Dithering with Blue Noise

ROBERT A. ULICHNEY

Digital halftoning, also referred to as spatial dithering, is the
method of rendering the illusion of continuous-tone pictures on
displays that are capable of only producing binary picture ele-
ments. The concept of blue noise—high frequency white noise—
is introduced and found to have desirable properties for haltoning.
Efficient algorithms for dithering with blue noise are developed,
based on perturbed error diffusion. The nature of dither patterns
produced is extensively examined in the frequency domain. New
metrics for analyzing the frequency content of aperiodic patterns
for both rectangular and hexagonal grids are developed; blue-noise
dithering is found to be ideally suited for rectangular grids. Several
carefully selected digitally produced examples are included.

GLOSSARY OF SYMBOLS

A Width of the annuli over which the power
spectrum estimate P(f) is averaged to form
the radially averaged spectrum P,(f).

g Principle radial wavelength in a homoge-
neously distributed field of binary pixels rep-
resenting the constant gray level g.

og Variance of an individual output binary pixel
resulting from halftoning homogeneous
region of gray level g.

e[n] Error filter. Governs how past quantization
errors are negatively distributed or “dif-
fused” into the yet to be quantized image in
the error diffusion algorithm.

f Continuous-space frequency vector,

e [:]

Principal radial frequency in a field of homo-
geneously distributed binary pixels repre-
senting gray level g.

f, Radial frequency. The scalar distance in fre-
quency units from zero frequency in a two-
dimensional Fourier transform.

g Gray level. It has a continuous value in the

range 0 (white) to 1 (black) inclusive.
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/[n] Quantized discrete-space image. The output
from a halftoning process.
Ilm; g1 The binary output image resulting from half-
toning an image consisting of a fixed gray
level J[n] = g.
JIn] Continuous amplitude, discrete-space im-
age. Input to a halftoning process.
n Discrete-space spatial index vector,

"= H

N (f) Number of discrete frequency samples in an
annulus about radial frequency f,.

P(f) Power spectrum. In this report, only the
power spectra of binary output of aperiodic
halftone processes on a single-input gray
level are considered.

P(f) Power spectrum estimate.

P(f;) Radially averaged power spectrum. Sample
mean of the frequency samples of B(f)in the
annulus, || f| — f.| < A/2, about f,.

s%f,) Sample variance of the frequency samples of
B(f) in the annulus, || f| — £,| < A2, about f..

s2(£)P(f,) Anisotropy of P(f).
S Sample period.
uy, u, Frequency baseband replication vectors.
U Frequency baseband replication matrix,
[u; ;).
v1, v, Spatial sampling vectors.
V Spatial sampling matrix, [v,: v,].

. INTRODUCTION

The nature of various types of noise is often described
by a color name. The most well known example is ““white
noise,” so named because its power spectrum is flat across
all frequencies, much like the visible frequencies in white
light. “Pink noise” is used to describe low-frequency white
noise, the power spectrum of which is flat out to some finite
high-frequency limit. There is even the curious case of
“brown noise,” named for the spectrum associated with
Brownian motion [13]. Introduced in this paper is “blue
noise,” the high-frequency complement of pink noise,
which is shown to be important in the generation of good
quality digital haiftones.

Digital Halftoning is the method of rendering the illusion
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of continuous-tone pictures on displays capable of only
producing binary picture elements. Itis sometimes referred
to as spatial dithering. Several approaches to this process
are known: Overviews of existing halftone algorithms have
been written by Jarvis et al. [17), Stoffel and Moreland [30],
Stucki {31], and Ulichney [34]. When a rendering system,
such as that of the offset printing process, cannot ac-
commodate small isolated black or white pixels, a “’clus-
tered-dot” screen is needed. Otherwise “‘dispersed-dot”
methods are preferred, and are the focus of this paper.
Techniques can also be categorized by computational com-
plexity as either point or neighborhood processes.

Ordered dither is a point process that produces output
by comparing a single continuous-tone input value to a
deterministic periodic array of thresholds. For images on
square grids, the threshold arrays attributed to Bayer [5]
have been in wide use. Homogeneous threshold arrays have
also been developed for hexagonal and asymmetric grids,
with the theoretical background for the study and design
of these dither patterns available in [34, ch. 6-7].

Schemes which generate blue noise are neighborhood
operations. As in two-dimensional white-noise patterns,
blue-noise patterns are aperiodic and radially symmetric.
Although white-noise patterns do not suffer from the cor-
related periodicity of ordered dither, the fact that they pos-
sess energy at very low frequencies result in a grainy
appearance. Blue-noise patterns enjoy the benefits of ape-
riodic, uncorrelated structure without low-frequency
graininess.

The important algorithm known as Error Diffusion is
closely examined and with some variation is found to be a
good blue noise generator. This algorithm is examined for
both rectangular and hexagonal grids. After the success of
hexagonal grids for the case of ordered dither, it is sur-
prising to learn, as will be theoretically established, that a
rectangular grid is the superior choice for dithering with
blue noise.

The input to a halftone process is J[n4, n,] = J[n], a con-
tinuous-tone discrete-space monochrome image with gray
values between zero (white) and one (black). The output is
a binary discrete-space image /[nl.

Of particular interest are the binary patterns, /[n; g,
resulting from dithering an input image of only one fixed
gray value J[n] = g. The aperiodic patterns generated in this
paper can be modeled as stochastic processes. The uncon-
ditional probability mass function of any individual binary
output pixel, I[n; g, is

, for I[n; g] = 1

g
Ulm; gD = { (n
pr & (1—g), forlln;gl=0

that is, it can be modeled as a Bernoulli distribution. Since
this is true for all n, I[n] is a stationary random process with

E{lim; gl} =g ¥3)
and
var {I[m; g1} = ok =g(1 - g )

The mean of /[n; gl is exactly what is expected, since the
gray level g is being represented. The variance of /[n; g] var-
ies with g, and has a maximum at g = 3, midway between
the extremes of zero variance at solid black and white.

