
Information Systems Frontiers 5:1, 15–28, 2003
C© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Shock: Aggregating Information While Preserving Privacy
Eytan Adar and Rajan Lukose
Information Dynamics Lab, HP Laboratories, 1501 Page Mill
Road, Palo Alto, CA 94304, USA
E-mail: eytan.adar@hp.com
E-mail: rajan.lukose@hp.com

Caesar Sengupta
Encentuate Pte. Ltd., 151 North Buona Vista Road #02-45,
Singapore 139347, Republic of Singapore
E-mail: caesars@cs.stanford.edu

Josh Tyler
Information Dynamics Lab, HP Laboratories, 1501 Page Mill
Road, Palo Alto, CA 94304, USA
E-mail: jtyler@cs.stanford.edu

Nathaniel Good
School of Information Management and Systems, UC Berkeley,
102 South Hall, Berkeley, CA 94720
E-mail: ngood@sims.berkeley.edu

Abstract. An important problem facing large, distributed orga-
nizations is the efficient management and distribution of infor-
mation, knowledge, and expertise. In this paper we present the
design and implementation of a low-cost, extensible, flexible, and
dynamic peer-to-peer (P2P) knowledge network that helps ad-
dress this problem. This system, known as Shock, is designed to
protect the privacy of user’s personal information, such as email,
web browsing habits, etc., while making that information avail-
able for knowledge management applications. It reduces partici-
pation costs for such applications as expert-finding, allows highly
targeted messaging, and enables novel kinds of ad hoc conversa-
tion and anonymous messaging. The system is tightly integrated
with users’ email clients, taking advantage of email as habitat.

Key Words. privacy, peer-to-peer networks, expertise location,
anonymous messaging, recommendation systems, collaborative
filtering, knowledge management, computer-supported coopera-
tive work

1. Introduction

The pervasiveness of information technology in the
work practices of organizations has raised two issues
that are in tension with each other. The first is-
sue arises out of the recognition that work in many

organizations is information and knowledge intensive
and that much of an organization’s continuing value
resides in its so-called intellectual capital or knowl-
edge assets. As a result, knowledge management ap-
plications such as expertise location (Streeter and
Lochbaum, 1988), capturing an organization’s memory
(Ackerman and Halverson, 1998), etc., have received
much attention. The effectiveness of these applications
is in part determined by the information made avail-
able to them. An organization interested in maximiz-
ing the value of its knowledge assets must make as
much information as possible available for knowledge
management applications.

The second issue is the workplace privacy of users.
With so much of our work practice being in the form of
email, web browsing, instant messaging, etc. the pos-
sibilities for easy electronic monitoring are manifold.
While employee privacy rights in the United States
are limited (though still uncertain (Lewis, 2001)),
European laws are much more strict in this regard and
constrain what information an employer may gather
(Brittenden, http://www.ictur.labournet.org/Online.htm).
Regardless of the legal implications, employee-
company relationships and employee morale depend

15



16 Adar et al.

on a company’s privacy policy (Weisband and Reinig,
1995)

From the point of view of knowledge management,
however, a user’s electronic trails hold great poten-
tial value. For example, information about keywords
or phrases in a user’s email, what web-based resources
and documents they access, and even with whom they
communicate and how frequently they do it can aid in
the location of expertise and implicit knowledge within
the organization.

Thus, in order for knowledge management solutions
to be effective, organizations must balance these two
seemingly conflicting demands. On the one hand they
must have as much information as possible available
to them, especially user specific data closely associ-
ated with work practice. On the other hand the orga-
nization must provide users with a solution they can
be comfortable with, and make allowances for pri-
vacy concerns. One potential solution is to ask users to
screen the information themselves. This solution has
very high participation costs for users. A much better
solution would be to have a system designed to protect
privacy from the beginning, eliminating the need for
explicit screening, and as a result, radically reducing
participation costs.

It is worth emphasizing that with respect to privacy,
we are not here concerned with protecting the privacy of
users from monitoring by those who administer the in-
frastructure. This is not possible in practice. Instead, we
are concerned with protecting the privacy of users by
making use of (potentially private) information without
revealing that information to other users in the organi-
zation or to a centralized store of data. As previous
research has argued (Ackerman, 1994; Grinter, 1997),
collaborative systems must pay heed to the needs and
concerns of users if they are to be used, and so we are
attempting to make users feel comfortable, through a
technological solution, that their privacy is protected.

In this paper, we will describe the architecture
and implementation of a system called Shock (Social
Harvesting of Community Knowledge) that takes as
one of its primary design goals the protection of user
privacy while retaining the power afforded by local
observation of users. Shock is client software, down-
loaded onto users’ computers, that automatically forms
a detailed profile of a user’s behavior and environment
and stores it locally on the user’s computer. The clients
are able to talk to each other in a decentralized man-
ner through a peer-to-peer network architecture. The
resulting system forms a low-cost, extensible, flexible,

and dynamic knowledge network within an organiza-
tion that allows users to find others with specific ex-
pertise, send highly targeted messages, and engage in
novel kinds of ad hoc conversations with the option of
true anonymity.

