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On universal types

Gadiel Seroussi∗

Abstract

We define the universal type class of a sequence xn, in analogy to the notion used in the classical
method of types. Two sequences of the same length are said to be of the same universal (LZ)
type if and only if they yield the same set of phrases in the incremental parsing of Ziv and
Lempel (1978). We show that the empirical probability distributions of any finite order of two
sequences of the same universal type converge, in the variational sense, as the sequence length
increases. Consequently, the normalized logarithms of the probabilities assigned by any kth order
probability assignment to two sequences of the same universal type, as well as the kth order
empirical entropies of the sequences, converge for all k. We study the size of a universal type
class, and show that its asymptotic behavior parallels that of the conventional counterpart, with
the LZ78 code length playing the role of the empirical entropy. We also estimate the number of
universal types for sequences of length n, and show that it is of the form exp((1+o(1))γn/ log n)
for a well characterized constant γ. We describe algorithms for enumerating the sequences in a
universal type class, and for drawing a sequence from the class with uniform probability. As an
application, we consider the problem of universal simulation of individual sequences. A sequence
drawn with uniform probability from the universal type class of xn is an optimal simulation of
xn in a well defined mathematical sense.

Index Terms—method of types, type classes, Lempel-Ziv coding, universal simulation, random
process simulation

1 Introduction

Let A be a finite alphabet of cardinality α = |A| ≥ 2. We denote by xk
j the sequence xjxj+1 . . . xk,

xi ∈ A, j ≤ i ≤ k, with the subscript j sometimes omitted from xk
j when j = 1. If j > k, xk

j = λ,
the null string. The terms “string” and “sequence” are used interchangeably; we denote by A∗

(resp. An) the set of finite strings (resp. strings of length n) over A, by vw the concatenation of
v, w ∈ A∗, and by |w| the length of a string w ∈ A∗ (the distinction from set cardinality being clear
from the context).

The method of types [1, 2] has been very fruitful in several areas of information theory, including
source and channel coding (cf. [1], [3, Ch. 12], and [2] for examples). Although often discussed
for the case of general discrete memoryless distributions, the method applies to wider classes of
parametric probability distributions on sequences over discrete alphabets. Specifically, consider a
class P of probability distributions PΘ on An, n ≥ 1, parametrized by a finite-dimensional vector
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Θ of real-valued parameters taking values on D ⊆ RK . The type class of xn with respect to P is
defined [2, Sec. VII] as the set

T Pxn = { yn ∈ An : PΘ(xn) = PΘ(yn), ∀Θ ∈ D }.

Generally, type classes are characterized by a set of minimal sufficient statistics1 (cf. [3, Ch. 2]),
whose structure is determined by the class P. For example, in the case where the components
of xn are independent and identically distributed (i.i.d.), and the class P is parametrized by the
α − 1 free parameters corresponding to the probabilities of individual symbols from A, the type
class of xn consists of all sequences that have the same single-symbol empirical distribution as
xn [1]. Type classes for families of memoryless distributions with more elaborate parametrizations
are discussed in [5]. In the case of finite memory (Markov) distributions of a given order k (with
appropriate assumptions on the initial conditions), the type classes are determined by empirical
joint distributions of order k + 1.

In all the cases mentioned, to define the type classes, one needs knowledge on the structure (e.g.,
number and nature of the parameters) of P. In this paper, we define a notion of universal type
that is not explicitly based on such knowledge. The universal type class of xn will be characterized,
as in the conventional case, by the combinatorial structure of xn. Rather than explicit symbol
counts, however, we will base the characterization on the data structure built by a universal data
compression scheme, namely, the variant of Lempel-Ziv compression described in [6], often referred
to as LZ78.2

The incremental parsing rule [6] parses the string xn as xn = p0p1p2 . . .pc−1tx, where p0 = λ,
and the phrase pi, 1 ≤ i < c, is the shortest substring of xn starting at the point following pi−1

such that pi 6= pj for all j < i (x1 is assumed to follow p0, which will also be counted as a phrase).
The substring tx, referred to as the tail of xn, is a (possibly empty) suffix for which the parsing
rule was truncated due to the end of the string xn. Conversely, we refer to the prefix p1p2 . . .pc−1

as the head of xn. Notice that, by construction, all the phrases are distinct, every phrase except
λ is an extension by one symbol of another phrase, and every prefix of a phrase is also a phrase.
Also, tx must be equal to one of the phrases, for otherwise an additional phrase could have been
parsed. The number of phrases is a function, c(xn), of the input sequence.

Let Txn = {p0,p1,p2, . . . ,pc−1} denote the set of phrases, or dictionary, in the incremental
parsing of xn. We define the universal (LZ) type class (in short, UTC) of xn, denoted Uxn , as the
set

Uxn = { yn ∈ An : Tyn = Txn }.

For arbitrary strings uk, vm, m ≥ k ≥ 1, let

N(uk, vm) = |{ i : vi+k−1
i = uk, 1 ≤ i ≤ m− k + 1 }|

1For concreteness, when referring to conventional types, we restrict our attention to exponential families of distri-
butions [4], which include many of the parametric families of interest in information theory, and provide an appropriate
frame of reference for universal types.

2Similar notions of universal type can be defined also for other universal compression schemes, e.g. Context [7].
Presently, however, the LZ78 scheme appears more amenable to a combinatorial characterization of its type classes.
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denote the number of (possibly overlapping) occurrences of uk in vm. Denote the empirical (joint)
distribution of order k, 1 ≤ k ≤ n, of xn by P̂ (k)

xn , with P̂ (k)
xn (uk) = N(uk, xn)/(n− k + 1), uk ∈ Ak.

For two distributions P and Q on some finite alphabet Ω, the L∞ distance between P and Q is
defined, as is customary, as

‖P −Q‖∞ = max
ω∈Ω
|P (ω)−Q(ω)|.

(Since we work with finite alphabets, all convergence statements in the paper where this metric is
used will essentially apply also to the variational distance ‖P −Q‖1 =

∑
ω∈Ω |P (ω)−Q(ω)|.)

A fundamental property of the UTC is given in the following theorem, which we prove in
Section 2. In the theorem, and throughout the paper, we use the notation {xn} for a sequence of
sequences xn, indexed by the sequence length n, where the latter is assumed to take on an infinite,
increasing (and possibly sparse) sequence of positive integer values. The setting includes, but is
not limited to, the situation where the finite sequences xn are prefixes of one common semi-infinite
sequence x∞. In general, we assume no consistency between the sequences xn for different values
of n. For succinctness, in the sequel we still refer to “a sequence” {xn}, with this interpretation
understood.

Theorem 1 Let {xn} be an arbitrary sequence, and k a positive integer. If yn ∈ Uxn, then,

lim
n→∞

‖P̂ (k)
xn − P̂ (k)

yn ‖∞ = 0, (1)

with convergence rate O(1/ log n), uniformly in xn and yn.

A kth order (finite-memory, or Markov) probability assignment Q(k) is defined by a set of con-
ditional probability distributions Q(k)(uk+1|uk

1), u
k+1∈Ak+1, and a distribution Q(k)(xk

1) on the
initial state, so that Q(k)(xn

1 ) = Q(k)(xk
1)
∏n

i=k+1Q
(k)(xi|xi−1

i−k). In particular, Q(k) could be de-
fined by the kth order approximation of an ergodic measure [3]. The following is an immediate
consequence of Theorem 1.

Corollary 1 Let {xn} and {yn} be sequences such that yn ∈ Uxn. Then, for any nonnegative
integer k, and any kth order probability assignment Q(k) such that Q(k)(xn) 6= 0 and Q(k)(yn) 6= 0,
we have

lim
n→∞

∣∣∣∣∣ 1n log
Q(k)(xn)
Q(k)(yn)

∣∣∣∣∣ = 0,

with convergence rate O(1/ log n), uniformly in xn and yn.

Theorem 1 and Corollary 1 are universal analogues of the defining properties of conventional types.
In a conventional type class, all the sequences in the class have the same statistics relative to
the model class defining the types (e.g., k+1-st order joint empirical distributions for kth order
finite-memory), and they are assigned identical probabilities by any distribution from the model
class. In a sense, both properties mean that sequences from the same type class are statistically
“indistinguishable” by distributions in the model class. In the universal type case, “same empirical
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distribution” and “identical probabilities” are weakened to asymptotic notions, i.e. “equal in the
limit,” but they hold for any model order. The weakened “indistinguishability” is the price paid
for universality.

In addition to the basic statistical properties advanced in Theorem 1 and Corollary 1, we ask
about universal types some of the same basic questions that are asked in the study of conventional
types. These include questions about the size of the universal type classes, the number of universal
types, how to enumerate sequences in type classes and draw random sequences uniformly from
them, and how to use type classes in enumerative coding. While answering these questions, we
observe that the parallels pointed out in Theorem 1 and Corollary 1 can be established also for the
other properties.

We also present an application of universal types to simulation of individual sequences. Sim-
ulation of random variables and processes has received significant attention in the literature (see,
e.g., [8, 9, 10, 11, 5] and references therein), given its various applications, which include speech
and image synthesis, texture reproduction, and simulation of communication systems, to cite a few.
In our universal setting, given an individual sequence xn, we wish to produce a (possibly random)
sequence yn satisfying two requirements: (S1) yn is statistically “similar” to xn, and (S2) given that
yn satisfies S1, there is as much uncertainty as possible in the choice of yn. The problem is similar
in flavor to that studied in [5], except that we do not make any stochastic assumptions on xn, and,
in particular, we do not assume it has been emitted by a probabilistic source. After formalizing
the requirements (S1) and (S2), we prove that a simulation scheme SU , based on universal types,
satisfies (S1), and is optimal in the sense that no scheme that satisfies (S1) can do significantly
better than SU with respect to (S2).

We note that the universal types defined in this paper are conceptually related to the countably-
parametrized types studied in [12] for renewal and related processes. The types of [12] can also be
regarded as being defined by a parsing of xn, where phrases are runs of ‘0’s ended by delimiting ‘1’s.
Two sequences are of the same type if and only if they have the same multi-set of phrases. Con-
versely, in the case of our universal types, the LZ dictionary Txn could be regarded as a countable
set of statistics. We also note the sets of sequences obtained from a given sequence xn by permuting
phrases of fixed length, constrained by the state transitions of a finite-state machine, were studied
in [13, 14], where they are referred to as “conditional types.”

