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Abstract

We describe a form of distributed computation in which agents have incomplete knowledge and
imperfect information on the state of the system, and an instantiation of such systems based on market
mechanisms. When agents can choose among several resources, the dynamics of the system can be
oscillatory and even chaotic. A mechanism is described for achieving global stability through local
controls.

1 Introduction

Propelled by advances in software design and increasing connectivity of computer networks, distributed
computational systems are starting to spread throughout offices, laboratories, countries and continents. In
these systems computational processes consisting of the active execution of programs can spawn new ones in
other machines as they make use of printers, file servers, and other machines of the network as the need arises.
In the most complex applications, various processes can collaborate to solve problems while competing for
the available computational resources, and may also directly interact with the physical world. This contrasts
with the more familiar stand-alone computers, with traditional methods of centralized scheduling for resource
allocation and programming methods based on serial processing.
The effective use of distributed computation is a challenging task, since the processes must obtain re-

sources in a dynamically changing environment and be designed to collaborate despite a variety of asyn-
chronous and unpredictable changes. For instance, the lack of global perspectives for determining resource
allocation requires a very different approach to system-level programming and the creation of suitable lan-
guages. Even implementing reliable methods whereby processes can compute in machines with diverse
characteristics is difficult.
As these distributed systems grow, they become a community of concurrent processes, or a computational

ecosystem [5], which, in their interactions, strategies, and lack of perfect knowledge, are analogous to biolog-
ical ecosystems and human economies. Since all of these systems consist of a large number of independent
actors competing for resources, this analogy can suggest new ways to design and understand the behavior of
these emerging computational systems. In particular, these existing systems have methods to deal success-
fully with coordinating asynchronous operations in the face of imperfect knowledge. These methods allow
the system as a whole to adapt to changes in the environment or disturbances to individual members, in
marked contrast to the brittle nature of most current computer programs which often fail completely if there
is even a small change in their inputs or error in the program itself. To improve the reliability and usefulness
of distributed computation, it is therefore of interest to examine the extent to which this analogy can be
exploited.
Statistical mechanics, based on the law of large numbers, has taught us that many universal and generic

features of large systems can be quantitatively understood as approximations to the average behavior of
infinite systems. Although such infinite models can be difficult to solve in detail, their overall qualitative
features can be determined with a surprising degree of accuracy. Since these features are universal in
character and depend only on a few general properties of the system, they can be expected to apply to a
wide range of actual configurations. This is the case when the number of relevant degrees of freedom in the
system, as well as the number of interesting parameters, is small. In this situation, it becomes useful to treat
the unspecified internal degrees of freedom as if they are given by a probability distribution. This implies
assuming a lack of correlations between the unspecified and specified degrees of freedom. This assumption
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has been extremely successful in statistical mechanics. It implies that although degrees of freedom may
change according to purely deterministic algorithms, the fact that they are unspecified makes them appear
to an outside observer as effectively random.
Consider, for instance, massively parallel systems which are desired to be robust and adaptable. They

should work in the presence of unexpected errors and with changes in the environment in which they are
embedded (i.e., fail soft). This implies that many of the system’s internal degrees of freedom will be allowed
to adjust by taking on a range of possible configurations. Furthermore, their large size will necessarily enforce
a perspective which concentrates on a few relevant variables. Although these considerations suggest that the
assumptions necessary for a statistical description hold for these systems, experiments will be necessary for
deciding their applicability.
While computational and biological ecosystems share a number of features, we should also note there

are a number of important differences. For instance, in contrast to biological individuals, computational
agents are programed to complete their tasks as soon as possible, which in turn implies a desirability for
their earliest death. This task completion may also involve terminating other processes spawned to work
on different aspects of the same problem, as in parallel search, where the first process to find a solution
terminates the others. This much more rapid turnover of agents can be expected to lead to dynamics at
much shorter time scales than seen in biological or economic counterparts.
Another interesting difference between biological and computational ecologies lies in the fact that for the