We will argue that Shock improves upon many
prior expert-finding systems by increasing the detail
and richness of data available to the system and by
reducing participation costs through automatic profil-
ing. Both of these benefits derive from the privacy-
preserving peer-to-peer architecture since users would
be reluctant to allow access to their detailed information
or automatic profiling without it. In addition, Shock’s
architecture allows some novel features such as truly
anonymous and secure questions, responses, and con-
versations. Another important feature of our implemen-
tation is tight integration with our user base’s current
tools, specifically the Microsoft Outlook client, which
further reduces participation costs by taking advantage
of how users treat their email client as their habitat
(Ducheneaut and Bellotti, 2001).

In the next section, we discuss related work in more
detail and show how Shock compares to other systems.
We then present a system walk-through, followed by a
presentation of the design rationale, and description of
the main system components. Next, we present a pre-
liminary review of the system based on a large pilot test
currently underway, and we conclude with a summary
and directions for future work.

2. Related Work

All expert-finding systems must operate by taking a de-
scription of the expertise sought and matching it against
profile information associated with possible experts.
Expert-finding systems most often differ in the kinds
of information available for the experts’ profiles and the
way that profile information is gathered. These choices
strongly impact user participation costs and the rich-
ness of available data for profile generation.

Most prior systems have a centralized architecture,
in which profile storage and matching occurs at
central servers. For example, expert databases, such
as Microsoft’s SPUD (Davenport and Prusak, 1998),
HP’s CONNEX1 and SAGE2 contain repositories of
manually entered expertise data. While providing a
repository of expert knowledge, manual entry requires
constant maintenance and overhead to maintain
usefulness. In addition, these databases generally



Shock: Aggregating Information While Preserving Privacy 17

contain knowledge that is too broad to answer the
specific queries that are frequently used in expert
finding searches.

Automated expert finding systems such as
Ackerman’s Answer Garden (Ackerman and Malone,
1990), ER (McDonald and Ackerman, 2000), P2Pq,3

Askme,4 Tacit,5 MIT’s Expert Finder (Vivacqua and
Lieberman, 2000), and also MITRE’s Expert Finder
(Mattox, Maybury, and Morey, 1998), are solutions to
the high costs of maintaining expert databases. Such
systems typically use some algorithm to classify in-
formation and/or expertise and then distribute this to
the users seeking answers. Despite their automation,
expert finding systems tend to limit themselves to min-
ing very specific data sets. For example, MIT’s Expert
Finder recommends Java-programming experts based
on profiles created from the users source code by com-
paring Java class usage to an external model. Similarly,
the commercial Tacit product mines publicly available
documents and e-mail available on centralized servers
(Microsoft Exchange, for example). Referral Web
(Kautz, Selman, and Shah, 1997) utilizes the “six de-
grees of separation” phenomena to capitalize on exist-
ing social networks inside of an organization to dis-
cover people who are experts and the paths of people
to them by mining co-authorship graphs for published
papers.

Each of these automated systems tends to use infor-
mation for profile generation that is already available
within the organization. For example, the ER system
used data from the host organization’s software devel-
opment system and the call center help system. Sys-
tems that go further by using more personal data, such
as email (e.g. Tacit), must address sensitive privacy
concerns (Schwartz and Wood, 1992), usually through
explicit user screening of published data. This explicit
screening entails higher user participation costs. Fur-
thermore, since they are centralized systems, they do
not have access to other personal data such as web
browsing or file viewing habits, which are easily had
at the client.

Centralized expert systems also tend to remove con-
trol from the user about when they should be contacted.
While systems such as P2Pq act as question brokers and
route questions to users, the more traditional systems
such as MITRE’s Expert Finder and CONNEX simply
list which experts a user can communicate with.

One of the main benefits of modern knowledge man-
agement systems over other solutions such as pub-
lic mailing lists and newsgroups is the reduction of

information overload. The attempt to connect individ-
uals to the right information or information source is
largely the subject of recommender systems (Konstan
et al., 1997; Terveen et al., 1997; Shardanand and Maes,
1995). Our own system draws inspiration from the
techniques used in recommender systems to reduce
disruptions and increase productivity for individuals.
Recommender systems have successfully employed
various metrics to determine the information most
relevant for a given user. For example, link analysis
(Terveen et al., 1997), explicit (Konstan et al., 1997;
Shardanand and Maes, 1995) and implicit (Morita and
Shinoda, 1994) recommendations. While they provide
valuable lessons, the specific techniques of such sys-
tems traditionally depend on public participation, ac-
tive communities and sustained interest in a given topic
to alleviate problems associated with data sparsity and
bootstrapping. In addition, recommender systems uti-
lize a centralized repository and thus are not compatible
with our approach. Recent work in collaborative filter-
ing and e-commerce looks into solutions to privacy
issues (Ackerman, Cranor, and Reagle, 1999; Canny,
2002), but has yet to be implemented and tested in live
systems.