The rest of the paper is organized as follows. In Section 2 we define the basic combinatorial
tools that will be used throughout the work, and recall some of the main properties of the LZ78
incremental parsing. With this background established, we prove Theorem 1 and Corollary 1,
and present some additional properties of universal types. In Section 3 we study the number of
sequences in a universal type class. We first give an exact combinatorial formula, and then study
its asymptotic properties. We show that the size of a universal type class behaves like that of a
conventional type class, with the LZ78 normalized code length playing the role of the empirical
entropy rate. In Section 4 we estimate the number of universal types for sequences of a given length
n. We show that the problem is equivalent to a basic question in the combinatorics of α-ary trees,
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which had been hitherto unanswered. A sharp estimate was proved in [15] (published independently
due to its intrinsic combinatorial interest); we present the statement of the main result of [15] here,
together with its consequences on the number of universal types. In particular, we show that the
number of universal types is sub-exponential in n, as generally desired. In Section 5, we present
algorithms for enumerating the sequences in a universal type class, and for selecting a sequence
with uniform probability from the class. In Section 6 we apply these algorithms to define the
universal simulation scheme for individual sequences mentioned above. We also present an example
of simulation of graphic textures.

Throughout the paper expb(x) denotes bx, log x = log2 x, and lnx = loge x. Entropies will be
measured in bits and denoted by an italicized H; entropy rates will be measured in bits per α-ary
symbol and denoted by a bold H.

2 The universal type class of xn

2.1 Parsing trees

We identify, without loss of generality, the alphabet A with the set {0, 1, . . . , α−1}. A α-ary tree
T is recursively defined as either being an empty set, or consisting of a root node and the nodes
of α disjoint, ordered α-ary trees T (0), T (1), . . . , T (α−1), any number of which may be empty [16].
For a ∈ A, if T (a) is not empty, we say that there is a branch labeled with the symbol a, going
from the root of T to the root of T (a); the latter is called a child of the root of T . The number of
children of a node v (its (out-)degree) will be denoted deg(v). A node v with deg(v) = 0 is called
a leaf, otherwise, v is an internal node. An α-ary tree is full if deg(v) = α for every internal node
v. The depth of a node is the number of branches on the path from the root to the node. We will
make free use of conventional tree terminology derived naturally from the child relation, referring,
for example, to the parent, sibling, ancestors, and descendants of a node (a node is considered both
an ancestor and a descendant of itself). In graphical representations, we adopt the convention that
the root of a tree is at its top and the leaves at its bottom. All trees in the paper will be assumed
α-ary, and will be referred to simply as “trees,” unless we wish to emphasize a specific alphabet
size (e.g., “binary tree”).

The set of phrases in the incremental parsing of xn is conveniently represented by a tree, which is
constructed by starting from a root node, and adding, for every phrase p = a1a2 . . . am ∈ Txn , a path
with branches labeled a1, a2, . . . , am from the root of the tree. By the properties of the incremental
parsing, there is a one-to-one correspondence between the nodes of a tree thus constructed and the
phrases in Txn , with the root corresponding to p0 = λ. We call this tree the parsing tree of xn,
and, since it completely characterizes the set of phrases, we denote it also by Txn . We will refer to
phrases and nodes indistinctly, and will use set notation for nodes in trees (writing, for example,
v ∈ T when v is a node or phrase in a tree T ). The number of nodes in the parsing tree of xn is
c(xn), and its path length [16] is

ñ = |p1|+ |p2|+ · · ·+ |pc−1| = n− |tx|. (2)
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Figure 1: Parsing tree for the binary string x8 = 10101100

The height of Txn , denoted h(Txn), is the maximum depth of a node, or, equivalently, the length
of the longest phrase in the parsing. The number of leaves in Txn will be denoted `(Txn). Global
tree parameters such as c, h, `, and ñ, will be referred to as parsing parameters. We loosely allow
either xn or Txn to act as the argument of the function associated with a parsing parameter, and
in any case we omit that argument when clear from the context.

All the sequences in a UTC share the same parsing tree T , which can serve as a canonical
representation of the type class. In general, a complete specification of the UTC requires also the
sequence length n, since the same parsing tree T might result from parsing sequences of different
lengths, due to possibly different tail lengths. For a given tree T , n can vary in the range ñ ≤
n ≤ ñ + h, where h is the height of T . When ñ = n (i.e., xn has a null tail), we say that Uxn is
the natural UTC associated with Txn . If T is an arbitrary parsing tree, we denote the associated
natural UTC by U(T ), without reference to a specific string in the type class. We call a valid pair
(T, n), the universal type (UT) of the sequences in the corresponding UTC. When n is not specified,
the natural UT is assumed. Clearly, the head of xn is xñ, and U(Txn) = Uxñ .
Example 1. Consider the binary string x8 = 10101100, with n = 8. The incremental parsing for
x8 is λ, 1, 0, 10, 11, 00, with c = 6 and a null tail. Therefore, ñ = n = 8. The corresponding parsing
tree is shown in Figure 1. The sequence y8 = 01001011 is parsed into λ, 0, 1, 00, 10, 11, defining the
same set of phrases as x8. Thus, x8 and y8 are of the same (natural) universal type.

The following lemma presents some well known properties of the incremental parsing, which derive
in a straightforward manner from basic properties of α-ary trees (see, e.g., [16]).

Lemma 1 Let {xn} be an arbitrary sequence with c = c(xn). The following relations hold.

(i) c logα c− νc+O(log c) ≤ n ≤ c(c− 1)/2, where ν = α/(α− 1)− logα(α− 1) .

(ii)
⌈√

2n
⌉
≤ c ≤ n

logα n−O(log log n)
.

(iii) h(xn) = max
1≤i≤c

|pi| ≤
⌊√

2n
⌋
.

Remarks. A lower bound c logα c − O(c) on n as in Lemma 1(i) (or corresponding upper bound
on c in (ii)) are attained when Txn is a complete tree with c nodes [16]. In such a tree, all the
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leaves are either at depth h or at depth h − 1.3 The bound is tight with constant ν when Txn is
also perfectly balanced, i.e., when c = (αh+1 − 1)/(α − 1) (the lower bound with ν still holds for
arbitrary c). The upper bound on n in Lemma 1(i) (and corresponding lower bound on c in (ii))
are attained when Txn has a “linear” structure, with all nodes having degree one, except a unique
leaf. Such a tree is obtained when parsing a sequence of the form xn = aa . . . a, for some a ∈ A,
and it also attains the upper bound on height in (iii).

The incremental parsing is best known as the core of the LZ78 universal data compression
scheme of Ziv and Lempel [6]. The code length assigned by the LZ78 scheme is characterized in
the following lemma.4

Lemma 2 ([6]) The code length assigned by the LZ78 scheme to xn is

LLZ(xn) = c log c+O(c) bits.

It is well known (cf. [6, 3]) that the normalized LZ78 code length, LLZ(xn) = LLZ(xn)/n does
not exceed, in the limit, the code length assigned by any finite-state encoder for the individual
sequence xn; when xn is emitted by a stationary ergodic source, LLZ(xn) converges almost surely
to the entropy rate of the source.

2.2 Convergence of statistics

We present proofs for Theorem 1 and Corollary 1.
Proof of Theorem 1. We claim that the following inequalities hold for xn:

c−1∑
j=1

N(uk,pj) ≤ N(uk, xn) ≤
c−1∑
j=1

N(uk,pj) + (k − 1)(c− 1) + |tx|. (3)

The first inequality follows from the fact that the phrases are distinct, and they parse the head
of xn. The second inequality follows from the fact that an occurrence of uk is either completely
contained in a nontrivial phrase of the parsing, or it spans a phrase boundary, or it is contained in
the tail of xn. To span a boundary, an occurrence of uk must start at most k − 1 locations before
the end of a nontrivial phrase. Substitute yn for xn in (3), and call the resulting inequalities (3)y.
Clearly, (3)y holds for yn ∈ Uxn , since yn has the same set of phrases as xn, and the sequences
have tails of the same length. Thus, it follows from (3) and (3)y that

|N(uk, xn)−N(uk, yn)| ≤ (k − 1)(c− 1) + |tx|, ∀yn ∈ Uxn . (4)

The claim of the theorem now follows from (4) by recalling that k is fixed and tx is equal to
one of the phrases, by applying parts (ii) and (iii) of Lemma 1, and finally normalizing by n−k+1.

3The term complete is also used sometimes as equivalent to what we have called full. Here, we use the term in the
narrower sense of [16]. In the binary case, a complete tree is always full. When α > 2, we allow one internal node v
at level h− 1 to have deg(v) < α, which is necessary to have complete trees with any number of nodes.

4We assume an unbounded memory LZ78 scheme where the same dictionary is used throughout the whole sequence
xn, as opposed to the “block by block” scheme described in the original LZ78 paper [6]. The distinction between the
two schemes is discussed further in Section 6.
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Proof of Corollary 1. Consider sequences xn and yn, and a kth order probability assignment
Q(k) satisfying the conditions of the corollary. Let Ak+1[Q(k)] = {uk+1 ∈ Ak+1 : Q(k)(uk+1|uk) 6=
0}. Notice that the conditions of the corollary guarantee that Ak+1[Q(k)] includes all the (k + 1)-
tuples that occur in xn or yn, and that Q(k)(xk)Q(k)(yk) 6= 0. For the sequence xn, we have

Q(k)(xn) = Q(k)(xk)
n∏

i=k+1

Q(k)(xi|xi−1
i−k) = Q(k)(xk)

∏
uk+1∈Ak+1[Q(k)]

Q(k)(uk+1|uk)N(uk+1,xn) , (5)

Taking logarithms, we obtain

logQ(k)(xn) = logQ(k)(xk) +
∑

uk+1∈Ak+1[Q(k)]

N(uk+1, xn) logQ(k)(uk+1|uk) . (6)

An analogous expression for Q(k)(yn) is obtained by substituting y for x everywhere in (6); we refer
to the equation resulting from this substitution as (6)y. By the discussion preceding (5), all the
logarithms taken in (6) and (6)y are well defined. Subtracting (6)y from (6), we obtain

log
Q(k)(xn)
Q(k)(yn)

= log
Q(k)(xk)
Q(k)(yk)

+
∑

uk+1∈Ak+1[Q(k)]

(
N(uk+1, xn)−N(uk+1, yn)

)
logQ(k)(uk+1|uk) .