Such patterns will be closely examined in the frequency
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domain. The symbols used in this paper are listed in the
Glossary of Symbols.

Il.  FOURIER ANALYSIS

The Fourier transform has been employed to evaluate
halftone images for the cases of ordered dither on square
grids [2], [18], [25], and ordered dither on hexagonal grids
[33], [141. In this section, metrics for analyzing the nature
of aperiodic binary dither patterns will be developed in the
frequency domain.

The most characteristic feature of a halftone technique
is the texture generated in areas of uniform gray. The ren-
dition of high-frequency detail depends primarily on how
sharp the image was (or to what extent high-pass filtering
was performed) prior to halftoning. Radially averaged power
spectra along with a measure of anisotropy provide a mech-
anism for studying aperiodic patterns.

Figs. 1 and 2 show square and hexagonal sampling grids
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Fig. 1. Square grid. (a) The spatial-domain sample loca-
tions. (b) The frequency-domain sample locations.
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Fig. 2. Hexagonal grid. (a) The spatial-domain sample loca-
tions. (b) The frequency-domain sample locations.

or lattices. A periodic sampling grid can be defined by a
spatial sampling matrix V = [vq:v,], composed of two lin-
early independent sampling vectors,

Un V12
v, = v, = . 4

V21 V22
The Fourier transform on such a grid will be repeated in the
frequency domain as defined by the frequency baseband

replication matrix U = [uy: ).
These two matrices are reciprocally related by

viu =1

where lis the identity matrix. In this paper, frequency space
has units of cycles per unit length. The details of computing
the Fourier transform for this application are given in [34,
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ch. 3]; the treatment of general periodic grids is also found
in [8].

Both the rectangular and hexagonal grids to be consid-
ered are regular, that is, have pixel shapes tiling the plane

that are regular polygons. In both cases, |v| = |vy| = |v,| =
S. For the rectangular grid
KS,
V=
0 S,
F‘l .
S
U= . (5
1
0 —
— Sr
For the hexagonal grid
[, &
S —_—
" 2
V= A
(6)
[
Sh
U=
-1 2
| V35, V38,

Sample periods for the rectangular and hexagonal case are
denoted S, and S;,. To maintain a constant number of sam-
ples per unit area in the examples that follow

S, V3

Sh 2"

Note that the magnitude of the baseband replication vec-
tors u; and u, are equal within each case. That is, |u| = |u)
= |Uer and

1
=, for rectangular grids

u) ={ 7)

for hexagonal grids.

v3s,’

Halftone processes which do not produce output by
thresholding with a deterministic, periodic threshold array
will in general be aperiodic. As mentioned in the Intro-
duction, such aperiodic dither patterns can be modeled as
stochastic processes.

A. Estimating the Power Spectrum

The Fourier transform of the autocorrelation function of
astationary random process is the power spectrum P(f). In
most cases, the autocorrelation function of a given aper-
iodic halftone process will not be known, so a method of
spectral estimation must be employed to produce an esti-
mate P(f) of P(f). The very simple technique known as Bar-
tlett’s Method [4] of averaging periodograms, named after
the one who first suggested the technique for the one-
dimensional case, is used in this study to produce P(f).

A periodogram is the magnitude squared of the Fourier
transform of sample output divided by the sample size. All
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spectral estimates in this study were produced by averaging
10 periodograms of 256 X 256 output pixels from a given
halftone rendering of a fixed gray level /[n; gl. Since some
of the processes to be presented have transient behavior
near edges or boundaries, the segments are cropped suf-
ficiently far from output edges to avoid such artifacts; only
the “‘steady-state’” output is measured.

It can be shown [23] that a spectral estimate formed by
averaging K periodograms has an expectation equal to P(f)
smoothed by convolution with the Fourier transform of a
triangle function with a span equal to the size of the sample
segments, and variance

1

var { P(H)} = P P(f). ®)

B. Radially Averaged Power Spectra and Anisotropy

A desirable attribute of a well-produced aperiodic half-
tone of a fixed gray level is radial symmetry; directional arti-
facts are perceptually disturbing. A(f) is a function of two
dimensions. Although anisotropies in /[n; g] can be qual-
itatively observed by studying three-dimensional plots of

P(f), a more quantitative metric is proposed.

Fig. 3 shows how spectral estimates P(f) can be parti-
tioned into annuli of width A for regular rectangular (Fig.
3(a)) and hexagonal (Fig. 3(b)) grids. Each annulus has a cen-
tralradiusf,, the radial frequency, and N, (f,) frequency sam-
ples.

Two useful one-dimensional statistics can be derived from
averages within these annuli. The sample mean of the fre-
quency samples of A(f)in the annulus, || f] — £,| < A/2 about

f;, is defined as the radially averaged power spectrum
NAf)
P(f) = % . 9

N,(f) i<

The sample variance of the same frequency samples is
defined as
Nitf
2 2
) = Z (P = P 10
Note that the sum is divided by N,(f) — 1 and not N,(f), so
as to yield an unbiased estimate of the variance (see [11]).
For each gray-level output of a halftone process to be ana-
lyzed, two plots are presented. First, the radially averaged
power spectrum divided by oz will be shown. Since spectral
energy increases with o (see (3)), normalizing P,(f) by this
amount will render all plots on the same relative scale.
Because of the importance of o3, its relationship to gray level
g is now shown in Fig. 4.
Secondly, the anisotropy of A(f) will be plotted. Anisot-
ropy is defined in this paper as

s4(f)

_Pf(f,) an

a measure of the relative variance of frequency samples
within a given annulus. Note that this measure can be
described as the square of the coefficient of variation, or
asa‘‘noise-to-signal”’ ratio. Because the range of anisotropy
values can be quite large, it will be plotted in dembels

The zero frequency term is proportional to g?in all cases;
the spike at this frequency will not be shown since it does
not contribute to the structure of the dither pattern.
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Fig. 4. The dependence of pixel variance ¢} on gray level
8

If P(f) is perfectly radially symmetric, the measure of anisot-
ropy sXf)/P}(f) is merely an estimate of the above ratio.
Therefore, an anisotropy of % or —10 dB should be con-
sidered “background noise,” and a reference line at this
level will appear in each plot.

