design

We use a modi�cation of the pair correlation function to specify the desired statistics. We de�ne a related

function called the spatial probability pro�le that encodes the probability of seeing a minority pixel at a radial

distance r from the center of any dot-cluster of minority pixels. It is essentially a scaled version of the pair

correlation function de�ned by

Zg(r) =

�
g K(r) ; 0 < g � 1=2

(1� g) K(r) ; 1=2 < g � 1
(2)

According to the spatial probability pro�le, the probability of seeing a minority pixel at given distance r from a

minority pixel becomes equal to the unconditional probability of seeing a minority pixel as r gets large.

Fig. 3 shows the situation in which a minority pixel is to be added to an existing pattern of minority pixels

for a graylevel g � 0:5. If the positions of all existing minority pixels is given by the set Y = fy1;y2; � � � ;ytg,
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Figure 4. Impulse responses of optimal donut �lters for di�erent graylevels. The radial distance is in units of principle

wavelength �g

then the optimum majority pixel location x� 2 X at which to add the next minority pixel is the location that

maximizes the probability of observing minority pixels at Y given that a minority pixel is added at x.

x� = argmax
x2X

P (Yjx) = argmax
x2X

tY
k=1

P (ykjx) (3)

where we have assumed that, given a minority pixel at x, seeing a minority pixel at a location yi 2 Y is

independent of seeing a minority pixel at a location yj 2 Y for i 6= j. This assumption is in fact implied by the

optimal spatial probability pro�le which assigns a probability to a minority pixel yk 2 Y that only depends on

its distance to x. Taking the negative logarithm converts equation (3) to a minimization problem.

x� = argmin
x2X

tX
k=1

� log (P (yk jx)) = argmin
x2X

tX
k=1

� log (Zg(jjyk � xjj)) (4)

Since the minority pixel pattern consists of ones and zeros the above summation may be regarded as a linear

�ltering operation. Thus the maximum likelihood solution to the minority pixel placement problem is obtained by

�ltering the existing minority pixel pattern using a radial linear �lter with a radial impulse response � log (Zg(r))

and adding a minority pixel to the majority pixel location where the �lter output is minimum. When g > 0:5

we need to convert minority pixels to majority pixels in order to satisfy the stacking constraint. In this case we

need to �nd the minority pixel with the lowest likelihood of being a minority pixel and convert it to a majority

pixel. In this case the optimal minority pixel location is given by

y� = argmax
y2Y

tX
k=1

� log (P (ykjy)) = argmax
y2Y

tX
k=1

� log (Zg(jjyk � yjj)) (5)

Using the maximum likelihood solution as described above does not constrain the dot growth to be homogeneous.

This solution does not necessarily encourage pixels to form in regions where there are large voids. The optimal

donut �lter may be constructed according to the following formula

Dg(r) = (1� �)
log (Æ + Zg(r))

log (Æ + Zg(0))
+ �e�r

2

(6)

The parameter Æ is a small constant used to avoid the log(0) situation (we use Æ = 10�15). The parameter

� 2 [0; 1] provides a compromise between satisfying the optimal spatial statistics and achieving homogeneous

dot growth, both of which are important. At locations where the minority pixel density is large the additional
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Figure 5. Ideal pair correlation functions Kkk(r) and Kkm(r); k 6= m for a color green-noise halftone pattern. The

radial distance is in units of principle wavelength �g

term provides a large response while it provides a low response when a void is encountered. It must be noted

that the optimum donut �lter is not unique, but de�nes an equivalence class of allowed linear �lters. Indeed

once Dg(r) is designed any �lter of the form D0

g(r) = K1Dg(r)+K2 where K1 > 0 would also produce the same

results. The optimal spatial probability pro�le may be derived from the optimal pair correlation function of Fig.

2. Fig. 4 shows the radial impulse response of the optimal donut �lters for g = 0:1 and g = 0:3. They have

the characteristic donut �lter shape. A complete optimal monochrome screen design may be carried out using

the procedure described in section 2. A void and cluster approach was used to design blue-noise patterns upto

graylevel 5%. Fig. 7 shows the results of halftoning constant graylevels of 10%, 30% and 50% respectively using

a screen designed using the optimum donut �lters along with their respective spatial probability pro�les. Note

the strongest peaks occur at the principle wavelength �g . The corresponding patterns for the darker tones are

similar.

4.2. Optimum AM-FM color screen design

The approach of section 4.1 may be extended to the joint design of color screens. Joint color statistics may be

de�ned by joint pair correlation functions.5 Fig.5 shows the joint pair correlation function used by Lau et. al.

to generate joint colorant screens where overlap between di�erent colorants is discouraged. Spatial probability

pro�les may be derived from these pair correlation functions using equation (2). The spatial probability pro�le

functions Zkk
g (r) represent the probability of seeing a minority pixel in the kth colorant plane at a distance r

from another minority pixel in the kth colorant plane. The spatial probability pro�le functions Zkm
g (r); k 6= m

represent the probability of seeing a minority pixel in the mth colorant plane at a distance r from another

minority pixel in the kth colorant plane. The optimal donut �lters in this case are given by the equation:

Dkm
g (r) =

8><
>:


kk

"
(1� �)

log
�
Æ + Zkk

g (r)
�

log
�
Æ + Zkk

g (0)
� + �e�r

2

#
; k = m


km
�
log
�
Æ + Zkm

g (r)
��

; k 6= m

(7)

where the homogeneity term is omitted when k 6= m since it is already taken into account while designing the

individual colorant planes. The constants 
kk and 
km scale the �lter responses to achieve a peak value of unity.