latter the local rules (or programs for the processes) can be arbitrarily defined, whereas in biology those
rules are quite fixed. Moreover, in distributed computational systems the interactions are not constrained by
a euclidean metric, so that processes separated by large physical distances can strongly affect each other by
passing messages of arbitrary complexity between them. And last but not least, in computational ecologies
the rationality assumption of game theory can be explicitly imposed on their agents, thereby making these
systems amenable to game dynamic analyses, suitably adjusted for their intrinsic characteristics. On the
other hand, computational agents are considerably less sophisticated in their decision making capacity than
people, which could prevent expectations based on observed human performance from being realized.
There are by now a number of distributed computational systems which exhibit many of the above

characteristics, and that offer increased performance when compared with traditional operating systems.
Enterprise [8] is a market-like scheduler where independent processes or agents are allocated at run time
among remote idle workstations through a bidding mechanism. A more evolved system, Spawn [12], is orga-
nized as a market economy composed of interacting buyers and sellers. The commodities in this economy are
computer processing resources; specifically, slices of CPU time on various types of computers in a distributed
computational environment. The system has been shown to provide substantial improvements over more
conventional systems, while providing dynamic response to changes and resource sharing.
From a scientific point of view, the analogy between distributed computation and natural ecologies brings

to mind the spontaneous appearance of organized behavior in biological and social systems, where agents
can engage in cooperating strategies while working on the solution of particular problems. In some cases, the
strategy mix used by these agents evolves towards an asymptotic ratio that is constant in time and stable
against perturbations. This phenomenon sometimes goes under the name of evolutionarily stable strategy
(ESS). Recently, it has been shown that spontaneous organization can also exist in open computational
systems when agents can choose among many possible strategies while collaborating in the solution of com-
putational tasks. In this case however, imperfect knowledge and delays in information introduce asymptotic
oscillatory and chaotic states that exclude the existence of simple ESS’s. This is an important finding in
light of studies that resort to notions of evolutionarily stable strategies in the design and prediction of open
system’s performance.
In what follows we will describe a market based computational ecosystem and a theory of distributed com-

putation. The theory describes the collective dynamics of computational agents, while incorporating many
of the features endemic to such systems, including distributed control, asynchrony, resource contention, and
extensive communication among agents. When processes can choose among many possible strategies while
collaborating in the solution of computational tasks, the dynamics leads to asymptotic regimes character-
ized by complex attractors. Detailed experiments have confirmed many of the theoretical predictions, while
uncovering new phenomena, such as chaos induced by overly clever decision-making procedures.
Next, we will deal with the problem of controlling chaos in such systems, for we have discovered ways of

achieving global stability through local controls inspired by fitness mechanisms found in nature. Furthermore,
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we will show how diversity enters into the picture, along with the minimal amount of such diversity that is
required to achieve stable behavior in a distributed computational system.

2 Computational Markets for Resource Allocation

Allocating resources to competing tasks is one of the key issues for making effective use of computer networks.
Examples include deciding whether to run a task in parallel on many machines or serially on one; and
whether to save intermediate results or recompute them as needed. The similarity of this problem to
resource allocation in market economies, has prompted considerable interest in using analogous techniques
to schedule tasks in a network environment. In effect, a coordinated solution to the allocation problem is
obtained using Adam Smith’s “invisible hand” [10]. Although unlikely to produce the optimal allocation
that would be made by an omniscient controller with unlimited computational capability, it can perform
well compared to other feasible alternatives [1, 7]. As in economics [3], the use of prices provides a flexible
mechanism for allocating resources, with relatively low information requirements: a single price summarizes
the current demand for each resource, whether processor time, memory, communication bandwidth, use of
a database or control of a particular sensor. This flexibility is especially desirable when resource preferences
and performance measures differ among tasks. For instance an intensive numerical simulation’s need for fast
floating point hardware is quite different from an interactive text editor’s requirement for rapid response to
user commands or a database search’s requirement for rapid access to the data and fast query matching.
As a conceptual example of how this could work in a computational setting, suppose that a number of