Also, if anisotropy is low, that is, close to —10 dB, indi-
cating good radial symmetry, then P(f) is effectively a func-
tion of one independent variable f,, instead of two variables
f. The variance of P,(f) is that of (12) divided by N, (f,), assum-
ing that each of the N,(f) samples are independent. This
reduction in variance as N, (f)) increases is indeed observed
in the experimental data to be presented.

N,(f) depends on the width of the annuli A. As indicated
earlier, in this paper all estimates A(f) will consist of 256
frequency samples. The size of A was chosen so that exactly
one sample along each frequency axis fell into each annu-

1
! lus. A plotof N, (£, for (a) rectangular and (b) hexagonal grids
| is plotted in Fig. 5.
b
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Fig. 3. Segmenting the spectral estimate into concentric x s 4
annuli. The radial frequency f, is in units of S~. (a) Regular % 500 | . -
rectangular (square) grid, 181 annuli actually used. (b) Reg- & + 1
ular hexagonal grid, 148 annuli actually used. 2 E
> -
=z
1) Quality of Measurement: To what extent will P,(f)) and 0 i s
sXf)PX(f) be meaningful metrics? From (8) and the fact that RADIAL FREQUENCY s
K = 10 segments are used in the estimate P(f) : b
var {P(f)} 1 fig. 5. Number of frequency samples N,(f) within each
— ] . — (12) annulus centered onf,. (a) Regular rectangular (square) grid.
P4(f) 10 (b) Regular hexagonal grid.
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The irregularities in the shape of these plots are a con-
sequence of rectangular and hexagonal grids not being per-
fectly radially symmetric. The number of grid points that fall
into a particular annulus essentially increases linearly, as
one would expect, up to the largest annulus that will com-
pletely fit within the shape of the baseband; this occurs at
f1S~" = } for rectangular grids and £,/S~" = 1/4/3 for hex-
agonal grids.

1. WHiTE Noise DITHERING

In this section, the process of creating a dispersed-dot
halftone by the point process of thresholding an input
image with uniformly distributed, uncorrelated (white)
noise is investigated. The quality of output from this method
does not deserve consideration for practical use; the well-
known method of dispersed-dot ordered dither performs
much better than this one, taking no more computational
effort.

Sowhy should a section be devoted to this so called tech-
nique of “random dither’? There are two reasons.

Thefirstis historical. The idea was the first used to exploit
the fact that electronic displays can have independently
addressable dots. Goodall [15] in 1951 and Roberts [24] in
1962 demonstrated how contouring due to insufficient gray
levels can be corrected by adding noise of this type. This
is perhaps the first technique that comes to mind to correct
the shortcomings of using afixed threshold, and in the early
days of digital halftoning it was always referenced for com-
parison; in fact the name “ordered dither’” was meant to
contrast random dither.

Secondly, investigating the output of single gray levels
I[m; g, dithered in this way, provides a means to check the
validity of the newly introduced metrics of radially averaged
power spectrum and anisotropy. Since /[n; g]is white noise,
ithas aknown autocorrelation function, namely an impulse
at the origin with area o}. So, the power spectrum should
be radially symmetric with fixed amplitude 0. Such radial
symmetry has been observed optically in Fraunhofer dif-
fraction patterns of randomly distributed apertures [16].

The random numbers used in this section are, strictly
speaking, pseudo-random. They are produced by means of
amultiplicative congruential random number generator[19]
available with many programming libraries. This is a very
efficient scheme requiring only one multiplication and divi-
sion per random number, and in the case used in this study,
has a repeat period of 22,

The effects of dithering with white noise on regular rec-
tangular and hexagonal grids will now be considered sep-
arately.

A. Rectangular Grids

A random dithered gray-scale ramp is shown in Fig. 6. An
example of the effect of random dither on a scanned image
[21]is given in Fig. 7. They suffer from a grainy appearance.
This is the case at any displayed resolution because of the
presence of long wavelengths (low frequencies) at all gray
levels. Both the rectangularly sampled gray-scale ramp and
scanned image contain 300 by 400 pixels.

Theradially averaged power spectrum and anisotropy are
essentially the same for all gray levels, and is shown in Fig.
8(a) for one particular gray level g = §. The well-behaved
nature of these plots validate four things:

60

1) The amplitude of P.(f) is correct, that is, flat, as
expected for white noise.
2) The values of ¢} are as predicted by (3), Fig. 4.
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Fig. 8. Analysis of random dither. Radial spectra (in units of ¢3), and anisotropy (in dB)
asafunction f,(in units of S~") for the fixed gray level g = g, with o = 0.1094. (a) Rectangular

case. (b) Hexagonal case.

3) The apparent variance of P.(f) decreases with N,(f)
(Fig. 5) with a minimum at , (1/ 3for the hexagonal case).

4) The anisotropy measure is correct. White noise is radi-
ally symmetric so the anisotropy should be at the ’back-
ground noise” minimum of -10 dB.

The characteristic features seen here will serve as a ref-
erence for the other plots to be studied.

B. Hexagonal Grids

Hexagonal radially averaged power spectra exhibit the
same well-behaved features as in the rectangular case. A
random dithered gray-scale ramp and scanned image are
shown in Figs.9and 10. The continuous-tone source images
used were the same as those used in the rectangular case,

.00 01 .02 04 .

.03

Fig. 9. Hexagonal random dither of a gray-scale ramp.
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< ~ .2 -

Fig. 10. Hexagonal random dither of a scanned picture.

and displayed with the same number of samples per unit
area. These hexagonally sampled images contain 273 by 440
pixels, with alternate rows offset by one half horizontal
period.

Again, the radially average power spectrum and anisot-
ropy are essentially the same for all gray levels. One rep-
resentative sample at g = § is shown in Fig. 8(b).