Letting σ0 = maxuk,vk | logQ(k)(uk) − logQ(k)(vk)|, where the maximum is taken over all pairs
uk, vk such that Q(k)(uk)Q(k)(vk) 6= 0, we obtain∣∣∣∣∣log

Q(k)(xn)
Q(k)(yn)

∣∣∣∣∣ ≤ σ0 −
∑

uk+1∈Ak+1[Q(k)]

∣∣∣N(uk+1, xn)−N(uk+1, yn)
∣∣∣ logQ(k)(uk+1|uk). (7)

It follows from the proof of Theorem 1 that 1
n

∣∣N(uk+1, xn)−N(uk+1, yn)
∣∣ is uniformly upper-

bounded by σ1/ log n for some constant σ1 and sufficiently large n. Hence, denoting

σ2 =
∑

uk+1∈Ak+1[Q(k)]

− logQ(k)(uk+1|uk),

it follows from (7) that ∣∣∣∣∣ 1n log
Q(k)(xn)
Q(k)(yn)

∣∣∣∣∣ ≤ σ0

n
+
σ1σ2

log n
,

where σ0, σ1, and σ2 are independent of n, xn, and yn.

A kth order probability assignment of particular interest is the one defined by the kth order
conditional empirical distribution of the sequence xn itself, namely,

Q̂
(k)
xn (a|uk) =

N(uka, xn)
N(uk, xn)

, uk ∈ Ak, a ∈ A, N(uk, xn) > 0, (8)
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with initial condition Q̂(k)
xn (xk) = 1. The empirical distribution Q̂(k)

xn is the maximum likelihood (ML)
estimator of a kth order probability model for xn, i.e., it assigns to xn the maximum probability
the sequence can attain with such a model. The kth order conditional empirical entropy of xn is
defined as

Ĥk(xn) = − log Q̂(k)
xn (xn) . (9)

The corresponding entropy rate, in bits per α-ary symbol is

Ĥk(xn) =
1
n
Ĥk(xn) . (10)

We will prove that the kth order empirical entropy rate of sequences of the same universal type
also converges. First, we need two technical lemmas.

Lemma 3 Let P and Q be distributions over a finite alphabet B, and δ a number such that 0 ≤
δ ≤ 1/(2|B|). If ‖P −Q‖∞ ≤ δ then |H(P )−H(Q)| ≤ |B|δ log δ−1.

Proof. If ‖P −Q‖∞ ≤ δ then ‖P −Q‖1 ≤ |B|δ, where ‖P −Q‖1 is the variational (L1) distance
bewtween P and Q. The result now follows by applying [3, Theorem 16.3.2] (cf. also [1, Lemma
2.7]).

Lemma 4 Let {xn} and {yn} be sequences such that ‖P̂ (k)
xn −P̂ (k)

yn ‖∞ ≤ δ and ‖P̂ (k+1)
xn −P̂ (k+1)

yn ‖∞ ≤
δ for some k ≥ 1 and 0 ≤ δ ≤ 1/(2αk+1). Then,

|Ĥk(xn)− Ĥk(yn)| ≤ αk(α+ 1)δ log δ−1 +O(log n/n).

Proof. From (8), (10), and (6), we have5

Ĥk(xn) = − 1
n

log Q̂(k)
xn (xn) = − 1

n

∑
uk+1

N(uk+1, xn) logQ(k)(uk+1|uk)

= − 1
n

∑
uk+1

N(uk+1, xn)
(
logN(uk+1, xn)− logN(uk, xn)

)
= − 1

n

∑
uk+1

N(uk+1, xn) logN(uk+1, xn) +
1
n

∑
uk+1

N(uk+1, xn) logN(uk, xn)

= − 1
n

∑
uk+1

N(uk+1, xn) logN(uk+1, xn) +
1
n

∑
uk

N(uk+1, xn) logN(uk, xn)

= −n− k
n

(
log(n− k)−H(P̂ (k+1)

xn )
)

+
n− k + 1

n

(
log(n− k + 1)−H(P̂ (k)

xn )
)

= H(P̂ (k+1)
xn )−H(P̂ (k)

xn ) +O(log n/n). (11)
5Equation (11) can be seen as an empirical version of the chain rule for random variables, namely,

H(Y |X)=H(X, Y )−H(X). A similar empirical expression is given in [17], which does not include the O(log n/n)
term, and is actually derived from the chain rule by making a cyclic (shift-invariance) assumption on the conditional
probabilities. Here, since our kth order assignments admit arbitrary probabilities for the initial state, we derive the
empirical rule from first principles, and do not rely on the stochastic rule.

9



A similar expression holds for yn, and we can write

|Ĥk(xn)− Ĥk(yn)| = |H(P̂ (k+1)
xn )−H(P̂ (k)

xn )−H(P̂ (k+1)
yn ) +H(P̂ (k)

yn ) +O(log n/n)|

≤ |H(P̂ (k+1)
xn )−H(P̂ (k+1)

yn )|+ |H(P̂ (k)
xn )−H(P̂ (k)

yn )|+O(log n/n)

≤ αk+1δ log δ−1 + αkδ log δ−1 +O(log n/n) , (12)

where the last inequality follows from the assumptions of the lemma, and from Lemma 3, recalling
that P̂ (k+1)

xn and P̂
(k+1)
yn are distributions on Ak+1, while P̂ (k)

xn and P̂
(k)
yn are defined on Ak. The

claim now follows by collecting terms on the right hand side of (12).

Corollary 2 Let {xn} and {yn} be sequences such that yn ∈ Uxn. Then, for any k ≥ 0, we have

lim
n→∞

∣∣∣Ĥk(xn)− Ĥk(yn)
∣∣∣ = 0,

with convergence rate O(log log / log n), uniformly in xn and yn.

Proof. The claim follows from Theorem 1 and Lemma 4, with convergence rate determined by
the convergence rate in Theorem 1, to which the transformation δ → δ log δ−1 is applied.

Sequences of the same type have, by definition of the UTC, exactly the same LZ78 code length.
Corollary 2 says that their kth order empirical entropy rates will also converge, for all k. The two
measures of compressibility, however, do not always coincide, as we shall see in an explicit example
in Section 6.

3 The size of the universal type class

In this section, we characterize the number of sequences in a universal type class. First, we present,
in Section 3.1, a recursion and exact combinatorial characterization of the UTC size. The question
is closely related to classical problems in computer science, namely, labelings of a tree that preserve
the tree-induced partial order, and the notion of a heap, a fundamental data structure for searching
and sorting [18]. Although some of the results presented could be derived from analogous results
in these areas, we give self-contained proofs for completeness, and to cast the results in their most
generality for the setting of universal types. These results will be used to derive the information-
theoretic properties and algorithms presented in subsequent sections. In Section 3.2, we study the
asymptotic behavior of the UTC size as a function of global parameters of the parsing of xn, and
relate it to the compressibility of the sequence.

3.1 Combinatorial characterization

Each sequence in the UTC of xn is determined by some permutation of the order of the phrases
in Txn . Not all the possible permutations are allowed, though, since, by the rules defining the

10



parsing, a phrase must always precede its extensions. Thus, only permutations that respect the
prefix partial order are valid.

Recall that if a ∈ A ∩ Txn , then T (a) denotes the subtree of Txn rooted at the child a of the
root (if a ∈ A \ Txn , then T (a) is empty). We refer to T (a) as a main subtree of Txn . If T (a) is not
empty, let xn[a] denote the sub-sequence of xn constructed by concatenating all the phrases of xn

that start with a (preserving their order in xn), after eliminating the initial symbol a from each
phrase. Clearly, we have U(T (a)) = Uxn[a]. Denote the number of nodes in T (a) by ca, a ∈ A. It
will be convenient to extend our notations also to empty subtrees; when T (a) is empty, there are no
phrases starting with a, we have ca = 0, and we adopt the convention that |U(T (a))| = 1. Clearly,
we have c(xn) = c0 + c1 + . . .+ cα−1 + 1.

A valid permutation of phrases defining a sequence yn ∈ Uxn must result from valid permutations
of the phrases in each of the subtrees T (a), a ∈ A. The resulting ordered sublists of phrases
can be freely interleaved to form a valid ordered list of phrases for yn, since there is no order
constraint between phrases in different subtrees. The number of possible interleavings is given by
the multinomial coefficient

M(c0, c1, . . . , cα−1) =
(c0 + c1 + · · ·+ cα−1)!

c0!c1! . . . cα−1!
, (13)

namely, the number of ways to merge α ordered lists of respective sizes c0, c1, . . . , cα into one list
of size c−1 =

∑
a∈A ci, while preserving the order of each respective sublist. By extension of our

sequence notation, we denote by cα−1
0 the vector of integers (c0, c1, . . . , cα−1), and we use M(cα−1

0 )
as shorthand for M(c0, c1, . . . , cα−1).

Given the sublists and their interleaving, to completely specify yn, we must also define its tail,
which can be any phrase of length |tx| (at least one such phrase exists, namely, tx itself). Let τ(xn)
denote the number of nodes at level |tx| in Txn . The foregoing discussion is summarized in the
following theorem, which presents a recursion for the size of a UTC.

Proposition 1 Let xn be a sequence, and let T (a), a ∈ A, denote the main subtrees of Txn. Then,

|Uxn | =

( ∏
a∈A

∣∣∣U(T (a))
∣∣∣ )M(cα−1

0 ) τ(xn). (14)

Notice that when (14) is used recursively, all recursion levels except the outermost one deal with
natural UTCs. Therefore, a nontrivial factor τ(xn) occurs only at the outermost application of (14).
Moreover, we have τ(xn) ≤ c, which will turn out to be a negligible factor in the asymptotics of
interest of |Uxn |. Therefore, most of our discussions will assume that tx = λ, and will focus on
natural types. The asymptotic results, however, will hold for arbitrary strings and their universal
types. We will point that fact out and justify it when these results are proved.