Shock is similar to decentralized systems such as
DEMOIR (Yimam, 2000) and Yenta (Foner, 1997).
Although privacy concerns are addressed and incor-
porated into their architectures, they are fundamen-
tally different from Shock in their design. Yenta (Foner,
1997) is a system created primarily for a passive user
to gain value from a distributed network of users, by
implicitly determining what items that user may find
interesting. DEMOIR (Yimam, 2000) is a hybrid archi-
tecture proposal that allows users to share information,
but lacks the ability to transfer and target expertise in
a P2P manner or provide a level of privacy control and
guarantees that Shock provides. For example, the pro-
posed DEMOIR architecture does not make explicit
allowances for anonymous questions and answers.

Finally, the majority of the systems mentioned re-
quire use of a secondary user interface. Shock, by
contrast, is embedded in the user’s email client, and pro-
vides rapid integration into existing tools and knowl-
edge bases within an organization. Prior work has
shown that email is a habitat for most office workers,
and in designing Shock we sought to incorporate the
tools for finding expert knowledge into the tools that
people use on a daily basis.

While the prior work addresses pieces of the larger
problem of finding experts to solve problems, we



18 Adar et al.

Fig. 1. Outlook integration.

believe that no system exists that preserves privacy,
provides targeted profiling while being cost effective
and simple to maintain.

3. Usage Scenario (Walk-through)

To demonstrate the Shock system, we present a walk-
through of a likely scenario. A user, Alice, wishes to
find out the experiences of others in her organization
with the peer-to-peer system called Freenet. Fig. 1
shows how her Outlook client looks with Shock in-
stalled. A Shock toolbar, labeled (1) in Fig. 1, appears
below the standard Outlook toolbar. In the left pane
is a special folder labeled “Shock” (2) that contains
sent and received questions. In this view, a received
question is selected for viewing, and the message view
pane has a column labeled “score” (3) which shows the
relevance of the received questions. By asking a Shock
question, Alice will be starting a conversation that will
appear in her Sent Questions folder (2).

The current system allows many different kinds of
questions, each with different features enabled in the

interface (the implementation allows easy extensibility
and flexibility for defining new types). After clicking
the “Ask A Question” toolbar item, she selects a “Sur-
vey/Poll” type and is presented with the screen shown
in Fig. 2. She enters a descriptive question (1), defines
her multiple choices (2), allows responders the ability
to reply with text comments in addition to their poll
choice (3), decides not to be anonymous (4), and sets
the message to expire in one week (5). In addition, she
decides to target her message by including a “Filter”
in it. Filters, which we discuss in detail later, allow
the sender of a Shock message to (optionally) specify
highly detailed criteria to help target the message. She
decides that only users who have “Freenet” installed
should receive her message (6).

Clicking on the send button results in the mes-
sage being sent over the Shock network according to
a protocol we describe in Section 4.2. Other Shock
clients on the network score the message (described in
Section 4.4). The score will depend on the text of the
question as well as the filters. Each client has a thresh-
old value, set by the user, which Shock message scores
must exceed in order to be presented in the interface.



Shock: Aggregating Information While Preserving Privacy 19

Fig. 2. Asking a Shock question with a poll and a software filter.

If a user, Bob, is presented a message, it appears
as an Outlook item in the Received Questions folder
(Fig. 1, label 2). The user can respond to the message
through the interface shown in Fig. 3. Here the user se-
lects an item from the list, enters optional comments,
decides if the response should be anonymous, and also
whether the reply is to be encrypted so that only the
sender can see it. Note that the sender, Alice, will never
know that the question, with its filters, was presented to
Bob unless a reply is made and Bob chooses to explic-
itly divulge his identity in that reply. Back at Alice’s
client, we see a partial view of the results of several
responses (Fig. 4). This dynamically generated page
appears when she clicks on the corresponding Outlook
item in her “Sent Questions” folder. Notice the graph-
ical poll summary and the threaded conversation. To
facilitate conversations, all users who do not filter the
initial message will have this view and can participate

in the discussion (excepting those messages which are
encrypted for someone else).

4. System Architecture

The Shock architecture was designed to simultaneously
address various (and traditionally conflicting) design
principles. Specifically, clients were to be easily in-
stalled, maintained and used, privacy and anonymity
were to be respected, automation was used where pos-
sible, and flexibility for additional features was built in.
The most likely candidate that satisfied these various
concerns was a P2P or P2P/server hybrid system where
the bulk of work was done on each client.

This design allows Shock clients to automatically
collect highly detailed information from the user’s be-
havior while still maintaining privacy for that profile



20 Adar et al.

Fig. 3. Responding to a Shock question with a poll.

through local storage. That is, all data collected is as
secure as the source data. Anonymity is optionally pro-
vided to users through the decentralized network topol-
ogy and randomized laundering of messages. This is
similar to the way Gnutella6 and Crowds (Reiter and
Rubin, 1999) operate and essentially implements an
anonymous bulletin board.