IV. PRINCIPLE WAVELENGTH

Consider the problem of rendering a fixed gray level g
with binary pixels on regular rectangular or hexagonal grids.
For gray levels between g = 0 (white) and g = 3, the black
pixels are in the minority and it is their spatial distribution
on a background of white that determine the perceived pat-
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terns. The patterns for dark gray levels, between g = 1(black)
and g = }, are perceived as white pixels on a black back-
ground.

The goal is to distribute the binary pixels as homoge-
neously as possible. The pixels, if so arranged, would be
separated by an average distance in two dimensions. This
distance is called the Principal Wavelength, and would have
the value

[vINg, 0<g=<1
g:{ 8 8=} w3

ViIN1—g, l1<g=1
where |v| = S as described in Section Il. Several intuitive
properties justify the relation in (13):

1) As the gray level approaches perfect black and white
the wavelength approaches infinity.

2) Wavelength decreases symmetrically with equal
deviations from black and white toward middle gray.

3) Thesquare of the wavelength is inversely proportional
to the number of minority pixels per unit area. Note that
the number of minority pixels per unit area is proportional
to g for light gray levels, and (1 — g) for dark gray levels.
As property 3) defines the equation within a proportionality
constant, the equality is complete by determining the wave-
length for a known homogeneous distribution at a partic-
ular gray level. That constant is |v| for both rectangular and
hexagonal grids.

Since the distribution is assumed to be homogeneous,
the corresponding power spectrum would be radially sym-
metric. The principal wavelength would be manifested as
the Principal Frequency

=

A

o

Vglul,
f={g|| (14)

o W1-gll, i<g

- NI=

A

where |u| is as defined in (7).
fg is ploted in Fig. 11 as a function of g for (a) rectangular
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Fig. 11. Principal frequency f, (in units of S~ "asafunction
of gray level g. (a) Regular rectangular (square) grid. (b) Reg-
ular hexagonal grid.
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and (b) hexagonal grids. These plots reveal an amazing
shortcoming of hexagonal grids; they cannot support a
principal frequency for § < g < ¥ Fig. 12(b) illustrates the
highest frequency which can exist on a hexagonal grid, £,/
§~1 =3, for either a pattern for g = } or its complement g
=1

On a rectangular grid (Fig. 12(a)), the checkerboard pat-
tern for gray level g = 3, and frequency £./S™" = 1/¥/2, can

[ BN BN BN N
-9 0 - 00
| BN BN BN X
o0 0 0
-9 0 -0 0
o 0 0 o
.o
2
(a)
-.- ] ° {4 -.- ...-....-...
U _AURE IR o0 00 00
o _o o - 00 - 00
0 _ 0 00 00 00
o _o o - 00 - 00
0 _ @0 - 00 00 00
o 0 -0 - 00 00 -
@ @ o0 00 00
1 2
9=73 9=4

(b)
Fig. 12. Patterns with the highest possible spatial fre-
quency (corresponding to the corners of the spectral base-
band). (@) Rectangular grid, f,/$~" = 1/v2, g = }. (b) Hex-
agonal grid, f,/S™" =}, g=4andg =3

most definitely be supported. These spatial patterns cor-
respond to the high-frequency corners of the frequency
baseband.

For gray levels in the range } < g < 3on a hexagonal grid,
pixels must be grouped together resulting in frequencies
lower than £,/S™1 = 4. A principal frequency exists for all
gray levels on rectangular grids.

A well-formed binary dither pattern rendering of a fixed
gray level should consist of an isotropic field of binary pix-
els with an average separation of A,. This average separation
should vary in an uncorrelated manner, but the wave-
lengths of this variation must not be significantly longer
that A,. Recall that the failure of dithering with white noise
was due to the presence of long wavelengths.

Fig. 13 depicts these well-formed dither pattern char-
acteristics in the frequency domain. The radially averaged
power spectrum of a fixed gray level g has three important
features. First, its peak should be at the principal frequency
for that gray level f,. This frequency marks a sharp transition
region below which little or no energy exists. And finally,
the uncorrelated high-frequency fluctuations are charac-
terized by high-frequency white noise, or “blue noise.”

The visually pleasing nature of some of the patterns gen-
erated by the error diffusion algorithm to be presented in
the next section can be attributed to a spectral signature
as just described. However, several shortcomings exist in
this algorithm. [n Section VI, error diffusion enhanced with
certain stochastic perturbations is found to be a good blue
noise generator.
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Fig. 13. Spectral characteristics of awell-formed dither pat-
tern: (1) Low-frequency cutoff at principal frequency. (2)
Sharp transition region. (3) Flat high-frequency “‘blue noise”
region.

The presence of significant low-frequency energy is
responsible for the visibility of disturbing artifacts in half-
toning patterns. For dispersed-dot ordered dither, half of
the total possible gray-level patterns available for a given
threshold array have low-frequency components which
correspond to wavelengths of the size of the threshold
period [34]. For good blue noise processing, the lowest fre-
quency is essentially f,. The negative feedback of error dif-
fusion acts as a low frequency inhibitor.

V. ERROR DIFFUSION ALGORITHM

The error diffusion algorithm, first introduced by Floyd
and Steinberg in 1975 [9], [10], requires neighborhood oper-
ations and is thus more computationally intensive than
point-process halftone methods. It is currently the most
popular neighborhood halftoning process and has received
considerable attention in spite of some shortcomings. A
generic form of this algorithm is graphically illustrated in
Fig. 14.

J[n) THRESHOLD 1[n]

“error”
en]
ERROR FILTER

Fig. 14. The error diffusion algorithm.

The threshold in this case is fixed at 3 where the input /[n]
varies as usual from g = 0 (white) to g = 1 (black). The result-
ing binary output value of 0 or 1is compared with the orig-
inal gray level value. The difference is suitably called the
“error” for location n. The signal consisting of past error
values is passed through an error filter e[n] to produce a
correction factor to be added to future input values. Errors
are thus “diffused” over a weighted neighborhood deter-
mined by e[n].