database search tasks are using networked computers to find items of interest to various users. Furthermore,
suppose that some of the machines have fast floating point hardware but all are otherwise identical. Assuming
the search tasks make little use of floating point operations, their performance will not depend on whether
they run on a machine with fast floating point hardware. In a market based system, these programs will
tend to value each machine based on how many other tasks it is running, leading to a uniform load on the
machines. Now suppose some floating point intensive tasks arrive in the system. These will definitely prefer
the specialized machines and consequently bid up the price of those particular resources. The database tasks,
observing that the price for some machines has gone up, will then tend to migrate toward those machines
without the fast floating point hardware. Importantly, because of the high cost of modifying large existing
programs, the database tasks will not need to be rewritten to adjust for the presence of the new tasks.
Similarly, there is no need to reprogram the scheduling method of a traditional central controller, which is
often very time consuming.
This example illustrates how a reasonable allocation of resources could be brought about by simply having

the tasks be sensitive to current resource price. Moreover, adjustments can take place continually as new
uses are found for particular network resources (which could include specialized databases or proprietary
algorithms as well as the more obvious hardware resources), and do not require all users to agree on, or
even know about, these new uses, thus encouraging an incremental and experimental approach to resource
allocation.
While this example motivates the use of market based resource allocation, a study of actual implemen-

tations is required to see how large the system must be for its benefits to appear and whether any of the
differences between simple computer programs and human agents pose additional problems. In particular,
a successful use of markets requires a number of changes to traditional computer systems. First the system
must provide an easily accessible, reliable market so that buyers and sellers can quickly find each other.
Second, individual programs must be price sensitive so they will respond to changes in relative prices among
resources. This implies that the programs must, in some sense at least, be able to make choices among
various resources based on how well suited they are for the task at hand.
A number of market-like systems have been implemented over the years [8, 11, 12]. Most instances focus

on finding an appropriate machine for running a single task. While this is important, further flexibility is
provided by systems that use market mechanisms to also manage a collection of parallel processes contributing
to the solution of a single task. In this latter case, prices give a flexible method for allocating resources
among multiple competing heuristics for the same problem based on their perceived progress. It thus
greatly simplifies the development of programs that adjust to unpredictable changes in resource demand or
availability. Thus we have a second reason to consider markets: not only may they be useful for flexible
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allocation of computational resources among competing tasks, but also the simplicity of the price mechanism
could provide help with designing cooperative parallel programs.
One such system is Spawn [12], in which each task, starting with a certain amount of money corresponding

to its relative priority, bids for the use of machines on the network. In this way, each task can allocate its
budget toward those resources most important for it. In addition, when prices are low enough, some tasks
can split into several parts which run in parallel, as shown in Fig. 1, thereby adjusting the number of
machines devoted to each task based on the demand from other users. From a user’s point of view, starting
a task with the Spawn system amounts to giving a command to execute it and the necessary funding for
it to buy resources. The Spawn system manages auctions on each of the participating machines, the use of
resources by each participating task, and provides communication paths among the spawned processes. It
remains for the programmer to determine the specific algorithms to be used and the meaningful subtasks into
which to partition the problem. That is, the Spawn system provides the price information and a market,
but the individual programs must be written to make their own price decisions to effectively participate
in the market. To allow existing, non-price sensitive, programs to run within the Spawn system without
modification, we provided a simple default manager that simply attempted to buy time on a single machine
for that task. Users could then gradually modify this manager for their particular task, if desired, to spawn
subtasks or use market strategies more appropriate for the particular task.
Studies with this system show that an equilibrium price can be meaningfully defined with even a few

machines participating. A specific instance is shown in Fig. 2. Despite the continuing fluctuations, this
small network reaches a rough price equilibrium. Moreover, the ratio of prices between the two machines
closely matches their relative speeds, which was the only important difference between the two types of
machine for these tasks. An additional experiment studied a network with some lengthy, low priority tasks
to which was added a short, high priority task. The new task rapidly expands throughout the network by
outbidding the existing tasks and driving the price of CPU time up, as shown in Fig. 3. It is therefore
able to briefly utilize a large number of networked machines and illustrates the inherent flexibility of market
based resource allocation. Although the very small networks used in these experiments could be adequately
managed centrally, these results do show that expected market behavior can emerge even in small cases.