Variants of the recursion (14), especially for the case of complete binary trees, have been ex-
tensively studied in connection to heaps. See, e.g., [18, 19, 20] and references therein.

Let cp, p ∈ Txn , denote the number of phrases in Txn that have the phrase p as a prefix, or
equivalently, the number of nodes in the subtree of Txn rooted at p. This definition generalizes the
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previous notation ca, where a symbol a ∈ A is regarded as a string of length one. For a tree T ,
define

D(T ) =
∏
p∈T

cp. (15)

The following proposition presents a more explicit expression for |Uxn |.

Proposition 2 Let xn be a sequence with tx = λ. Then,

|Uxn | = c !
D(T )

. (16)

Proof. We prove the claim of the corollary by induction on c. For c = 1, we have xn = λ, and
|Uλ| = 1, which trivially satisfies the claim. Assume the claim is satisfied by all strings with c′

phrases for 1 ≤ c′ < c, and let T be the parsing tree of a sequence xn with c phrases. Let A′ ⊆ A
be the set of symbols a such that ca > 0. We have 0 < ca < c = 1 +

∑
a∈A′ ca, and, therefore, the

UTCs corresponding to T (a), a ∈ A′, satisfy the induction hypothesis. Substituting the value given
by the induction hypothesis for |U(T (a))| in (14), recalling also that |U(T (a))| = 1 when a ∈ A \A′

and that τ(xn) = 1, and recalling the definition of M(cα−1
0 ) from (13), we obtain

|Uxn | =

( ∏
a∈A′

ca!∏
p∈T (a)

cp

)(
(c− 1)!∏
a∈A′

ca!

)
=

(c− 1)!∏
a∈A′

∏
p∈T (a)

cp
=

(c− 1)!∏
p∈Txn\{λ}

cp
=

c!∏
p∈Txn

cp
.

The expression at the right hand side of (16) is known [18, p. 67] as the number of ways to
label the nodes of a tree of size c with the numbers 0, 1, . . . , c−1, so that the label of a node is less
than that of any descendant. In our context, letting the label of a node be the ordinal number of
the corresponding phrase in a permutation of the phrases of xn, valid tree labelings correspond to
valid phrase permutations, and the result in [18, p. 67] is equivalent to Proposition 2.
Example 2. For the tree T in Figure 1, we have c = cλ = 6, c0=2, c1=3, c00 = c10 = c11 = 1.
Therefore,

|U(T )| = 6!
2 · 3 · 6

= 20.

Example 3. Consider the tree shown in Figure 2, which contains a chain of nodes of degree one
starting at the root and extending to depth k ≥ 1, where a subtree T ′ is rooted. It follows readily
from Proposition 2 that, in this case, we have |U(T )| = |U(T ′)|, independently of k. In particular,
when T ′ is a trivial tree consisting of just a root node, we have |U(T )| = 1 (this is the “linear” tree
discussed in the remarks following Lemma 1).

12
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Propositions 1 and 2 provide exact expressions for the size of the UTC of a given sequence xn,
based on the detailed structure of its parsing tree. These expressions, however, do not provide direct
insight into the asymptotic behavior of the UTC size as the sequence length increases. We next
derive an asymptotic characterization of the UTC size as a function of coarser global parameters
of the sequence and its parsing tree.

3.2 Asymptotic behavior of the UTC size

First, we present some auxiliary definitions and lemmas that will aid in the derivation.
Let I and L denote, respectively, the set of internal nodes and leaves of a tree T . The two

subsets can also be characterized as I = {p | p ∈ T, cp > 1} and L = {p | p ∈ T, cp = 1}.

Lemma 5 We have ∑
p∈T

cp = n+ c, (17)

and ∑
p∈I

cp = n+ c− `. (18)

Proof. Each node p contributes a unit to the sum in (17) for each subtree it belongs to, or
equivalently, for each of its ancestors in T (including itself). Therefore, the contribution of p to
the sum is |p|+ 1, and we have∑

p∈T

cp =
∑
p∈T

(|p|+ 1) =
∑
p∈T

|p|+ c = n+ c.

As to the sum in (18), we have∑
p∈I

cp =
∑
p∈T

cp −
∑
p∈L

cp = n+ c− `.
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It is well known (see, e.g., [16, p. 595]) that a tree T with ` leaves and c nodes is full if and only
if

(α− 1)c = α`− 1. (19)

In a tree that is not full, some internal nodes are “missing” outgoing branches. The total number
of such missing branches is d = (α − 1)c − α` + 1, which is always nonnegative. In particular, we
have

c > c− ` =
c− 1 + d

α
≥ c− 1

α
. (20)

Lemma 6 Let T be a tree with c ≥ 2. Then,

logD(T ) ≤ (c− `)
(

log n
log c

− 1
)

log c+ γc, (21)

for some constant γ > 0.

Proof. Since cp = 1 whenever p ∈ T \ I, we have

D(T ) =
∏
p∈T

cp =
∏
p∈I

cp.

Thus, D(T ) is a product of c−` positive real numbers whose sum is constrained by (18). Such
a product is maximized when all the factors are equal. Hence, D(T ) can be upper-bounded as
follows:

D(T ) ≤
(∑

p∈I cp

c− `

)c−`

=
(
n+ c− `
c− `

)c−`

.

Taking logarithms, recalling that c ≤ n, applying (20), and performing some elementary algebraic
manipulations, we obtain

logD(T ) ≤ (c− `)
(
log(n+ c− `)− log(c− `)

)
< (c− `)

(
log(2n)− log

(c− 1
α

))

≤ (c− `)
(

log n
log c

− log(c− 1)
log c

)
log c+ γ1c, (22)

for some constant γ1 > 0. The claim of the lemma now follows by writing log(c− 1)/log c >
1− 2/(c ln c), which holds for c ≥ 2, after a few additional elementary manipulations.

Lemma 7 Let T be a tree of height h and path length n. Then,

n ≥ h(h+ 1)
2

, (23)

and
D(T ) ≥ (h+ 1)! . (24)

14



Proof. The bound on n follows from the fact that T has at least one node at each depth j,
0 ≤ j ≤ h. The bound on D(T ) follows similarly, by observing that a node p at depth j on
the longest path of the tree is the root of a subtree of size cp ≥ h − j + 1, 0 ≤ j ≤ h. Hence,
D(T ) =

∏
p∈T cp ≥

∏h
j=0(h− j + 1) = (h+ 1)!.

In the sequel, all expressions involving limits implicitly assume n→∞ (and, thus, also c→∞
and h→∞).

Lemma 8 Let c, `, and h be the parsing parameters associated with xn in a sequence {xn}. Then,

1 ≤ limn

log n
log c

≤ limn
log n
log c

≤ 2, (25)

limn
h

c
> 0 only if limn

log n
log c

= 2, (26)

and
0 ≤ limn

`

c
≤ limn

`

c
≤ α− 1

α
. (27)

Proof. The claims follow immediately from Lemma 1(i), (23), and (20), respectively.

Define
LU (xn) = log |Uxn | , (28)

and the corresponding normalized quantity

LU (xn) = n−1LU (xn) . (29)

We will also write LU (T ) and LU (T ), where T is a tree, when referring to natural types. The
following theorem gives our main asymptotic result on the size of a universal type class.

Theorem 2 Let {xn} be an arbitrary sequence with n ≥ 1. Then,

(1− β − o(1)) c log c ≤ LU (xn) ≤ (1− η − o(1)) c log c, (30)

where
β =

(
1− `

c

)( log n
log c

− 1
)
, (31)

and
η =

(h+ 1) log(h+ 1)
c log c

. (32)

Moreover, we have 0 < β, η ≤ 1,

limn β > 0 if and only if limn log n/ log c > 1,

and
limn η > 0 only if limn log n/ log c = 2.

Thus, limn β = limn η = 0 whenever limn log n/ log c = 1.
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Proof. Assume first that tx = λ. To prove the upper bound, we use Proposition 2, and (24) in
Lemma 7, writing

LU (xn) = log
c!

D(Txn)
≤ log c!− log(h+ 1)!

≤ c log c− c log e+O(log c)− (h+ 1) log(h+ 1)

=
(
1− (h+ 1) log(h+ 1)

c log c
− o(1)

)
c log c =

(
1− η − o(1)

)
c log c.

It is verified by direct inspection that 0 < β, η ≤ 1, since we have ` > 0, log n/ log c < 2, and
h < c. By the definition of η in (32), we can have limn η > 0 only if limn h/c > 0, and, by (26) in
Lemma 8, this is possible only if limn log n/ log c = 2.

To prove the lower bound, we take logarithms on both sides of (16), and apply the result of
Lemma 6, and Stirling’s approximation, as follows.

LU (xn) = log c!− logD(Txn) ≥ c log c− c log e− (c− `)
( log n

log c
− 1

)
log c− γ1c

=
(

1−
(
1− `

c

)( log n
log c

− 1
))

c log c− γ2c =
(

1− β − o(1)
)
c log c,

where γ1 and γ2 are appropriate positive constants. The asymptotic behavior of β is controlled by
the two factors at the right hand side of (31). Since 1− `/c is bounded, it follows from (25) that β
vanishes in the limit unless limn log n/ log c > 1. Conversely, by (27), the ratio `/c cannot exceed
(α− 1)/α in the limit. Thus, if limn log n/ log c = r, with 1 < r ≤ 2, then limn β ≥ (r − 1)/α > 0.

When tx 6= λ, we recall, from Proposition 1 and the discussion that follows it, that |Uxn | =
|U(Txn)| τ(xn) ≤ |UTxn | c. Therefore, we have

LU (Txn) ≤ LU (xn) ≤ LU (Txn) + log c.