Fig. 15 summarizes error filter impulse responses pro-
moted in the literature. Note that in all cases the values are
deterministic and sum to 1 so that errors are neither ampli-
fied nor reduced. The first three listed are designed for rec-
tangular grids; the error filter in Fig. 15(d) is intended for
use on a hexagonal grid. In this section, their effect on
resulting dither patterns will be examined in both the spa-
tial and frequency domains.
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Fig. 15. Error filters reported in the literature. (a) Floyd and
Steinberg (1975) [9], [10]. (b) Jarvis, judice, and Ninke (1976)
[17]. (©) Stucki (1981) [32]. (d) Stevenson and Arce (1985) [29].
(a), (b) and (c) are for rectangular grids; (d) is for hexagonal
grids. (" represents the origin.)

A. The Floyd and Steinberg Filter

The original error filter or set of “weights” suggested by
Floyd and Steinberg is shown in Fig. 15(a). They argued that
a filter with four elements was the smallest number that
could produce good results. The values were chosen to par-
ticularly assure the checkerboard pattern at middle gray.

Fig. 16 shows the effect of error diffusion with the Floyd
and Steinberg filter for the gray scale ramp (Fig. 16(a)) and,
scanned picture (Fig. 16(b)). The reason for the popularity
of this algorithm is clear; several gray levels are represented
by pleasingly isotropic, structureless distributions of dots.
However, some shortcomings are also apparent:

1) Correlated artifacts in many of the gray level patterns.
This can best be seen in the gray scale ramp.

2) Directional hysteresis due to the raster order of pro-
cessing. This artifact is most apparent in very light and very
dark patterns. Note the light regions of the sky in the
scanned picture.

3) Transient behavior near abrupt edges or boundaries.

The radially averaged power spectrum P,(f) and anisot-
ropy measure s(f)/P%(f,) are plotted for several gray levels
in Fig. 17. In each case here and throughout this paper, the
principal frequency f, is marked with a small diamond on
the frequency axis of the power spectrum.

The lack of symmetry in these patterns is strongly
acknowledged in the anisotropy measure, especially for Fig.
17(d) with g = } and Fig. 17(e) with g = J. Recall that the
“background noise limit"” due to the spectral estimation
method used here is —10 dB (12) indicated by a reference
line at the level. Any measure greater than 0 dB at any fre-
quency indicates an especially anisotropic pattern; at such
alevel, the sample variance is greater than the square of the
average.

B. Filters with 12 Weights

In 1976 Jarvis, Judice, and Ninke [17] reported an error
filter with the 12 elements shown in Fig. 15(b). Although
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Fig. 16. Error diffusion with the Floyd and Steinberg filter.
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their technique was identical to error diffusion, they called
it the “Minimum Average Error’ algorithm. Output from
error diffusion with this filter is shown in Fig. 18. The larger
filter size does reduce some of the artifacts seen with the
four-element filter of Floyd and Steinberg, but directional
hysteresis in the very dark and light regions has increased,
and pixels are clustered together more in the middle gray
regions.

It also sharpens the picture more. Pictures usually look
better with some degree of sharpening; in the case of Fig.
18(b), the enhancement due to sharpening somewhat masks
the problems with patterns in uniform gray regions. Besides
compounding the comparison process, this sharpening
feature is less than ideal for two reasons. Edges are ampli-
fied along one direction only and the degree of this ampli-
fication may or may not be to the degree desired. In fact,
Stucki [32] argues that it is objectionable and uses an addi-
tional filter to inhibit this edge amplification. For any half-
toning technique, a precise degree of symmetric sharp-
ening can easily be controlled by first high-pass filtering the
image. The effect of prefiltering with a digital Laplacian is
demonstrated in Section VII.

The 12-element error filter used by Stucki is shown in Fig.
15(c). For computational efficiency, he selected values that
are all powers of 2. The effect of error diffusion with this
error filter is found to be quite similar to the images of Fig.
18.

The patterns generated for fixed gray levels with the Jarvis
et al. filter is examined in the frequency domain in Fig. 19.
While all gray levels shown still suffer some anisotropy g
= 3, 1, and § show a stronger concentration of energy at
the principal frequency f, than those of Fig. 17. The clus-
tering of pixels at g = } and J results in significant energy
at frequencies lower than f,. The radial spectra for dither
patterns generated on rectangular grids are generally very
similar for gray levels g and 1 — g; the similar patterns exist
atg=3andg =1 g =%and g = 3, and so on. So for this
and other rectangular cases gray levels greater than } are
not shown.

C. Hexagonal Case

In Section IV itwas argued that hexagonal grids were infe-
rior to rectangular grids as far as generating blue noise. This
is based on the inability of a hexagonal grid to support a
principal wavelength \, for} < g < §(see Fig. 11(b)). In spite
of this deficiency, the other features of hexagonal grids,
particularly its superior covering efficiency (see [34, ch. 2)),
are still reason to devote attention.

The only reported attempt at performing error diffusion
on a hexagonal grid was by Stevenson and Arce [29], whose
error filter was given in Fig. 15(d). They stated that this is
thefilter which gave the “highestimage quality,” but admit-
ted that no optimization was done. The effect of hexagonal
error diffusion with this filter is shown in Fig. 20. The gray
scale-ramp reveals many disturbing texture patterns.

A close look at the radially averaged power spectrum in
Fig. 21 reflects the large measure of anisotropy in seven
selected patterns. Perhaps the reason for the bizarre shape
of many of the anisotropy plots is due to the stable texture
patterns that begin to “‘grow’’ in regions of constant gray
producing localized spikes in the power spectra.
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, 05 = 0.0586. (C) g = J, £/S~" =~ 0.3495,

a:, = 0.25. (f)
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Fig. 20. Error diffusion with the Stevenson and Arce filter. (a) Gray-scale ramp. (b) Scanned

picture.