Fig. 5 abstractly illustrates a Shock client and the
Shock network. All user interactions with the system
are done through a UI module that includes both a
web style interface as well as a Microsoft Outlook in-
terface. The client serves the role of generating user
profiles though Observer and Bootstrapping modules.
These automate the process of building the user pro-
file through indexing documents the user interacts with
and cataloging other facts that are known about them
or their systems (installed programs, for example). Ad-
ditionally, the Shock client determines which incom-
ing messages are to be shown to the user through a
Scoring module. The Network module serves to route
questions to and from other peers as well as interact-
ing with the Shock message server. Each module is
described further below.

The client software is primarily written in Java with
some code in Visual Basic (VB) to interface to Mi-
crosoft Outlook and Internet Explorer. While currently

being tested on Windows OS machines, we expect to
port the software to other systems in the future.

4.1. System UI
In keeping with Shock’s design goal of encouraging
usage by reducing participation cost, Shock’s user in-
terface has been designed to seamlessly integrate into a
normal user’s work practice. The present Shock user in-
terface contains functions for generating and respond-
ing to messages as well as general controls for Shock.

Since one of Shock’s key functions is messaging,
we decided to integrate Shock with the most common
messaging platform being used by Shock’s target de-
mography, Microsoft Outlook. Therefore, the present
version of Shock adds a special folder called ‘Shock’
to Microsoft Outlook (Fig. 1). All of Shock’s messages
are stored in this folder and this folder behaves like a
regular Outlook folder (i.e. the user can view, sort, or
delete messages in the same way). As mentioned ear-
lier in the walkthrough, this folder contains two sub
folders called “Sent Questions” and “Received Ques-
tions”. The messages in the Received Questions contain
an additional property called “Score” which indicates
the relevance of the particular question for that user.
(Scoring will be described in detail in Section 4.4).

Shock messages are inherently threaded in nature
and hence each instance in the Shock folder is in real-
ity a message thread. When the message is opened, it
displays the complete discussion thread for that mes-
sage (Fig. 4). This view is similar to that of a web-based
news group. In practice, we have found this hybrid,
email-newsgroup message representation model to be
highly suited to Shock’s nature.

Shock adds a special toolbar called “Shock” to Out-
look (Fig. 1). This toolbar allows the user to easily send
and reply to Shock and to change the various config-
uration options. Like many other Microsoft Windows
products, Shock also presents an icon to the user in the
System Tray. This icon changes to notify the user of
new messages and can be used to access a special menu,
which gives the user quick access to most Shock con-
figuration parameters. Shock also provides a browser-
based interface that can be used by users who prefer
not to use the Outlook interface.

The use of these established and familiar models
in Shock gives the novice user many affordances that
help reduce the learning curve involved in using a new
system and hence encourages usage.

In order to provide an interface between users who
have Shock installed and those that do not, the system



Shock: Aggregating Information While Preserving Privacy 21

Fig. 4. Partial view of a conversation summary for a Shock question. The summary dynamically tallies the associated poll, and shows the
threaded group conversation.

Fig. 5. The Shock architecture.

allows users to send Shock messages as email. Next to
the “send” button in the interface is a “Send as Email”
button (see Fig. 2). A Shock message sent this way is
embedded in an email message that can be sent to any

user. When the message arrives at a user’s mail client,
those with Shock installed will have the message auto-
matically filtered and moved to the appropriate Shock
folder. Users who do not have Shock installed will be



22 Adar et al.

presented with a regular email message that contains
the question and a link to the Shock install website. This
feature encourages the growth of the user base, and can
also facilitate the explicit creation of groups since only
users who received the first message will be aware of
and be able to participate in that message thread. In
addition, this feature, combined with the robust pro-
filing mechanism, offers a flexible implementation of
computational email (Borenstein, 1992).

4.2. Shock network architecture
As discussed above, maintaining privacy and
anonymity is a cornerstone of the Shock system
design. In order to achieve these properties, Shock
can function as a purely decentralized P2P system.
However, we have created a hybrid design that extends
the design and provides these same features while
providing scalability and persistence for messages.

4.2.1. Peer-to-peer networking. In a peer-to-peer
network, each node connects directly to other nodes;
there is no central server. The most well known exam-
ples of true P2P networks are the file-sharing programs
Gnutella7 and Freenet (Clarke et al., 2000). In a typical
P2P system, when a client is added to the network, it
connects randomly to other peers. Messages are then
sent through these links, eventually propagating to the
other peers through a series of “hops” from peer to
peer. In Shock, we randomize the way messages move
from one peer to the next, making it practically im-
possible to detect a message’s origin or destination.
This randomization is similar to technique used by the
Crowds system for anonymous web browsing (Reiter
and Rubin, 1999).

In addition, a peer-to-peer network has the advan-
tage that it has no single point of failure. If a client’s
connection client is terminated, the client will find a
new client to which it can connect. This constantly
adapting network topology ensures that an organiza-
tion’s knowledge base is never offline, and accommo-
dates a mobile and dynamic organization.