Upon normalization by c log c, the term log c is absorbed into the o(1) terms in (30). Hence, the
bounds of the theorem hold for all sequences xn.

Example 4. Consider a complete, perfectly balanced α-ary tree, T of height m, i.e., a tree with
αj nodes at each depth j, 0 ≤ j ≤ m. The size of the universal type class can be determined quite
precisely in this case. Writing cm = |T | = (αm+1 − 1)/(α − 1), and dm = logD(T ), it is readily
verified that dm satisfies the recursion

dm = αdm−1 + log cm, m ≥ 1, d0 = 0.

The recursion is solved using standard difference equation methods, yielding

dm = f cm − gm+ o(m),

where f = (logα)/(α− 1) + (logα− log(α− 1))/α, and g = (logα)/(α− 1). Combining with (16),
we obtain

LU (T ) = c log c− (f + 1)c+ (
1
2

+
1

α− 1
) log c+ o(log c).
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Figure 3: Two α-ary trees

The tree T in this example corresponds to the parsing of an α-ary counting sequence, defined as the
concatenation of all α-ary sequences of each length i, 1 ≤ i ≤ m, in increasing length order (these
sequences are related to, although not identical, to the sequence of digits in a α-ary Champerknowne
number [21], [22, A033307]). Counting sequences are known to be “hardest” to compress by the
LZ78 algorithm [6]. The bounds in Theorem 2 are asymptotically tight in this case, as it is readily
verified that β → 0 and η → 0 as m→∞.

Example 5. Consider the tree T shown in Figure 3(a), where the subtree T1 is a complete perfectly
balanced tree of height m, and the subtree T2 is a “linear” tree of height h. Let c1 = |T1|, and
c2 = |T2| = h + 1. By the analysis in Example 4, we have LU (T1) = c1 log c1 + O(c1), and, by
Example 3, we have LU (T2) = 0. Using the recursion (14), we obtain

LU (T ) = c1 log c1 + log
(
c1 + h+ 1
h+ 1

)
+O(c1) . (33)

Assume now that h = µc1, for some µ > 0. Then, we have c = (1 + µ)c1 + 2, and the binomial
coefficient in (33) can be approximated by exp (ξc+ o(c)) for some ξ > 0 (see, e.g., [23, Ch. 10]).
Hence, (33) can be rewritten as

LU (T ) = (1 + µ)−1c log c+O(c).

On the other hand, it is readily verified that log n/ log c→ 2, and `/c→ (1 +µ)−1 in this example,
and, hence, (1 − β) → (1 + µ)−1. Similarly, since m = O(log c1) � h for large values of c1, the
height of T is h + 2, and we have 1 − η ≈ 1 − h/c → (1 + µ)−1. We conclude that the bounds
in Theorem 2 are asymptotically tight in this case. Observe also that the example leads to the
construction of sequences xn such that LU (xn) = γ c log c+O(c) for all γ ∈ [0, 1] (γ = 0 is achieved
by setting m = o(log h), which corresponds to µ→∞).

Example 6. Consider the α-ary tree of height h shown in Figure 3(b), which has one internal
node and α−1 leaves at each level j, 1 ≤ j ≤ h. For this tree, we have n = (c2+(α−2)c−α+1)/2α,
and ` = ((α− 1)c+ 1)/α. Thus, β → α−1. Also, c = αh+ 1, and, therefore, η → α−1. The bounds
of Theorem 2 are asymptotically tight, yielding LU (T ) = (1− α−1)c log c+O(c). This can also be
verified by direct computation of |U(T )| from (16).
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Corollary 3 Let {xn} be an arbitrary sequence such that limn LLZ(xn) > 0. Then,

LU (xn) =
(
1 + o(1)

)
c log c .

Proof. If limn LLZ(xn) > 0 then n = O(c log c), and, thus limn log n/ log c = 1. By Theorem 2,
this implies that limn β = limn η = 0, and, therefore, LU (xn) = (1 + o(1))c log c.

Corollary 4 Let {xn} be an arbitrary sequence. Then,

limn

∣∣∣LU (xn)− LLZ(xn)
∣∣∣ = 0 .

Proof. Assume the claim is not true. Then, there exists an infinite sequence {xn}, for a possibly
sparse sequence of values of n, and a constant ε > 0, such that |LU (xn)−LLZ(xn)| > ε for all n in
the sequence. But, by Lemma 2 and the upper bound in Theorem 2, this implies that LLZ(xn) > ε′

for some ε′ > 0, and then by Corollary 3, we would have LU (xn) − LLZ(xn) = o(1)LLZ(xn), con-
tradicting the assumption, since LLZ(xn) is bounded. Thus, the claim of the corollary must hold.

Corollary 4 highlights another parallel between universal types and conventional types: the size
of a conventional type satisfies log |T Pxn | = nĤ(xn)(1 + o(1)) (cf. [24, 25, 3, 2, 26]), where Ĥ(xn)
denotes the empirical entropy rate of xn with respect to the model class P.6 Corollary 4 states
that a similar statement is true for UTs, with the normalized LZ78 code length LLZ playing the
role of the empirical entropy rate.
Enumerative coding. An α-ary tree with c nodes can be encoded in O(c) bits using, for example,
variants of the natural codes [27] (this is one possible choice of description of the type class; the
number of classes is discussed in detail in Section 4). Thus, it is possible to define an enumerative
code [28] that will encode xn in L′U (xn) = LU (xn)+O(c) bits, by encoding the parsing tree followed
by the index of xn in an enumeration of the universal type class. Algorithms for mapping sequences
to and from their indices in an enumeration of their UTC are presented in Section 5.1. For sequences
{xn} with non-vanishing compressibility LLZ we have, by Corollary 3, L′U (xn)/LLZ(xn) → 1 as
n→∞. However, for highly compressible sequences, the enumerative scheme based on UTs shows
finer discrimination, and families of sequences with LU (xn) = γc log c+O(c) for any γ in the range
0 < γ < 1 can be constructed (see Example 5). For these families, we have L′U (xn)/LLZ(xn) →
γ < 1, since the LZ78 scheme always compresses to code length LLZ(xn) = c log c+O(c).

4 The number of universal types

One of the basic questions in studying the partition of the space An into type classes is how many
classes there are. In particular, many applications of the method of types hinge on whether the
number of type classes is sub-exponential in n, which is the desirable situation [2, Sec. VII].

6Defined, as previously done in (10) for kth order Markov models, as Ĥ(xn) = −n−1 log PΘ̂(xn), where Θ̂ is the
ML estimator of the parameter vector for xn.
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Let Nn denote the number of universal type classes for sequences of length n, and let Ñn denote
the corresponding number of natural type classes.

Since a natural type is completely characterized by an α-ary tree of path length equal to n, Ñn

is equal to the number of such trees. However, precise estimates for this number were not available,
despite the fundamental nature of the combinatorial question. A tight asymptotic estimate was
recently obtained in [15], and is being published separately, given the intrinsic interest in the
combinatorial problem. The main result of [15] is the following theorem.

Theorem 3 ([15]) The number of trees with path length equal to n is

Ñn = expα

(αh(α−1)n
log n

(
1 + o(1)

))
,

where h(u) = −u log u− (1− u) log(1− u) is the binary entropy function.

The upper bound in [15] is based on a simple coding argument for trees of path length n. The lower
bound, on the other hand, is based on a combinatorial construction of large families of trees of the
same path length. The number of binary trees of a given path length has also been recently studied
in [29], motivated by preliminary versions of this work and of the results in [15]. The results of [29],
which are based on the WKB heuristic, are consistent with the case of α = 2 in Theorem 3.

As mentioned in Section 2, a tree of path length equal to ñ can represent the parsing dictionary
of sequences of length n in the range ñ ≤ n ≤ ñ + h, with h ≤

√
2ñ. Conversely, for a given

sequence xn, the path length, ñ, of Txn is in the range n−
√

2n ≤ ñ ≤ n. Therefore,

Nn ≤
n∑

ñ=dn−
√

2n e

Ññ ≤ (
√

2n) Ñn,

and, thus, by Theorem 3,

logαNn ≤ logα(2n) +
αh(α−1)n

log n
(
1 + o(1)

)
.

The term logα(2n) can clearly be absorbed into the o(1) term. This leads to the following main
result of this section.

Corollary 5 The number of universal types for sequences of length n is

Nn = expα

(αh(α−1)n
log n

(
1 + o(1)

))
.

It follows from Corollary 5 that Nn is, indeed, sub-exponential in n.
In the classical theory of types, the number of classes is related to the redundancy of coding

schemes (or, equivalently, probability assignments) that are universal in certain parametric model
classes. Concretely, letN (K)

n denote the number of type classes for the family PF of α-ary finite-state
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(FS) probability assignments relative to a finite-state machine (FSM), F , with K states [30].7 It is
known ([30], attributed to N. Alon) that, under some mild regularity conditions on F , logN (K)

n =
(α− 1)K log n+O(1). This matches the redundancy of probability assignments that are pointwise
universal in PF , which is, up to lower order terms, 1

2(α − 1)K log n ≈ 1
2 logN (K)

n . For universal
type classes, logNn as given in Corollary 5 matches, up to constant multiplication, the redundancy
of the LZ78 scheme for finite-memory sources, which is O(n/ log n) (unnormalized) [31, 32].

5 Selecting sequences from a universal type class

The recursion (14) is helpful for deriving efficient procedures for enumerating Uxn , and for drawing
random sequences from the class with uniform probability. Enumeration of the type class is dis-
cussed first. It allows for implementation of the enumerative coding scheme discussed in Section 3.2,
and also provides one method for drawing a random sequence with (almost) uniform probability.
An alternative method for random selection, which can attain exactly uniform probability, is de-
scribed in Section 5.2. Either method can be used to implement the universal simulation scheme
for individual sequences discussed in Section 6.