V1. ERROR DIFFUSION WITH PERTURBATION

The idea of “dithering” or perturbing a method in image
processing to defeat visual artifacts of a regular and deter-
ministic nature has been used before. Randomizing sam-
pling grids [7] is one method used to reduce the aliasing
effects of undersampled images. Allebach improved the
classical screen by randomizing the centers of dot clusters
[1], [3] which eliminated the occurrence of morié patterns.
And in the color printing industry, arbitrary or “irrational”
clustered-dot screen angles have been digitally produced
by employing random perturbations [12], [26].

Proposed here are several modifications to the basic error
diffusion algorithm graphically depicted in Fig. 14. They are
categorized in the following four areas.

Choice of Error Filter: An enormous number of choices
are available for this, the deterministic part of the algo-
rithm. An error filter can consist of weights of any 1) num-
ber, 2) position, and 3) value. For computational efficiency,
as small a filter as possible is preferred.

Threshold Perturbation: 1n 1983, Billotet-Hoffman and
Bryngdahl [6] suggested using an ordered dither threshold
array in place of the fixed threshold used in error diffusion.
However, the resulting halftoned output differs little from
conventional ordered dither. A modification to this idea
would be to perturb a fixed threshold within a given max-
imum percentage with ordered dither and/or white noise.

So, additional parameters include:

1) choice of period size of ordered dither,
2) magnitude of ordered dither perturbation,
3) magnitude of white noise perturbation.

ULICHNEY: DITHERING WITH BLUE NOISE

Raster Direction: The directional artifacts seen in the
examples of error diffusion are due largely to the traditional
raster order of processing. Many choices of space-filling
curves to define the order of processing are possible.
Although they did not calliterror diffusion, Witten and Neal
[38] demonstrated fairly good results by essentially using
an error filter with one deterministic weight and processing
all of the two-dimensional image data on a Peano curve (a
type of fractal). While this particular approach imposes
heavy demands on memory, the idea of using nonstandard
raster ordering should be tried.

One idea that breaks up the directionality of a normal
raster without the expense of a full two-dimensional buffer
is to process along a serpentine raster (see Fig. 22). Neigh-
borhood operations in image processing hardware or soft-
ware buffer image data in full lines. So the choice of ser-
pentine raster processing does not require any memory
increase over a normal raster.

Stochastic Filter Perturbations: Along with threshold per-
turbations, random noise can be added to the elements or
weights of the error filter. This idea was proposed by Schrei-
ber of MIT and demonstrated by Woo [39], but only on the
12-element filter of Jarvis et al.

The magnitude or range of additive noise can be adjusted
for each element. The sum of all of the weights in the result-
ing stochastic filter should still be unity at all times. This
condition can be met by pairing weights of comparable
value. For each pair of weights a scaled random value is
added to one and subtracted from the other.

A random value x is generated by the method described
in Section I11 with the adjusted uniform probability density
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(b)

Fig. 22. Two processing path options. (a) Normal raster. (b)
Serpentine raster.

function

a

-, for—-a, < x<a

Py = (15)
0, otherwise

for each pair of weights i in the filter. Then at every image
location for each pair of weights a;x is added to the first
weight, and subtracted from the second. The a;’s expressed
as a percentage of the smaller weight in the pair, are yet
other adjustable parameters.

The error filter can also be perturbed by randomizing the
positions of the weights.

The number of adjustable parameters available to modify
the basic error diffusion algorithm is tremendously large.
Much is to be learned about the effect of each parameter
used independently and in combination with others. Over
a hundred combinations of these parameters were exper-
imented with in this investigation; the examples that follow
are a carefully selected representative sample.

A. One Weight

The most computationally inexpensive form of the error
diffusion algorithm is one implemented with an error filter
with one weight. In this case all of the error is diffused to
only one location; no multiplication is necessary.

If the one weight is fixed to some predetermined loca-
tion, the resulting patterns fail in a big way. This is dem-
onstrated in Fig. 23 where the position of the weight was
fixed diagonally adjacent to the origin. Failure is at least as
great for any other location choice, or when a serpentine
raster is used.

However, when the position of the one weight is ran-
domly determined over some finite set of candidate posi-
tions, a much more acceptable result emerges. The images
of Fig. 24 where produced with the position of the one
weight selected with equal probability between only two
candidate locations, immediately below and preceding the
filter origin.

ULICHNEY: DITHERING WITH BLUE NOISE
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Fig. 23. Failure of one deterministic weight location.

This example represents a broad class of parameter com-
binations. Effectively the same output results for any local
neighborhood of candidate locations, as well as for a broad
range of probability mass functions governing the selection
of a location. Several combinations were tried without
change in output, including the four Floyd and Steinberg
locations using the values of their weights as the probability
mass function for position selection. Even when two or three
weights were randomly selected, no significant difference
was seen.

The radially averaged power spectrum is displayed in Fig.
25. The spectrafor the various gray levels all reveal the desir-
able properties of

1) very low anisotropy,
2) flat blue noise region,
3) cutoff at f,.

The only feature that the spectrafall short of is that ofasharp
transition region. This ismost pronounced at g = 3. The low-
frequency leakage is responsible for the grainy texture; the
associated patterns can be called “light-blue noise.”” The
suppression of frequencies below f, is sufficient, however,
to produce avastimprovement over the white noise images
of Section Ill.

B. Two Weights

In this section, variations on the error filter shown in Fig.
26 will be considered. As might be expected, using this filter
unperturbed yields unacceptable results as seen in Fig. 27.
The strong diagonal texture patterns result in an extremely
anisotropic power spectrum evidenced by Fig. 28.
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Fig. 24. Effect of one randomly positioned weight. (a) Gray-scale ramp. (b) Scanned pic-

ture.
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The use of a serpentine raster corrects the directionality
of these textures but still leaves many undesirable patterns.
This is shown in Fig. 29.