Peer-to-peer networks have some limitations, how-
ever. In particular, they typically have difficulty scal-
ing effectively to large numbers of users (Yang and
Garcia-Molina, 2001). The inherent message redun-
dancy and multiple retransmissions of each message
(one for each “hop”) add network overhead. The sec-
ond problem with such a pure P2P model is the lack of
message persistence. The network lacks the ability to
remember messages that were sent and received, and as

clients enter and leave the network, information is lost.
While Shock can function in this mode, the preferred
method is through the hybrid model illustrated in Fig. 5
and described in the following section.

4.2.2. Implementation details. Shock clients main-
tain both links to each other (typically 3-5 connections)
as well as knowledge about a centralized server, that
acts as a simple message store. Periodically clients can
retrieve information from the server (Fig. 5, link 2).
Messages arrive at the server in one of two ways. The
first is through non-anonymous message transmission.
In this mode the user sends a non-anonymous message
and will simply deliver the message (1) to the server.
The second method of delivery leverages the P2P aspect
of the system to deliver anonymous messages. In this
mode a client sending a message will pass the message
to a randomly chosen neighbor client (3). That neigh-
bor will randomly choose to transmit the message to
the server or to another neighbor. The message is then
passed through a number of clients (4 and 5), finally
ending up at the server (6). Note that neither the inter-
mediate clients nor the final server is able to determine
from where the message originated. The initial client
may query the server to ensure that the message arrived
(if not, it can be resent).

For additional reliability, in the case where the server
is not part of the shock network for some reason (e.g. it
has crashed or is being rebooted), the clients will switch
to operating in a purely P2P mode and the system will
function as before.

4.2.3. Security. A final feature of the network archi-
tecture is the ability to provide private (and anonymous)
communication between two clients (although this can
be scaled to groups). To provide this feature, Shock
automatically generates a public/private key pair for
each new message. The public key is included with the
message, and the private key is retained on the client’s
machine. When another user desires to send a secure
response to a message, the response is encrypted with
the original message’s public key, so that it can only be
decrypted by the owner of the message’s private key,
namely, the creator of the message. Key pairs are not
reused so that a message sender cannot be identified by
the user’s public key, thus preserving anonymity.

By using both the encryption and message
anonymization features, Shock uniquely provides
support for secure, anonymous interactions. The
public-key encryption scheme enables each party to



Shock: Aggregating Information While Preserving Privacy 23

Fig. 6. A sample message.

guarantee that messages are sent only to the intended
recipient, who can remain anonymous nevertheless.
Thus, the two parties can communicate back and forth
without revealing their identities. This feature helps
complete the system’s ability to allow the full spectrum
of possibilities for conversations, from fully identified
to completely anonymous and private.

4.2.4. Message format. There are two primary mes-
sage types in Shock, Introduction and Response. In-
troductions are sent to ask a question or start a con-
versation and Responses are the messages that follow.
Fig. 6 illustrates a simple introduction. The message
contains three types of fields: general headers, condi-
tionals, and form objects. Response messages follow
the same general structure but do not ordinarily con-
tain conditionals. General headers (a) simply specify
information such as the message subject, time stamp,
a globally unique identifier (GUID), and an identifier
for the user who sent the message (this may be “anony-
mous”). Messages include the previously mentioned
public key in order to support private communications.
Introductions may also include an expiration date (not
depicted) which a user may attach to their question to
indicate when to remove the question from the net-
work. Response objects contain two additional fields
indicating the GUID to which this is a response (we
can have responses to responses for message thread-
ing purposes) as well as the GUID for the general
thread (this must be the GUID of an Introduction
message).

The form object section (b) of the message specifies
the fields into which users can respond. This is anal-
ogous to an HTML form where the form programmer
describes the different types of desired information.
Specifically, in this instance the user is asking that a
free form answer be filled out (the BasicForm line),
and one item be selected from a list (the SingleSelec-
tionForm). It is up to the interface to determine the
best way to represent these fields to the user. How-
ever, in our case basic forms tend to take the form of
text input boxes and single selection forms are drop
down selection lists. A response object will contain
a version of the form object that holds the response
value.

Finally, the conditional section (c) specifies the rules
on which a message should be scored and filtered. This
message specifically states that the user must have
the program “freenet” installed (the ProgramCondi-
tonal) and their profile should score high enough on the
question (ProfileMatchConditional). It is the responsi-
bility of the Shock profiling infrastructure to construct
this profile (see Section 4.3) Additional conditionals
and the exact scoring mechanism are described below
(see Section 4.4).

4.3. Profiling
One of Shock’s key features is its ability to gener-
ate rich user profiles. These profiles are generated by
tapping multiple data points, by capturing static user
data during bootstrapping, and by explicit user declara-
tions. However, keeping these user profiles constantly



24 Adar et al.

updated while ensuring that they are rich enough to
encompass a user’s implicit knowledge is a non-trivial
task.