Manager Worker

APPLICATION SUBTASK

APPLICATION SUBTASK

TOP-LEVEL APPLICATION

APPLICATION SUBSUBTASK APPLICATION SUBSUBTASK

APPLICATION SUBTASK

USER INTERFACE
ROOT

WM

WM

WMWM

COMBINING

Figure 1: Managing parallel execution of subtasks in Spawn. Worker processes (W) report progress to their local
managers (M) who in turn make reports to the next higher level of management. Upper management combines data
into aggregate reports. Finally, the root manager presents results to the user. Managers also bid for the use of
additional machines and, if successful, spawn additional subtasks on them.

Computer market systems can be used to experimentally address a number of additional issues. For
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Figure 2: Price as a function of time (in seconds) in an inhomogeneous Spawn network consisting of three Sun
4/260’s and six Sun 4/110’s running four independent tasks. The average price of the 260’s is the dashed line, the
less powerful 110’s are solid.
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Figure 3: Price as a function of time (in seconds) when a high-priority task is introduced into a Spawn network
running low-priority jobs. The first vertical line segment on the time axis marks the introduction of the high-priority
task, and the second one the termination of its funding.

instance, understanding what happens when more sophisticated programs begin to use the network, e.g.,
processes that attempt to anticipate future loads so as to maximize their own resource usage. Such behavior
can destabilize the overall system. Another area of interest is the emergence of diversity or specialization
from a group of initially similar machines. For example, a machine might cache some of the routines or
data commonly used by its processes, giving it a comparative advantage in bids for similar tasks in the
future. Ultimately this could result in complex organizational structures embedded within a larger market
framework [9]. Within these groups, some machines could keep track of the kinds of problems for which
others perform best and use this information to guide new tasks to appropriate machines. In this way the
system could gradually learn to perform common tasks more effectively.
These experiments also highlighted a number of more immediate practical issues. In setting up Spawn,

it was necessary to find individuals willing to allow their machines to be part of the market. While it
would seem simple enough to do so, in practice a number of incentives were needed to overcome the natural
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reluctance of people to have other tasks running on their machines. This reluctance is partly based on
perceived limitations on the security of the network and the individual operating systems; for it was possible
that a remote procedure could crash an individual machine or consume more resources than anticipated. In
particular, users with little need for compute-intensive tasks saw little benefit from participating since they
had no use for the money collected by their machines. This indicates the need to use real money in such
situations so that these users could use their revenues for their own needs. This in turn, brings the issue of
computer security to the forefront so users will feel confident that no counterfeiting of money takes place
and tasks will in fact be limited to only use resources they have paid for.
Similarly, for those users participating in the system as buyers, they need to have some idea of what

amount of money is appropriate to give a task. In a fully developed market, there could easily be tools to
monitor the results of various auctions and hence give a current market price for resources. However, when
using a newly created market with only a few users, tools are not always available to give easy access to
prices, and even if they are, the prices have large fluctuations. Effective use of such a system also requires
users to have some idea of what resources are required for their programs, or, better yet, to encode that
information in the program itself so it will be able to respond to available resources, e.g., by spawning
subtasks, more rapidly than the users can. Conversely, there must be a mechanism whereby sellers can make
available information about the characteristics of their resources (e.g., clock speed, available disk space or
special hardware). This can eventually allow for more complex market mechanisms, such as auctions that
attempt to sell simultaneous use of different resources (e.g., CPU time and fast memory) or future use of
currently unavailable resources to give tasks a more predictable use of resources. Developing and evaluating
a variety of auction and price mechanisms that are particularly well suited to these computational tasks is
an interesting open problem.
Finally, these experimental systems help clarify the differences between human and computer markets.