These patterns can be largely reduced by adding the per-
turbation of 100-percent randomness to the two weights;
a case that is particularly interesting because it simply
requires the selection of a random number distributed
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R
el
Rt
ZRaiR

3

>
%

(a)

\; 3!
1 . AT
{138 Y
4 3832

L0
,'Q\(

ey
vy
~‘0W‘

o5

®)
Fig. 29. Effectof two deterministic weights on a serpentine
raster. (a) Gray-scale ramp. (b) Scanned picture.

between 0 and 1 for one weight, and its two's complement
for the other. The very random nature of this approach,
while making the patterns more isotropic, passed a bit too
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Fig. 30. Effect of two 50-percent random weights on a ser-
pentine raster. (a) Gray-scale ramp. (b) Scanned picture.

much low-frequency content. A compromise is seen in Fig.
30 where the weights were perturbed with 50-percent noise.
The well-behaved radially averaged power spectra results
are shown in Fig. 31.

C. Four Weights

Although better than that which can be achieved with
one weight, the transition regions for the two-weight case
just examined were still not as steep as desired. Experi-
ments with various choices of three weights did not pro-
duce a significant improvement.

In trying several combinations of deterministic values in
a four-element error filter, none proved better than the
famed filter of Floyd and Steinberg. In this section, two vari-
ations on this basic filter are presented, both processed with
serpentine rasters. As in the two-weight case, processing
on a serpentine raster without random perturbations (a case
not shown for economy of space) will correct directional
artifacts, but still produces some stable asymmetric struc-
tures. Fig. 32 shows the results of error diffusion holding
the filter values constant but perturbing the threshold by
30 percent with white noise. The noisy threshold breaks up
most remaining stable texture patterns yielding good radial
symmetry at the expense of adding some low-frequency
energy. The noise value of 30 percent in this example
appeared to be the best compromise between low fre-
quency graininess (100-percent threshold noise), and stable
texture patterns (0-percent threshold noise).

In Fig. 33, instead of perturbing the threshold, noise was
added to the weights. For this purpose, the two larger
weights (% and ) and the two smaller weights (% and 1)
were paired together. To prevent weights with negative val-
ues, the maximum noise amplitude (100 percent) is the value
of the smaller weight in each pair. In this case, the value of
50-percent noise added to each pair appeared to optimize
the tradeoff between graininess and stable textures. Add-
ing noise in this way succeeded at balancing this compro-

_mise better than the noisy threshold method.

The radially averaged power spectra in Fig. 34 reveal a
good blue noise process. Along with low anisotropy and flat
high-frequency regions, the extra number of weights pro-
vided additional low-frequency inhibition and steeper tran-
sition regions.

Here, as in many of the other cases considered, the most
disturbing patterns evolve near g = . Unless the power
spectra contain impulses at the corners of the frequency
baseband, perturbations to this perfect spatial checker-
board pattern, no matter how slight, become very visible.
Rendering gray levels near this value is perhaps the greatest
weakness of the error diffusion algorithm and variations on
it.

If plots of P,(f,) at several other gray levels could be added
toFig. 34and shown in sequence, the form of the plot would
look like a wave beginning at f, = 0 at g = 0 moving to the
right as g increased until it hit the “high-frequency wall”
atg = 1. Then as gincreased from j to 1, the “wave’” would
retreat in a symmetric fashion.

D. Hexagonal Case

After much experiment it was found that the most suc-
cessful methods of halftoning by error diffusion on rec-
tangular grids work quite well on hexagonal grids after
adjusting the error filters slightly. Fig. 35 displays the deter-
ministic part of the two- and four-element filter that will be
demonstrated in this section.

As in the rectangular case, processing on a serpentine
raster corrects directional artifacts, but some random per-
turbation is needed to break up those stable patterns that
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Fig. 32. Floyd and Steinberg filter with a 30-percent random threshold processed on a
serpentine raster. (a) Gray-scale ramp. (b) Scanned picture.
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Fig. 35. Two hexagonal errorfilters to be perturbed. (a) Two
weights. (b) Variant of Floyd and Steinberg filter. (="' rep-
resents the origin.)

remain. Again, for economy of space (a concern that may
at this point seem moot given the length of this paper) only
those examples which illustrate the most successful com-
promise between low-frequency graininess and stable tex-
ture patterns are shown.

Parallel to the methods used for Figs. 30 and 33, the hex-
agonal filters will have 50-percent noise added to their
weights, and processing will be on a serpentine raster. The
result of error diffusion with the two-element filter is illus-
trated in Fig. 36; the result of the four-elementfilter is shown
in Fig. 37.

Both render gray levels in a much more isotropic manner
than that of Fig. 20. The large 12-element filter did sharpen
the picture more, however. Again, as was argued in the rec-
tangular case, sharpening should not be compounded with
halftoning. In the next section, an example is given of how
precisely controlled sharpening can be achieved in a sep-
arate operation for both rectangular and hexagonal grids.

The radially averaged power spectrum of both the two-
and four-weight stochastic hexagonal filters are well
behaved with the four-weight case having sharper transi-
tion regions. So this case is included in Fig. 38. Notice how
well the peak of these spectra follows the principal fre-
quency (marked as usual with a diamond on the frequency
axis). The important exception is for g = } which is in the
region where the hexagonal grid cannot support a principal
frequency.

Two other particularly interesting cases are those for g
=}and g =4%. The principal frequency for these gray values
is at the high-frequency limit for a hexagonal grid f, = 3.
These cases are similar to the g = j case for rectangular grids.

In balance, anisotropy is generally low for the stochastic
hexagonal filter, not nearly as wild as in Fig. 21. Outside of
the range § < g < %, such filters are also good blue noise
generators.

The wave analogy given for rectangular grid biue-noise
spectra can also be used for hexagonal grids. A sequence
of plots of P,(f) for several gray levels would show a ““wave"’
beginningatf, = 0atg = 0 moving to the rightas gincreased
until it hit the ““high-frequency wall”” at'g = 1. Skipping to
g = 3, the “wave” would retreat in a symmetric fashion as
g increased from § to 1.