Shock’s solution to this problem is to provide an
extensible architecture for the addition of Observers
and Bootstrapping modules and to allow the user to
explicitly declare their interests. The primary role of
the observer modules is to plug into various dynamic
data sources and receptors and to tap into the data
flowing through these points. Bootstrapping modules
are used to capture static pieces of data that are un-
likely to change often and to bootstrap the user’s
profile.

The current implementation of Shock includes Ob-
servers to tap into Microsoft Outlook and Internet Ex-
plorer to capture new information. In addition to these
Observers, Shock provides corresponding Bootstrap-
ping modules for pre-existing data (e.g. existing email
and browsing history). Other Bootstrapping modules
discover the programs installed on the user’s machine
and capture an employee’s organizational profile (af-
filiations, location etc.) from the employee database.
Shock also allows its users to augment their automat-
ically generated profiles by explicitly declaring their
expertise in a Self Declared Profile.

Initial user feedback as well as existing research
(Herlocker, Konstan, and Riedl, 2000) suggested that
users desire control over their profiles. However, this
desire is often in direct opposition to the need to main-
tain unbiased profiles. Shock facilitates user control of
profiles while at the same time preserving the inde-
pendent and autonomous nature of the Shock profiler.
Specifically, Shock allows users to (a) create a Self
Declared profile, (b) turn off the profiler at will, (c)
remove information from the profile through a search
and delete interface, and most drastically, (d) delete
their entire profile.

Privacy has been one of Shock’s key design criteria.
Each user’s profile is stored locally on her computer and
this profile never physically leaves the computer. The
only information that leaves the user’s local machine
is through that user’s explicit responses to questions
that matched the profile. The choice of responding
to these messages rests with the user and the abil-
ity to reply to messages anonymously ensures that
users are able to participate on the Shock network
while keeping their profiles completely private. These
features, combined with Shock’s architecture, pro-
vide the user with complete control over her profile’s
privacy.

4.4. Scoring and conditionals
As described above, Shock messages contain rules by
which messages are scored and filtered. The user who
originates the message may set conditions and, depend-
ing on the number of conditions that are met, and as
a function of the independent scores, a total message
score is generated. If the message exceeds a certain
threshold set by the user, the message will be displayed
in the user’s interface.

Conditionals, which are the filter rules described
above, come in two main varieties, boolean and fuzzy.
Those that are boolean matches will either return a
score of 1 or 0. A fuzzy conditional will return a number
between 0 and 1 (inclusive). Furthermore, conditionals
may be required or not required.

4.4.1. Fuzzy matching. The profile conditional is
one of the most frequently used due to its versatility
and ease of use. Documents that the user accesses are
indexed in a full text index. The question text is then
used to search the full text index for likely matches.
Each matching document is then independently scored
(using standard TFIDF (Salton, 1988) metrics) against
the question text and the results are combined and nor-
malized. This method attempts to model the likelihood
of a user’s interest in a question based on the number
of matching documents as well as taking into account
the user’s other interests. Such a solution is necessary
as the Shock clients do not have a global view and can-
not compare one user absolutely to another. Addition-
ally, Shock provides fuzzy matching against declared
profiles.

4.4.2. Boolean matching. Currently Shock provides
three boolean conditionals that allow targeting of
users who visited specific web sites, have matching
fields in the enterprise directory (department, loca-
tion, etc.), and who have e-mailed a specific domain
or user. These are abstractly similar in operation so
we will only describe the web conditional in more
detail.

Through this conditional, a user may specify which
web sites or specific pages the recipient of the question
should have seen. The result of this is simply a 0 or 1.
Possible extensions of boolean query include allowing
the asker the ability to specify that the recipient not have
seen a website (e.g. “Please look at page x if you haven’t
seen it yet and tell me what you think.”), and employing
recency and frequency (e.g. “users who often visit web
site x”).



Shock: Aggregating Information While Preserving Privacy 25

4.4.3. Scoring. The total score generated is a func-
tion that combines the score of each independent con-
ditional. The scoring mechanism takes into account
whether conditionals are required or not. If all required
conditionals score above 0, the combined score is com-
pared against the threshold (otherwise the message is
filtered out since a requirement was not met).

Because of our object-oriented implementation
strategy, new conditionals are easily and constantly

Fig. 7. Anonymous discussion on sensitive issues.

added to the system. Additionally, we are currently ex-
perimenting with alternative scoring mechanisms in-
cluding manipulation of scores not only in response to
local scores but global behavior. For example, ques-
tions for which answers are observed on the network
will have their score reduced (multiple users need
not answer the same question). Alternatively, ques-
tions that receive no answers may have their scores
boosted.



26 Adar et al.

While Shock is highly flexible in the options avail-
able to users for filtering, we have designed the user
interface to provide a more abstract view, which pro-
vides users with access to the filter fields appropriate for
different tasks. For example, the “software announce-
ment” question screen will only display the program
conditional. Again, because of our object oriented im-
plementation, new Macros, as we call them, can easily
be constructed for specific tasks.