Fig. 6 shows the radial impulse responses of the donut �lters for graylevels g = 0:1 and g = 0:3. Let us consider

the joint design of an L level, M �N screen S[i; j] with C colorants. The �ltering operations may be expressed

as linear �ltering using 1� C multi-�lters (ie: �lters with matrix-valued coeÆcients).

~Dk
g [i; j] =

�
�k1g Dk1

g [i; j]; �k2g Dk2
g [i; j]; � � � ; �kCg DkC

g [i; j]
�

(8)
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Figure 6. Radial impulse responses Dkk

g
(r) and Dkm

g
(r); k 6= m of color donut �lters at graylevel g = 0:3.

where �kmg is a graylevel dependent relative weighting factor that weights the in
uence of the mth colorant plane

on the statistics of the kth colorant plane. The weighting constants satisfy the equations

CX
m=1

�km = 1 ;8k (9)

�km � 0 ;8k;m (10)

A �ltering of the minority pixel color patterns �[i; j] =
�
�1g [i; j]; �

2
g[i; j]; � � � ; �

C
g [i; j]

�T
using this multi-�lter is

performed according to

Ok
g [i; j] =

�
~Dk
g ?�

�
[i; j] =

CX
m=1

�kmg
�
Dkm
g � �mg

�
[i; j] (11)

where the matrix-vector convolution operator ? is represented using the scalar convolution operator �. As with

monochrome screen design, the color screens are designed one graylevel at a time.

1. Set starting level l = l0

2. Set k = 1, g = l=L, n = 1. Generate donut multi-�lters ~Dk
g [i; j] for graylevel g, 8k.

3. Filter minority pixel pattern �[i; j] for graylevel g using the donut multi-�lter ~Dk
g [i; j] to produce an output

O
k(n)
g [i; j].

4. Find location [i�; j�] in colorant plane k where O
k(n)
g [i; j] is minimum (maximum) subject to the constraint

that O
k(n)
g [i; j] is a majority (minority) pixel when g � 0:5 (g >= 0:5). Set Sk[i

�; j�] = l.

5. If g � 0:5 the majority pixel in colorant plane k at [i�; j�] is selected and that majority pixel is converted

to a minority pixel. �kg [i
�; j�] = 1.

6. If g > 0:5 the minority pixel at [i�; j�] in colorant plane k is selected and that minority pixel is converted

to a majority pixel. �kg [i
�; j�] = 0.

7. Update �lter output for colorant plane k as

Ok(n+1)
g [i; j] 

8>>>><
>>>>:

O
k(n)
g [i; j] +

CX
m=1

�kmg Dkm
g [mod(i� � i;M);mod(j� � j;N)] ; g � 0:5

O
k(n)
g [i; j]�

CX
m=1

�kmg Dg[mod(i
�

� i;M);mod(j� � j;N)] ; g > 0:5



8. If k = C goto the next step, else increment k as k  k + 1 and goto step 3 if n = 1 or step 4 if n > 1.

9. If the desired concentration of minority pixels in all the colorant planes is achieved ie: if n = ndesired,

update l l + 1 and go to step 2. If not go to the next step. If all graylevels are processed, we are done.

10. increment n as n n+ 1

11. goto step 4

Fig. 8 shows the results of halftoning constant Cyan-Magenta graylevels of 10%, 30% and 50% respectively

using a screen designed using the optimum donut multi-�lters along with their respective spatial probability

pro�les. We used �kkg = 0:7 and �kmg = 0:3 ; k 6= m. Note that the strongest peak of Zkk
g (r) and the corresponding

strongest valley of Zkm
g (r) occurs at the principle wavelength �g . The corresponding patterns for the darker

tones are similar.

5. SUB-OPTIMAL DONUT FILTERS

It is interesting to compare the performance of donut �lters not designed using the optimal method described in

section 4 with optimal donut �lters. We will refer to the empirically designed donut �lters as sub-optimal donut

�lters. Consider the parametric donut �lter pro�le D(r) = 

h
e��

r
2

2 � e�� r2
i
. The constant 
 is chosen to

normalize the peak of the donut response to unity. This design generates a one parameter family of donut �lters

which may be empirically optimized by varying �. We obtained the best results for � � 5:5; 
 � 4. Fig. 9 shows

the results of halftoning constant graylevels of 10%, 30% and 50% respectively using a screen designed using the

sub-optimal donut �lter along with their respective spatial probability pro�les. Note that the strongest peaks in

the probability pro�les occur away from the principle wavelength �g .

6. CONCLUSIONS

In this paper we have presented a method of generating AM-FM halftone screens using a class of linear �lters

that we call donut �lters. We have shown how the donut �lters may be designed to produce optimum green-noise

screens based on a given pair-correlation function. We have also shown how optimum AM-FM color screens may

be produced using novel donut multi-�lters. This work relates the donut �lter method to the optimum maximum

likelihood screen design method proposed by Lau, Arce and Gallagher and establishes that either method could

be used to generate halftone patterns based on a given pair correlation function. Further, we demonstrated

sub-optimal donut �lters that were not designed with the 'optimum' green-noise pair-correlation function but

which also produce excellent AM-FM patterns in practice.
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Figure 7. Performance of optimum monochrome donut �lters. (a)-(c) show halftones at various graylevels. (d)-(f) show

the computed spatial probability pro�le. The vertical line indicates the location of �g.
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Figure 8. Performance of optimum color donut multi-�lters. (a)-(c) show Cyan-Magenta halftones at various graylevels.

(d)-(f) show the computed spatial probability pro�les for the Cyan color plane. The vertical line indicates the location of

�g.
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Figure 9. Performance of empirically optimized sub-optimal donut �lter. (a)-(c) show halftones at various graylevels.

(d)-(f) show the computed spatial probability pro�les. The vertical line indicates the location of �g.