VIl. CONCLUDING REMARKS
A. Sharpening

The improved output perceived from a halftoning method
that intrinsically sharpens can misleadingly outweigh other
shortcomings in its ability to render gray levels accurately
and without algorithmic artifacts. The virtues of a halfton-
ing scheme should be decoupled from its ability to sharpen.

Sharpening does improve, or at least defeat, unsharp-
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ening degradations that halftoning imparts. The proper
degree of sharpening is a subjective quality and can easily
be controlled independently of halftoning. Sharpening can
be combined with interpolation for the case of digital
enlarging. The sharpened Gaussian [27], [28] is often used
for such a dual purpose.

When sharpening is not combined with resampling, a
separate high-pass filter operation is needed. Perhaps the
most popular high-pass filter used for the purpose of sharp-
ening is the digital Laplacian. The Laplacian V2 is an oper-
ator which produces the second spatial derivative

#FHx |

. 16)
ax? ax3 ae)

VYK =

When applied to an image, it produces large amplitudes at
edge locations, and zero in constant or uniformly varying
regions (regions where the zeroth or first derivative is zero).

This operator can be described as convolution with the
filter V25(x). The discrete-space analog to this on a rec-
tangular grid is the five-element filter shown in Fig. 39(a),
although the nine-element variety achieves a similar effect.
A hexagonal version is shown in Fig. 39(b).

Denoting a digital Laplacian filter as ¥[n], sharpening is
achieved by subtracting the Laplacian filtered image from
the original image

Jsharplnl = J[n] — B¥[n] * J[n]. ]

The amount of sharpening is controlled by the value of 8
2 0. A tradeoff must be made between the accentuation
of edge detail and amplification of noise.

An example of the effect of presharpening in this way on
a rectangular grid with 8 = 2.0 is displayed in Fig. 40. It
should be compared to that in Fig. 33(b) which was iden-
tically halftoned without presharpening.

Adaptive sharpening techniques exist which are not as
sensitive to noise but are, as one might expect, more com-
pute-intensive.

B. Blue Noise is Pleasant

Fig. 41 collectively compares greatly enlarged portions of
the four major classes of dither patterns arranged in order
of increasing correlation (decreasing entropy). All patterns
are representations of a fixed gray level g =}, and thus all
have roughly the same number of black pixels.

While white noise appears too random or ‘‘noisy,”
ordered dither appears “structured.” The purpose of a
dither pattern is to represent a continuous-tone level. It
therefore should not have any form or structure of its own;
a pattern succeeds when it is innocuous. Blue noise is
visuzlly pleasant because it does not clash with the struc-
ture of an image by adding one of its own or degrade it by
being too “noisy”’ or uncorrelated.

Blue noise even defies the structure of the underlying
grid. Even though the dots in Fig. 41(b) are perfect squares,
each precisely aligned to a given position on a rectangular
grid, the collective ensemble tends to destroy this rigorous
alignment creating what can be called a grid defiance illu-
sion.

For many years, noise with 1/f power spectrum distri-
butions have been known to exist in electrical systems. But
recently, discoveries have repeatedly confirmed the exis-
tence of a 1/f power spectrum in almost every aspect of
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Fig. 36. Effect of two 50-percent random weights on a hex-
agonal grid processed on a serpentine raster. (a) Gray-scale
ramp. (b) Scanned picture.
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Fig. 37. Effect of four 50-percent random weights on a hex-
agonal grid processed on a serpentine raster. (a) Gray-scale
ramp. (b) Scanned picture.
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Fig. 39. Digital “Laplacian” filters ¥[n]. (a) Rectangular. (b)
Hexagonal.
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Fig. 40. Sharpening with a rectangular Laplacian filter.
Laplacian amplitude 8 = 2.0.

nature [13], [20], [37] including such things as variations in
sunspots, wobbling of the earth’s axis, and flood levels of
the River Nile. Evidence of 1/f fluctuations in human bio-
logical systems [22] has also been found; a 1/f spectrum was
found in electroencephalogram (brain wave) measure-
ments when subjects were exposed to “‘pleasing’ stimuli.

A study by Richard Voss [35], [36] has found that practi-
cally all forms of music possess 1/f noise. Experiments with
stochastic music composition revealed that listeners found
1/f music far more interesting than white (1/f®) music,
described as “too random,” or brown (1/f%) music, described
as ‘‘too correlated.”

Blue noise can be described as the “’pleasing”’ comple-
ment of 1/f noise. The dominance of low frequencies in
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(d)

Fig. 41. Comparison of dither patterns for a fixed gray level
at g = §, arranged in order of decreasing entropy. (a) White
noise. (b) Blue noise. (c) Dispersed-dot ordered dither. (d)
Clustered-dot ordered dither.

1/f phenomenon is responsible for its interesting and nat-
ural structure. Blue noise, by contrast, is not “/interesting’’;
nor is it annoying. Being devoid of low frequencies and
localized concentrations of spikes in the frequency domain,
ithas no structure and thus does notinterfere with the inter-
esting features of that which it is representing.

C. Summary

It was shown that well-formed dither patterns have radi-
ally symmetric power spectra that look like white noise at
high frequencies, with minimal energy at low frequencies.
This type of spectra are referred to as “’blue noise.” Such
patterns appear random without low-frequency texture; in
fact, upon examining them, dots are perceptually free of
any alignment or structure in what can be called a grid defi-
ance illusion.

From the conceptof a principal wavelength, it was argued
that rectangular grids are superior to hexagonal grids for
generating blue-noise patterns; while hexagonal grids are
more radially symmetric, square grids can support higher
spatial frequencies.

New metrics for analyzing aperiodic dither patterns were
introduced: the radially averaged power spectra for fixed
gray levels and a measure of its anisotropy. It was shown
that fairly good blue-noise patterns can be generated with
versions of the perturbed error diffusion algorithm with
small error filters. Perhaps other methods can be found that
exhibit even better spectral characteristics for blue noise
dithering.
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