5. Pilot Study

At the time of this writing we are currently in the
midst of a 3 month pilot study to test the usefulness
of Shock. The pilot study is being conducted within
a subgroup of Hewlett-Packard, that consists of secu-
rity consultants, support personnel, and administrators
from all over the world. A large number of people have
been contacted to participate in the pilot study, from
over 20 countries and at least 6 different departments
worldwide.

A baseline survey indicates that the users currently
use over 10 systems to access expert knowledge, in-
cluding 6 in-house systems that are similar to ex-
pert databases. Despite this, the most popular meth-
ods of finding expert knowledge are through personal
networks, as supported by Ackerman’s field studies
(McDonald and Ackerman, 1998), or by running a web
search. The survey also showed that users asked ques-
tions frequently and found that access to expert infor-
mation was important to their job. These results help
justify the need for easy and natural approaches to find-
ing expert knowledge.

At the conclusion of this study we hope to gain a bet-
ter understanding of usage patterns, and converge on
metrics to understand whether or not the pilot was suc-
cessful. We are also planning to perform experiments
comparing Shock to existing solutions to determine its
impact on the pilot community.

It is still too early to report on how Shock is per-
forming, but we are able to provide some evidence of
Shock’s usefulness. Specifically, we have seen users
utilizing the unique features of Shock to achieve cer-
tain goals. For example, one user, interested in public
transportation to work targeted her question to users
in a specific geographical location. A user in that area
received her message, and gave her advice.

Although most messages are not anonymous, pre-
liminary observation of usage shows us that the people

do use the anonymous features. As expected, the anony-
mous messages tend to be about more sensitive mate-
rial, such as opinions on company policies and so forth.
Fig. 7 shows a conversation within the company on a
sensitive company issue. Shock helped users maintain
a sense of security and privacy, while encouraging con-
versation on a sensitive topic.

In the beginning of the pilot study, it seems that
Shock is accomplishing its goals of providing a private,
low-cost flexible means for people within an organi-
zation to find expert knowledge and discuss sensitive
issues with others in an organization without fear of
reprisal or backlash. We are encouraged by our initial
success, and look forward to further studies of Shock’s
effectiveness within the pilot group.

6. Conclusion and Future Work

Shock is a system designed to help resolve the ten-
sion between privacy and increased access to user in-
formation for knowledge management applications. It
does this by employing locally stored automatic pro-
filing for access to valuable information about users,
close to their work practice. Shock allows users to
make some use of the profile information of others
by assembling Shock clients into a peer-to-peer net-
work. Users can exchange a wide variety of message
types and form ad hoc community discussions around
specific topics. Shock also gives users the full ability
to manage their identity by allowing truly anonymous
messaging through the architecture. The resulting plat-
form is low-cost, highly flexible and can support a va-
riety of knowledge management applications, in a con-
text that is tightly integrated with users’ current email
application.

We plan to analyze and evaluate Shock usage from
the results of the ongoing pilot study. We are interested
in how good this system is at uncovering hidden knowl-
edge in an organization. We plan to explore issues of
message quality and trust in anonymous or private set-
tings, as well as the issues of public and private rewards
for contributing to the network. We also hope to inves-
tigate the effects of anonymity for the facilitation of
conversation inside an organization.

In the future, we plan to build upon this platform by
including reputation management features, exploring
other applications such as privacy-preserving collab-
orative filtering, as well as novel economic incentive
mechanisms.



Shock: Aggregating Information While Preserving Privacy 27

In addition, Shock may become an unobtrusive way
to gather interesting data relevant for understanding the
social networks within organizations, while preserving
the privacy of participants.

Acknowledgments

We would like to thank Lada Adamic, Bernardo
Huberman, and Marie-Jo Fremont for their ideas and
encouragement.

Notes

1. http://www.carrozza.com/atwork/connex/.
2. http://sage.fiu.edu/MegaSource.htm.
3. http://www.p2pq.net.
4. http://www.askme.com.
5. http://www.tacit.com.
6. http://www.gnutelliums.com/.
7. http://www.gnutelliums.com/.

References

Ackerman M. Augmenting the Organizational Memory: A Field
Study of Answer Garden. Irvine, CA: Department of Information
and Computer Science, University of California, 1994.

Ackerman MS, Cranor LF, Reagle J, Privacy in e-commerce: ex-
amining user scenarios and privacy preferences. In: Proceedings
of the first ACM Conference on Electronic Commerce, Denver,
Colorado, United States, 1999:1–8.

Ackerman MS, Halverson C. Considering an organization’s memory.
In: CSCW, ACM, 1998.

Ackerman M, Malone T. Answer Garden: A tool for growing orga-
nizational memory. ACM SIGOIS Bulletin 1990;11(2):31–39.

Borenstein NS. Computational mail as network infrastructure for
computer-supported cooperative work. In: Conference Proceed-
ings on Computer-Supported Cooperative Work, Nov. 01–04,
Toronto, Ontario, Canada, 1992:67–74.

Brittenden S. (ed.) Online Rights—The Law in Europe. http://www.
ictur.labournet.org/Online.htm.