5.1 Enumeration of sequences in a universal type class

A one-to-one function Jxn : Uxn → {0, 1, . . . , |Uxn | − 1} is called an enumeration of Uxn . We are
interested in defining an enumeration Jxn , together with efficient algorithms for evaluating Jxn(yn)
for any yn ∈ Uxn , and the inverse function J−1

xn that reconstructs a sequence from its index.
The conventional α-ary type class T [cα−1

0 ] is defined as the set of vectors of length c0 + c1 +
· · · + cα−1 with ci occurrences of the symbol i, 0 ≤ i < α. In defining Jxn and J−1

xn , we will make
use, as primitives, of functions that enumerate T [cα−1

0 ], namely, one-to-one functions

F [cα−1
0 ] : T [cα−1

0 ] → {0, 1, . . . ,M(cα−1
0 )− 1}

and
F [cα−1

0 ]−1 : {0, 1, . . . ,M(cα−1
0 )− 1} → T [cα−1

0 ] .

Such functions are readily constructed by iterating well known methods for enumerating and ranking
combinations (see, e.g., [16, 33, 28]), based mostly on the combinatorial number system [16], and
they are of moderate (polynomial) complexity.

For a sequence xn ∈ An, let w(xn) ∈ Ac−1 denote the sub-sequence built from the first symbols
of the non-null phrases of xn, in the same order as the phrases they come from. We recall that
τ(xn) denotes the number of phrases in Txn that are of the same length as tx. Let ψ : {p ∈ Txn :
|p| = |tx|} → {0, 1, . . . , τ(xn)−1} denote an enumeration of possible tails of sequences in Uxn .

Algorithm E in Figure 4 implements an enumeration Jxn of Uxn . The workings of the algorithm
are straightforward: given an input sequence yn, the indices of the sub-sequences yn[a] in their

7This is a fairly general setting: PF could consist, for example, of all kth order finite-memory (Markov) probability
assignments, with K = αk.
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ALGORITHM E.
Input: Sequence yn, parsing tree T = Txn .
Output: Jxn(yn), index of yn in Uxn .

1. If n = 0, return Jxn(yn) = 0.
2. Let ua = |Uxn[a]|, a ∈ A.
3. For each a ∈ A,

let ja = Jxn[a](yn[a]). // Recursive call
4. Let j = j0 + u0j1 + u0u1j2 + . . .+ u0u1 . . . uα−2jα−1.
5. Let f = F [cα−1

0 ](w(yn)).
6. Let t = ψ(ty).
7. Return Jxn(yn) = t+ τ(x)f + τ(x)M(cα−1

0 )j.

Figure 4: Algorithm for computing the index of a sequence in Uxn .

respective UTCs are (recursively) obtained, as are the index of w(yn) in T [cα−1
0 ] and of the tail ty

among possible tail choices for sequences in Uxn . The function Jxn(yn) is computed by composing
the obtained indices using a mixed radix number system [34, Sec. 4.1], with the mixed radix vector
(τ(x),M(cα−1

0 ), u0, u1, . . . , uα−1), where ua = |Uxn[a]|, a ∈ A. Clearly, the computational complex-
ity of Algorithm E is determined by the computational complexity of the primitive F [cα−1

0 ], and
it can be readily verified that the recursion preserves polynomial complexity. The computation of
the inverse function J−1

xn is a straightforward reversal of Algorithm E, and is omitted.
The enumeration functions Jxn and J−1

xn provide a way to select a random sequence from Uxn

with close to uniform probability. The procedure consists of picking a random index in the range
0 ≤ j < |Uxn |, and selecting yn = J−1

xn (j). If the index j is chosen with uniform probability, the so
will be yn in Uxn . A simple way to obtain a nearly-uniformly distributed integer in the desired range
is to draw a sequence bK of K purely random bits bi (outcomes of independent fair coin tosses),
for K ≥ dlog |Uxn | e, interpret the sequence as a K-digit binary number, and let j = bK mod |Uxn |.
However, unless |Uxn | is a power of two, the resulting distribution will not be uniform, since some
residues modulo |Uxn | will be hit more often than others. It is possible to approach uniformity
by increasing the “excess” d = K − dlog |Uxn | e. A natural measure of deviation from uniformity
is the difference between the entropy of the actual distribution obtained on Uxn , and the entropy
LU (xn) = log |Uxn | of a uniform distribution. Let Y n denote the random variable representing the
outcome of the random selection procedure outlined above. It follows from the analysis of a similar
situation in [5], applied to our setting, that

LU (xn)−H(Y n) = O
(
exp(dlog |Uxn |e −K)

)
.

Hence, the loss in entropy decreases exponentially with the number of “excess” random bits (notice
that the entropy difference is unnormalized). Thus, the procedure is entropy efficient : the number
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ALGORITHM U.
Input: Sequence xn, parsing tree T = Txn .
Output: Sequence yn, drawn with uniform probability from Uxn .

1. Mark all nodes of T as unused,
initialize U(v) = cp for all p ∈ T.

2. Set p← λ. If U(p) = 0, go to Step 5.
3. If p is unused,

output p as the next phrase of yn,
mark p as used, set U(p)← U(p)− 1,
go to Step 2.

End If.

4. Draw a random symbol a ∈ A with distribution Prob(a = b) = U(pb)
U(p) , b ∈ A,

set U(p)← U(p)− 1,
set p← pa, and go to Step 3.

5. Pick, uniformly, a random phrase of length |tx|, as the tail of yn. Stop.

Figure 5: Algorithm for drawing a random sequence from Uxn

K of purely random bits consumed is close to the entropy of the random variable produced, which, in
turn, is close to the maximum achievable entropy for a random draw from Uxn . Upon normalization,
the three resulting rates converge.

Next, we present an alternative procedure for random selection from the UTC, which can attain,
in principle, a perfectly uniform distribution for the output sequence at the cost of uncertainty in
the number of random bits consumed, which nevertheless will average to log |Uxn |+O(1).

5.2 A uniform random selection algorithm

Algorithm U in Figure 5 draws a random sequence from Uxn . In the algorithm, we assume that
Txn is given, we mark nodes as used or unused, and we denote by U(p) the number of currently
unused nodes in the subtree rooted at p ∈ Txn . We also define U(pa) = 0 for all p ∈ Txn and a ∈ A
such that pa 6∈ Txn . To estimate running time, we will assume that each operation in Steps 2–4
of Algorithm U can be executed in constant time. This assumption will be elaborated on later in
the section. Notice that the initializations in Step 1 can be performed in linear time, and Step 5 is
executed only once.

Lemma 9 Algorithm U terminates and outputs a sequence from Uxn. Moreover, Step 3 is executed
n+ c times, and Step 4 is executed n times. Thus, the running time of the algorithm is O(n).

Proof. First, we observe that the output yn of the algorithm is a concatenation of phrases from
Txn , and that a phrase is marked as used after being appended to the output in Step 3, so it is not
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output more than once. Also, since the loop in Steps 3–4 traverses the tree from the root down, a
phrase is output only if all of its ancestors were found used. Therefore, the prefix order is respected
for output phrases. For a node p, the counter U(p) is initialized to cp, and it is decremented every
time the node is visited. Since a node is visited with positive probability only if it has an unused
descendant, such a visit eventually leads to the emission of a phrase descending from p, at which
time the state of the emitted phrase switches from unused to used. Hence, each time execution
returns to Step 2, U(λ) has decreased by one, and U(p) has an accurate count of unused phrases
descending from p for all p ∈ Txn . After c executions of Step 2, the algorithm eventually reaches
Step 5, with all the phrases in Txn having been used and emitted. At that point, the algorithm
emits a valid tail and terminates. Hence, the output yn is a valid sequence in Uxn .

It follows from the preceding discussion that a node p is visited in Step 3 exactly cp times,
where, as before, cp denotes the size of the subtree rooted at p. Therefore, the total number of
executions of Step 3 is

∑
p∈Txn

cp, which, by (17), is equal to n+ c. Since all executions of Step 4,
and all executions of Step 2 except the first one, follow an execution of Step 3, the total running
time is O(n + c) = O(n), as claimed (recall that Step 1 runs in linear time). Of the cp visits
to node p, the first one (when the node is found unused) results in the emission of the phrase
p, while the remaining cp−1 lead to Step 4. Hence, the total number of executions of Step 4 is∑

p∈Txn
(cp−1) = n.

Lemma 10 Algorithm U outputs a sequence drawn with uniform probability from Uxn.

Proof. Let a1, a2, . . . , an denote the random symbols drawn, respectively, in the n executions of
Step 4, and let Qi(a|ai−1

1 ) denote the distribution used to draw ai. Clearly, different sequences
of outcomes an lead to different output sequences yn (since different choices in Step 4 lead to
the emission of phrases from different subtrees). Therefore, denoting by Y n the random variable
output by the algorithm, and by An the sequence of random draws in Step 4, we have, for the
output sequence yn,

Prob(Y n = yn) = Prob(An = an) =
n∏

i=1

Qi(ai|ai−1
1 ) . (34)

The conditional distribution Qi depends on past draws through the state of the algorithm, i.e., the
current node being visited, and the state of the counts U(·). We prove that yn is emitted with
uniform probability by induction on c = |Txn |, and assuming, initially, that tx = λ. It is readily
verified that if c = 1, the algorithm “outputs” yn = λ with probability one, as expected. Assume
now that c > 1. We monitor executions of Step 4 when p = λ, which we refer to as Step 4λ. By the
discussion in Lemma 9, Step 4λ is executed exactly c times. Let i1, i2, . . . , ic denote the indices of
these executions among the n executions of Step 4. We observe that, by the test in Step 2, Step 4λ is
always reached with U(λ) > 0. The first time the step is executed, every node of the tree except the
root is unused, and a symbol a is drawn according to the distribution Q1(a = b) = cb/(c−1), b ∈ A.
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Once the path to node a is taken, the algorithm will descend down the subtree T (a), and the iteration
continues until an unused node is found, at which time the corresponding phrase is emitted, and
the node is marked used. Thus, if the algorithm does not terminate, the next time Step 4λ is
reached, the counts U(λ) and U(a) will have decreased by one, while the counts U(b), b ∈ A\ {a},
will have remained unchanged. Let Qij (aij |a

ij−1
1 ) = Uj(aij )/Uj(λ) be the probability of the symbol

randomly drawn the jth time the algorithm is at Step 4λ, 1 ≤ j ≤ c. It follows from the previous
discussion that Uj(λ) will assume the values c−j, 1 ≤ j < c, and Uj(aij ), over time, will assume all
the values ca + 1− k, 1 ≤ k ≤ ca, for all a ∈ A. Hence, the multiplicative contribution of Step 4λ
to the probability of the output sequence yn is

P (λ) =
c∏

j=1

Qij (aij |a
ij−1
1 ) =

c0! c1! . . . cα−1!
(c− 1)!