For instance, computational processes can respond to events much more rapidly than people, but are far
less sophisticated. Moreover, unlike the situation with people, particular incentive structures, rationality
assumptions, etc. can be explicitly built into computational processes allowing for the possibility of designing
particular market mechanisms. This could lead to the ironic situation in which economic theory has greater
predictability for the behavior of computational markets than for that of the larger, and more complex,
human economy.

3 Chaos in Computational Ecosystems

The systems we have been discussing are basically made up of simple agents with fast response times,
compared to human in economic settings, which are complex and slower. This implies that an understanding
of the behavior of computational ecosystems requires focusing on the dynamics of collections of agents capable
of a set of simple decisions.
Since decisions in a computational ecosystem aren’t centrally controlled, agents independently and asyn-

chronously select among the available choices based on their perceived payoff. These payoffs are actual
computational measures of performance, such as the time required to complete a task, accuracy of the solu-
tion, amount of memory required, etc. In general, the payoff Gr for using resource r depends on the number
of agents already using it. In a purely competitive environment, the payoff for using a particular resource
tends to decrease as more agents make use of it. Alternatively, the agents using a resource could assist one
another in their computations, as might be the case if the overall task could be decomposed into a number
of subtasks. If these subtasks communicate extensively to share partial results, the agents will be better off
using the same computer rather than running more rapidly on separate machines and then being limited by
slow communications. As another example, agents using a particular database could leave index links that
are useful to others. In such cooperative situations, the payoff of a resource would then increase as more
agents use it, until it became sufficiently crowded.
Imperfect information about the state of the system causes each agent’s perceived payoff to differ from the

actual value, with the difference increasing when there is more uncertainty in the information available to the
agents. This type of uncertainty concisely captures the effect of many sources of errors such as some program
bugs, heuristics incorrectly evaluating choices, errors in communicating the load on various machines and
mistakes in interpreting sensory data. Specifically, the perceived payoffs are taken to be normally distributed,
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with standard deviation σ, around their correct values. In addition, information delays cause each agent’s
knowledge of the state of the system to be somewhat out of date. Although for simplicity we will consider
the case in which all agents have the same effective delay, uncertainty, and preferences for resource use, we
should mention that the same range of behaviors is also found in more general situations [4].
As a specific illustration of this approach, we consider the case of two resources, so the system can be

described by the fraction f of agents which are using resource 1 at any given time. Its dynamics is then
governed by [5]

df

dt
= α(ρ− f) (1)

where α is the rate at which agents reevaluate their resource choice and ρ is the probability that an agent
will prefer resource 1 over 2 when it makes a choice. Generally, ρ is a function of f through the density
dependent payoffs. In terms of the payoffs and uncertainty, we have

ρ =
1

2

(

1 + erf

(

G1(f)−G2(f)

2σ

))

(2)

where σ quantifies the uncertainty. Notice that this definition captures the simple requirement that an
agent is more likely to prefer a resource when its payoff is relatively large. Finally, delays in information are
modeled by supposing that the payoffs that enter into ρ at time t are the values they had at a delayed time
t− τ .
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Figure 4: Typical behaviors for the fraction f of agents using resource 1 as a function of time for successively longer
delays: a) relaxation toward stable equilibrium, b) simple persistent oscillations, and c) chaotic oscillations. The
payoffs are G1 = 4 + 7f − 5.333f2 for resource 1 and G2 = 4 + 3f for resource 2. The time scale is in units of the
delay time τ , σ = 1/4 and the dashed line shows the optimal allocation for these payoffs.