Canny J, Collaborative filtering with privacy. In: IEEE Conf. on Se-
curity and Privacy, Oakland, CA, May 2002.

Clarke I, Sandberg O, Wiley B, Hong TW. Freenet: A distributed
anonymous information storage and retrieval system. In: Proceed-
ings of the ICSI Workshop on Design Issues in Anonymity and
Unobservability, 2000.

Davenport TH, Prusak L. Working Knowledge: How Organizations
Manage What They Know. Boston, MA: Harvard Business School
Press, 1998.

Ducheneaut N, Bellotti V. Email as habitat: An exploration
of embedded personal information management. Interactions
2001;8(5):30–38.

Foner, L Yenta. A multi-agent, referral based matchmaking system.
In: Proceedings of the First International Conference on Au-
tonomous Agents (Agents ’97), Marina del Rey, California, United
States, 1997:301–307.

Grinter RE. From workplace to development. In: Proceedings of
the International ACM SIGGROUP Conference on Supporting
Group Work: The Integration Challenge, Phoenix, Arizona, United
States, 1997:231–240.

Herlocker J, Konstan J, Riedl J. Explaining collaborative fil-
tering recommendations. In: Proceedings of the ACM 2000
Conference on Computer Supported Cooperative Work, Dec. 2–6,
2000.

Kautz H, Selman B, Shah M, Referral Web. Communications of the
ACM 1997;40(3):63–65.

Konstan J, Miller B, Maltz D, Herlocker J, Gordon L, Riedl J. Grou-
pLens: Applying collaborative filtering to usenet news. Commu-
nications of the ACM 1997;40(3):77–87.

Lewis NA. Plan for web monitoring in courts dropped.
2001, New York Times (http://www.nytimes.com/2001/09/09/
technology/09COUR.html).

Mattox D, Maybury M, Morey D. Enterprise Expert Knowledge and
Discovery. MITRE Corporation, 1998.

McDonald D, Ackerman M. Just Talk To Me: A Field Study of Exper-
tise Location. In: Proceedings of the ACM Conference on Com-
puter Supported Cooperative Work (CSCW ’98), 1998:315–324.

McDonald D, Ackerman M. Expertise Recommender: A Flexible
Recommendation System and Architecture. In: CSCW, 2000:231–
240.

Morita M, Shinoda Y. Information filtering based on user behavior
analysis and best match text retrieval. In: Proceedings of SIGIR
Conference on Research and Development, 1994:272–281.

Reiter M, Rubin A. Anonymous web transactions with Crowds. Com-
munications of the ACM 1999;42(2):32–38.

Salton G. Automatic Text Processing: The Transformation, Analy-
sis and Retrieval of Information by Computer. Addison-Wesley,
Reading, MA, 1988.

Schwartz MF, Wood DCM. Discovering shared interests among
people using graph analysis of global electronic mail traffic.
Communications of the Association for Computing Machinery,
1992.

Shardanand U, Maes P. Social information filtering. In: Conference
Proceedings on Human Factors in Computing Systems, Denver,
Colorado, United States, 1995:210–217.

Streeter LA, Lochbaum KE. Who knows: A system based on auto-
matic representation of semantic structure. In: RIAO ’88. 1988,
MIT, Cambridge.

Terveen L, Hill W, Amento B, McDonald D, Creter J. PHOAKS,
Communications of the ACM 1997;40(3):59–62.

Vivacqua A, Lieberman H. Agents to assist in finding help. In:
ACM Conference on Human Factors in Computiong Systems (CHI
2000), 2000:65–72.

Weisband SP, Reinig BA. Managing user pereceptions of email pri-
vacy, Communications of the ACM 1995;38(12):40–47.

Yang B, Garcia-Molina H. Comparing hybrid peer-to-peer sys-
tems. In: Proceedings of the 27th VLDB Conference, Roma, Italy,
2001.

Yimam D. Expert finding systems for organizations: Domain analysis
and the demoir approach. In: Beyond Knowledge Management:
Sharing Expertise, Boston: MIT Press, 2000.



28 Adar et al.

Eytan Adar is a research scientist in the Informa-
tion Dynamics Lab at Hewlett-Packard Laboratories,
Palo Alto, CA. He holds a BS and Meng in Com-
puter Science from the Massachussetts Institute of
Technology.

Rajan Lukose is a research scientist in the Information
Dynamics Lab at Hewlett-Packard Laboratories, Palo
Alto, CA. He holds a PhD. in physics from Stanford
University, granted in 1999.

Caesar Sengupta is a member of technical staff at
Encentuate Inc. in Singapore. He holds a Masters

in Computer Science with Distinction in Research from
Stanford University.

Josh Tyler is a member of research staff at Hewlett-
Packard Labs in Palo Alto, CA. He holds a Masters in
Computer Science from Stanford with a specialization
in Human-Computer Interaction and a BS in Computer
Science from Washington University.

Nathaniel Good is a graduate student in SIMS
at the University of California, Berkeley. He holds
a BS in Computer Science from the University of
Minnesota.