= M(cα−1
0 )−1.

Let a ∈ A be a fixed child of the root. As mentioned, following each visit to a, the algorithm
will emit a phrase from the subtree rooted at a, before returning to the root λ. If we remove the
initial symbol a from each of these phrases, their concatenation forms the sequence yn[a] ∈ U(T (a))
previously defined in Section 3.1. Moreover, if we ignore anything that happens when other branches
from λ are taken, then the sequence of steps taken while the algorithm is visiting nodes in T (a)

forms a complete execution of the algorithm on that tree. Since ca < c, the induction hypothesis
holds, and we have Prob(Y n[a] = yn[a]) = |U(T (a))|−1. The same reasoning applies, independently,
to each child of the root. Thus, for the output sequence yn, we have

Prob(Y n = yn) = P (λ)
∏
a∈A

Prob(Y n[a] = yn[a]) = M(cα−1
0 )−1

∏
a∈A
|U(T (a))|−1 = |Uxn |−1 ,

completing the proof of the claim when tx = λ. When |tx| > 0, the uniform random choice of a
tail in Step 5 preserves the uniform probability of yn.

We now discuss in more detail the mechanics of the random draws in Step 4 of Algorithm U,
for which the assumption of constant execution time might be arguable. The issue is important
not only for its impact on the complexity of the algorithm, but also because it determines the total
amount of randomness the algorithm requires to produce its output. We assume, for simplicity,
that tx = λ.

Assume the algorithm has access to a semi-infinite sequence b∞ of purely random bits. The
stream of random bits could be used to produce each random draw independently, using the classical
technique of [8] (see also [3, Sec. 5.12]). Denoting by Ni the number of purely random bits required
to generate the random variable ai with distribution Qi, it follows from the results of [8] that

ENi ≤ H(Qi) + 2 ≤ logα+ 2. (35)

The execution time of the procedure is proportional to the number of purely random bits consumed,
so the expected running time per random draw is indeed constant. Notice also that since the largest
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denominator of a probability value in Step 4 is c−1, the operations required for the random draw
require registers of size O(log c), which is in line with the other operations, and can reasonably be
assumed to be operated on in constant time. However, the number of purely random bits (and
execution time) required in the worst case is unbounded. In fact, any algorithm that uses fair coins
to generate random variables with probabilities that cannot be written as sums of dyadic fractions
must have unbounded execution paths. In our case, the probabilities in the distributions Qi have
denominators that run over a range of consecutive integers, so they will generally not be expressible
as sums of dyadic fractions.

Aside from the issue of unbounded execution paths, which is inevitable if exact probabilities are
desired in the random draws, the above procedure is not entropy-efficient, as it handles each random
draw independently, and each draw incurs a constant redundancy over the entropy of its output.
We now describe a more efficient procedure, which will be asymptotically optimal in random bit
consumption, as was the case with the procedure in Section 5.1.

The random drawing procedure will be based on a decoder for an Elias code [35] (also referred
to as a Shannon-Fano-Elias code [3]), a precursor of the arithmetic code [36, 37]. We will obtain the
sequence an by feeding the random sequence b∞ to an Elias decoder, and driving the decoder with
the distributions Qi, i.e., a first symbol a1 ∈ A is produced by the decoder using the distribution Q1,
the second symbol uses the distribution Q2 and so on, until an is produced. This general procedure
for generating arbitrarily-distributed discrete random sequences from fair coin tosses is described
and analyzed in [11] under the name interval algorithm. The procedure generalizes the results of
[8], and provides an efficient sequential implementation for generating discrete random sequences
from fair coin tosses (or, as a matter of fact, from arbitrary coins). Our setting corresponds to the
iterative variant of the algorithm in [11], with a different target distribution used at each decoding
step.8 Let NR denote the length of the prefix of b∞ required to generate an with the distribution
in (34). It follows from the results of [11] that, in analogy with (35), we have

ENR ≤ H(An) + 3. (36)

By (34) and the result of Lemma 10, we have H(An) = H(Y n) = LU (xn), and, therefore,

ENR ≤ LU (xn) + 3.

On the other hand, given the tree Txn , yn is obtained deterministically from the sequence bNR .
Therefore, we must have

ENR ≥ H(Y n) = LU (xn).

Thus, the expected random bit consumption of the Elias decoding procedure is optimal up to
an additive constant. We summarize the foregoing discussion in the following theorem, where we
assume that Algorithm U incorporates the Elias decoding procedure for the random draws in Step 4.

8Of course, using distributions that change as symbols are decoded is routine practice in the context-driven
arithmetic decoders used in universal data compression [38]—here, we refer to the specific results of [11] on using
Elias decoders as random number generators.
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Theorem 4 Algorithm U outputs a sequence yn uniformly distributed in Uxn. The expected number
of purely random bits required per sample is LU (xn) +O(n−1), which is asymptotically optimal.

Proof. The claims on yn and the expected number of purely random bits were established in
Lemmas 9 and 10, and in the discussion preceding the theorem.

Although the expected number of purely random bits in Algorithm U is asymptotically op-
timal, as mentioned, some sample paths will require an unbounded number of random bits (and
execution time). Furthermore, the Elias code requires arithmetic operations with registers of length
O(n) in the worst case, for which an assumption of constant execution time might be unreason-
able. The register length problems of Elias coding were solved with the emergence of arithmetic
coding [36, 37]. An arithmetic code with bounded-length registers, however, incurs a certain redun-
dancy (see also [39]), which would translate to a departure from a perfectly uniform distribution
in our application. The trade-off is analogous to that discussed for the enumerative procedure of
Section 5.1. In fact, a careful analysis of both procedures reveals that they perform essentially
the same computation, and Algorithm U can be regarded as just an alternative, more efficient
implementation of a random selection procedure based on Algorithm E.

6 Universal simulation of individual sequences

Informally, given an individual sequence xn, we are interested in producing a (possibly random)
“simulated” sequence yn with the following properties:

S1. yn is statistically similar to xn;

S2. given that yn satisfies Condition S1, there is as much uncertainty in the choice of yn as
possible.

Condition S1 is initially stated in a purposely vague fashion, as the desired similarity criterion
may vary from setting to setting. In [5], for example, xn is an individual sequence assumed to have
been emitted by a source from a certain parametric class, and a strict criterion is used, where yn

must obey exactly the same (unknown) probability law, from the parametric class, as xn. Other
works on simulation of random processes (e.g., [9, 11]) assume full knowledge of the source being
simulated, and do not use an individual sequence xn as part of the input.

Condition S2 is desirable to avoid, in the extreme case, a situation where the simulator de-
terministically outputs a copy of xn (which certainly satisfies Condition S1 for any reasonable
definition of “similarity”) as its own “simulation.” We wish to have as much variety as possible in
the space of possible simulations of xn.

We now formalize our notion of sequence simulation, propose a simulation scheme based on
universal types, and prove that it is, in a well defined mathematical sense, optimal with respect to
Conditions S1 and S2, even when allowing competing schemes to satisfy weaker conditions.
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A simulation scheme for individual sequences is a function S that maps sequences xn, for all
n, to random variables Y n = S(xn) taking values on An. We say that S is faithful to {xn} if for
every integer k ≥ 1, and positive real number ε, we have

ProbY n

{
‖P̂ (k)

xn − P̂ (k)
Y n ‖∞ ≤ ε

}
→ 1 as n→∞. (37)

Faithfulness will be our criterion for similarity of sequence statistics in Condition S1. The
criterion is, in the realm of empirical probabilities, of the same flavor as that used in [9] for random
processes. To satisfy Condition S2, we will seek simulation schemes that maximize the entropy
of S(xn) given that S is faithful to {xn}. This can be seen as analogous to the criterion used
in [5], where a minimization of the mutual information between the input random source and the
simulated output is sought, given that the output satisfies the probability law of the input.

The random selection algorithms of Sections 5.1 and 5.2 suggest, very naturally, a simulation
scheme SU , where SU (xn) is a random sequence Y n uniformly distributed on Uxn .

Theorem 5 The simulation scheme SU is faithful to all {xn}. Its output sequence has entropy rate
H(SU (xn)) = LU (xn).

Proof. The faithfulness of the scheme is a direct consequence of Theorem 1. In fact, SU satis-
fies (37) with probability equal to one for every sufficiently large n; i.e., it is faithful everywhere,
which will not be a requirement for other schemes we will compare SU against. SU selects an out-
put sequence uniformly from Uxn , so, by the definition of LU (xn) in (29), its entropy is as claimed.

Lemma 11 Let {xn} be a sequence such that

lim
k→∞

limn

∣∣∣LLZ(xn)− Ĥk(xn)
∣∣∣ = 0, (38)

and let S be a simulation scheme satisfying

H (S(xn)) ≥ LU (xn) + ∆ (39)

for some ∆ > 0, and all sufficiently large n. Then, S is not faithful to {xn}.

Proof. By the hypothesis of the lemma on {xn}, there exists an integer K such that for an
arbitrarily chosen δ1 > 0, and all k ≥ K, we have

limn

∣∣∣LLZ(xn)− Ĥk(xn)
∣∣∣ ≤ δ1. (40)

Combining with the result of Corollary 4, we further obtain∣∣∣LU (xn)− Ĥk(xn)
∣∣∣ ≤ δ1 + δ2, (41)
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for sufficiently large n and an arbitrary δ2 > 0. Let yn be any sequence in An. From the universality
of the Lempel-Ziv code in the class of finite-memory sources [6, 3], we have

LLZ(yn) ≤ Ĥk(yn) + δ3 , (42)

uniformly in yn for any given k, sufficiently large n, and arbitrary δ3 > 0. Define εk(yn) =
|Ĥk(yn)− Ĥk(xn)|. Using this definition together with (41) and (42), we obtain

LLZ(yn) ≤ LU (xn) + εk(yn) + δ1 + δ2 + δ3 , (43)

for all k ≥ K and sufficiently large n. Choose δ1 = δ2 = δ3 = ∆/8, and let Yn,k = {yn ∈ An :
εk(yn) ≤ ∆/8 }. Then, (43) yields

LLZ(yn) ≤ LU (xn) + ∆/2, yn ∈ Yn,k .