For a typical system of many agents with a mixture of cooperative and competitive payoffs, the kinds
of dynamical behaviors exhibited by the model are shown in Fig. 4. When the delays and uncertainty are
fairly small, the system converges to an equilibrium point close to the optimal obtainable by an omniscient,
central controller. As the information available to the agents becomes more corrupted, the equilibrium point
moves further from the optimal value. With increasing delays, the equilibrium eventually becomes unstable,
leading to the oscillatory and chaotic behavior shown in the figure. In these cases, the number of agents
using particular resources continues to vary so that the system spends relatively little time near the optimal
value, with a consequent drop in its overall performance. This can be due to the fact that chaotic systems
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are unpredictable, hence making it difficult for individual agents to automatically select the best resources
at any given time.

4 The Uses of Fitness

We will now describe an effective procedure for controlling chaos in distributed systems [4]. It is based on a
mechanism that rewards agents according to their actual performance. As we shall see, such an algorithm
leads to the emergence of a diverse community of agents out of an essentially homogenous one. This diversity
in turn eliminates chaotic behavior through a series of dynamical bifurcations which render chaos a transient
phenomenon.
The actual performance of computational processes can be rewarded in a number of ways. A particularly

appealing one is to mimic the mechanism found in biological evolution, where fitness determines the number
of survivors of a given species in a changing environment. This mechanism is used in computation under the
name of genetic algorithms [2]. Another example is provided by computational systems modelled on ideal
economic markets [9, 12], which reward good performance in terms of profits. In this case, agents pay for
the use of resources, and they in turn are paid for completing their tasks. Those making the best choices
collect the most currency and are able to outbid others for the use of resources. Consequently they come to
dominate the system.
While there is a range of possible reward mechanisms, their net effect is to increase the proportion of

agents that are performing successfully, thereby decreasing the number of those who do not do as well. It
is with this insight in mind that we developed a general theory of effective reward mechanisms without
resorting to the details of their implementations. Since this change in agent mix will in turn change the
choices made by every agent and their payoffs, those that were initially most successful need not be so in
the future. This leads to an evolving diversity whose eventual stability is by no means obvious.
Before proceeding with the theory we point out that the resource payoffs that we will consider are

instantaneous ones (i.e., shorter than the delays in the system), e.g., work actually done by a machine,
currency actually received, etc. Other reward mechanisms, such as those based on averaged past performance,
could lead to very different behavior from the one exhibited in this paper.
In order to investigate the effects of rewarding actual performance we generalize the previous model

of computational ecosystems by allowing agents to be of different types, a fact which gives them different
performance characteristics. Recall that the agents need to estimate the current state of the system based
on imperfect and delayed information in order to make good choices. This can be done in a number of ways,
ranging from extremely simple extrapolations from previous data to complex forecasting techniques. The
different types of agents then correspond to the various ways in which they can make these extrapolations.
Within this context, a computational ecosystem can be described by specifying the fraction of agents,

frs of a given type s using a given resource r at a particular time. We will also define the total fraction of
agents using a resource of a particular type as

f res
r =

∑

s

frs (3)

f type
s =

∑

r

frs

respectively.
As mentioned previously, the net effect of rewarding performance is to increase the fraction of highly

performing agents. If γ is the rate at which performance is rewarded, then Eq. (1) is enhanced with an extra
term which corresponds to this reward mechanism. This gives

dfrs
dt

= α
(

f type
s ρrs − frs

)

+ γ (f res
r ηs − frs) (4)

where the first term is analogous to that of the previous theory, and the second term incorporates the effect
of rewards on the population. In this equation ρrs is the probability that an agent of type s will prefer
resource r when it makes a choice, and ηs is the probability that new agents will be of type s, which we take
to be proportional to the actual payoff associated with agents of type s. As before, α denotes the rate at
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which agents make resource choices and the detailed interpretation of γ depends on the particular reward
mechanism involved. For example, if they are replaced on the basis of their fitness it is the rate at which
this happens. In a market system, on the other hand, γ corresponds to the rate at which agents are paid.
Notice that in this case, the fraction of each type is proportional to the wealth of agents of that type.
Since the total fraction of agents of all types must be one, a simple form of the normalization condition

can be obtained if one considers the relative payoff, which is given by

ηs =

∑

r frsGr
∑

r f
res
r Gr

(5)