We define the following lossless binary encoding for sequences yn ∈ An: if yn ∈ Yn,k, encode yn

by a symbol 0 followed by the LZ’78 binary encoding of yn; otherwise, encode yn by a symbol 1
followed by the binary representation, of length dn logαe, of yn interpreted as a number in base α.
Let pn,k = ProbS {yn ∈ Yn,k}. Then, the expected normalized code length of the encoding under
ProbS is

LS = (LU (xn) + ∆/2)pn,k + (logα)(1− pn,k) + o(1). (44)

By Shannon’s fundamental entropy bound, and the assumptions of the lemma, we must have

LS ≥ H (S(xn)) ≥ LU (xn) + ∆ . (45)

Combining (44) and (45), and choosing n sufficiently large so that, additionally, the o(1) term
in (44) does not exceed ∆/4, we obtain

(LU (xn) + ∆/2)pn,k + (logα)(1− pn,k) ≥ LU (xn) + 3∆/4 ,

or, rearranging terms,

pn,k ≤
logα− LU (xn)− 3∆/4
logα− LU (xn)−∆/2

< 1 , (46)

where the last inequality follows from the fact that H(S(x)) ≤ logα, and, thus, by (45), logα −
LU (xn)−∆ ≥ 0, and both the numerator and the denominator of the fraction in (46) are positive.
Now, let δ be a positive real number satisfying

αk(α+ 1)δ log δ−1 ≤ min{ ∆
16
,

1
2αk+1

}, (47)

and choose n sufficiently large so that the term O(log n/n) in Lemma 4 does not exceed ∆/16. Then,
it follows from Lemma 4, (47), (46), and the definition of Yn,k, that for k ≥ K and sufficiently large
n, we have

ProbS
{
‖P̂ (k)

xn − P̂ (k)
yn ‖∞ ≤ δ and ‖P̂ (k+1)

xn − P̂ (k+1)
yn ‖∞ ≤ δ

}
≤ ProbS

{
|Ĥk(xn)− Ĥk(yn)| ≤ ∆

8

}
≤ ProbS {yn ∈ Yn,k} = pn,k < 1 .
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Therefore, S is not faithful to {xn}.

The proof of Lemma 11 relies on the assumption (38). Sequences that do not satisfy the
assumption exist, as shown in the following example.
Example 7. Let m be a positive integer, and let Cm denote a binary counting sequence of order
m (see Example 4). A binary de Bruijn sequence of order m [40], denoted by Bm = b2

m−1
0 , has the

following property: N(um, b2
m+m−2

0 ) = 1 for all um ∈ {0, 1}m, where b2
m−1

0 is extended cyclically
to length 2m +m−1. De Bruijn sequences exist for all orders m, and have been extensively studied
(see, e.g., [41, 42]). The sequence xnm is defined in the following equation, where we use (non-
commutative) multiplicative notation for string concatenation, and indices into Bm are computed
modulo 2m.

xnm = Cm

2m−1∏
i=0

2m∏
j=m+1

bi+j−1
i , (48)

In words, xnm consists of a counting sequence Cm followed by the concatenation of all the prefixes
of length j ≥ m+ 1, in increasing length order, of each of the 2m cyclic shifts of Bm. The parsing
tree of xnm consists of a complete balanced tree of depth m, where from each leaf um ∈ {0, 1}m

“hangs” a chain of nodes of degree one corresponding to the completion, of length 2m −m, of the
cyclic shift of Bm starting with um. The strings bi+j−1

i in (48), together with the phrases of Cm,
comprise all the phrases of xnm , as each string uniquely extends a previous phrase by one symbol.

Lemma 12 We have limm→∞ Ĥk(xnm) = 1 for all k ≥ 0, and limm→∞ LLZ(xnm) = 0.

Proof. First, it is established by direct computation that the length and number of phrases
of xnm are, respectively, nm ≈ 23m, and cm ≈ 22m, up to lower order terms. Thus, we have
LLZ(xnm) ≈ (cm log cm)/nm → 0 as m → ∞. We claim that the distribution of k-tuples in xnm is
nearly uniform for all k ≤ m. Let um be a binary m-tuple, and let s(u) be the unique index in
the range 0 ≤ s(u) < 2m such that bs(u)+m−1

s(u) = um. For each phrase length t, m ≤ t ≤ 2m, um

occurs exactly once in each phrase of the form bs
′+t−1

s′ , s(u) ≤ s′ ≤ s(u) + t−m, i.e., in t−m+ 1
phrases, independently of um. Therefore, m-tuples that are fully contained in phrases of length
t ≥ m are uniformly distributed, and, consequently, so are other k-tuples for k < m (it is easily
verified that phrases of length less than m, which occur in Cm, are also uniformly distributed).
By an argument similar to the one used in the proof of Theorem 1, k-tuples that are not fully
contained in phrases occur in negligible proportion. It follows that the distribution of k-tuples in
xnm approaches uniformity as m → ∞ for every fixed k ≥ 1. Thus, Ĥk−1(xnm) → 1 as m → ∞,
for every k ≥ 1.

Although the example of {xnm} was presented in the “sequence of sequences” setting, it is also
readily verified that the concatenation

∏∞
m=1 x

nm gives one semi-infinite sequence x∞ that has LZ78
compressibility [6] equal to zero, but finite-memory compressibility [3] (and, thus, also finite-state
compressibility [6, 17]) equal to one. The example is of the same flavor as examples of sequences
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that differentiate between various finite- and infinite-memory variants of Lempel-Ziv compression,
presented in [43] and [44]. In particular, an example presented in [43] is compressible to rate 1/2
by the LZ77 variant [45], but it is incompressible by finite-state compressors; an example presented
in [44] differentiates between LZ77 and LZ78, and is also based on de Bruijn sequences.

Example 7 highlights the fact that the “raw” LZ78 incremental parsing captures more than just
the finite-memory patterns of the data being parsed. In cases like that of the example, the type
class Uxnm will be fairly small, and will not include sequences that would be considered statistically
indistinguishable from xnm judging by their finite-memory properties alone. This “anomaly” is
avoided in the original paper [6] by dividing xn into blocks of length N , and carrying out the
incremental parsing and encoding independently for each block. Compressibility is then defined
by sending the number of blocks to infinity first, and then the block size, in analogy to the way
finite-state compressibility is defined.

Universal types could also be defined as based on a “blocked” incremental parsing, which would
avoid the need for the condition on {xn} in Lemma 11. However, the modification would add
complexity to the notation and analysis, without adding significant insight. The “blocked” UTCs
would be Cartesian products of the simple UTCs described here, for sub-blocks of length N of xn.
We note also that most of the literature on LZ78 (see, e.g., [3, 46, 32, 31] for a sample) focuses on
the “raw” incremental parsing without blocking. In any case, the “anomaly” applies to very few
sequences, as shown in the following lemma.

Lemma 13 The condition (38) holds for all xn except for a subset Xn ∈ An whose volume vanishes
as n→∞, under any stationary-ergodic measure on xn.

Proof. Let PX be any stationary ergodic measure that applies to xn. It follows from the sample
converse theorems for source coding in [47, 48] that

limn LLZ(xn) ≥ H(X), a.s., (49)

On the other hand, from the universality of the LZ code, we have [3, Sec. 12.10]

limn LLZ(xn) ≤ H(X), a.s.,

and from the convergence of the kth order empirical entropy for stationary ergodic processes,

limk limn Ĥk(xn) = H(X), a.s.

Putting these together, we obtain

limk limn |LLZ(xn)− Ĥk(xn)| = 0, a.s..

Since a.s. convergence implies convergence in probability, for any ε > 0, there exists an integer K
such that for all k ≥ K,

PX

{
|LLZ(xn)− Ĥk(xn)| < ε

}
→ 0 as n→∞ .
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� -xn � -yn

Figure 6: Texture simulation

Notice that although a probability measure on input sequences xn is used in Lemma 13, it just
provides a formal way of saying that “most” individual sequences satisfy the condition of Lemma 11.
All the results still apply to individual sequences, and the proposed simulation scheme SU makes
no stochastic assumptions on xn.

We summarize the discussion in the following theorem, which establishes the optimality of SU ,
in the sense that no scheme that complies with Condition S1 can do significantly better than SU
on Condition S2.

Theorem 6 Every faithful simulation scheme S must satisfy

H(S(xn)) ≤ H(SU (xn)) + ∆

for all ∆ > 0, sufficiently large n, and all sequences xn, except for a subset of vanishing volume as
n→∞, under any stationary ergodic measure on these sequences.

The simulation scheme SU was tested on some binary textures. For the example in Figure 6, a
1024× 1024 binary texture was generated, and scanned with a Peano plane-filling scan, to produce
a binary sequence xn of n = 220 samples. The sequence xn was then “simulated” by generating
a uniform random sample yn from Uxn . Finally, the sequence yn was mapped back, reversing the
same Peano scan order, to a 1024× 1024 image. The left half of Figure 6 shows a 600× 600 patch
of the texture xn, while the right half shows a 600 × 600 patch of the simulation yn (the smaller
patches are used to fit the page without sub-sampling or altering the visual quality of the images).
It is evident from the figure that the right half indeed “looks like” the left half, and the seam
between the images is unnoticeable. Yet, the right half is completely different from the left half,
and was selected from a very large class of possible simulation images. In fact, the size of Uxn in
this example was estimated using the recursion (14), resulting in log |Uxn | ≈ 109, 700.
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[9] T. S. Han and S. Verdú, “Approximation theory of output statistics,” IEEE Trans. Inform.
Theory, vol. 39, pp. 752–772, May 1993. 4, 26, 27
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