Note that the numerator is the actual payoff received by agents of type s given their current resource usage
and the denominator is the total payoff for all agents in the system, both normalized to the total number
of agents in the system. This form assumes positive payoffs, e.g., they could be growth rates. If the payoffs
can be negative (e.g., they are currency changes in an economic system), one can use instead the difference
between the actual payoffs and their minimum value m. Since the ηs must sum to 1, this will give

ηs =

∑

r frsGr −m
∑

r f
res
r Gr − Sm

(6)

which reduces to the previous case when m = 0.
Summing Eq. (4) over all resources and types gives

df res
r

dt
= α

(

∑

s

f type
s ρrs − f res

r

)

(7)

df type
s

dt
= γ

(

ηs − f type
s

)

which describe the dynamics of overall resource use and the distribution of agent types, respectively. Note
that this implies that those agent types which receive greater than average payoff (i.e., types for which
ηs > f type

s ) will increase in the system at the expense of the low performing types.
Note that the actual payoffs can only reward existing types of agents. Thus in order to introduce new

variations into the population an additional mechanism is needed (e.g., corresponding to mutation in genetic
algorithms or learning).

5 Results

In order to illustrate the effectiveness of rewarding actual payoffs in controlling chaos, we examine the
dynamics generated by Eq. (4) for the case in which agents choose among two resources with cooperative
payoffs, a case which we have shown to generate chaotic behavior in the absence of rewards [5, 6]. As in the
particular example of Fig. 4c, we use τ = 10, G1 = 4 + 7f1 − 5.333f

2
1 , G2 = 7− 3f2, σ = 1/4 and an initial

condition in which all agents start by using resource 2.
One kind of diversity among agents is motivated by the simple case in which the system oscillates with

a fixed period. In this case, those agents that are able to discover the period of the oscillation can then
use this knowledge to reliably estimate the current system state in spite of delays in information. Notice
that this estimate does not necessarily guarantee that they will keep performing well in the future, for their
choice can change the basic frequency of oscillation of the system.
In what follows, we take the diversity of agent types to correspond to the different past horizons, or

extra delays, that they use to extrapolate to the current state of the system. These differences in estimation
could be due to having a variety of procedures for analyzing the system’s behavior. Specifically, we identify
different agent types with the different assumed periods which range over a given interval. Thus, we take
agents of type s to use an effective delay of τ + s while evaluating their choices.
The resulting behavior is shown in Fig. 5 which should be contrasted with Fig. 4c. We used an interval of

extra delays ranging from 0 to 40. As shown, the introduction of actual payoffs induces a chaotic transient
which, after a series of dynamical bifurcations, settles into a fixed point that signals stable behavior. Fur-
thermore, this fixed point is exactly that obtained in the case of no delays. That this equilibrium is stable
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against perturbations can seen by the fact that if the system were perturbed again (as shown in Fig. 6), it
rapidly returns to its previous value. In additional experiments, with a smaller range of delays, we found
that the system continued to oscillate without achieving the fixed point.
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Figure 5: Fraction of agents using resource 1 as a function of time with adjustment based on actual payoff. These
parameters correspond to Fig. 4c so without the adjustment the system would remain chaotic.
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Figure 6: Behavior of the system shown in Fig. 5 with a perturbation introduced at time 1500.

This transient chaos and its eventual stability can be understood from the distribution of agents with
extra delays as a function of time. As can be seen in Fig. 7 actual payoffs lead to a highly heterogeneous
system, characterized by a diverse population of agents of different types. It also shows that the fraction of
agents with certain extra delays increases greatly. These delays correspond to the major periodicities in the
system.
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s (0) of the fraction of agents of each type, normalized to their initial values, as a
function of time. Note there are several peaks, which correspond to agents with extra delays of 12, 26 and 34 time
units. Since τ = 10, these match periods of length 22, 36 and 44 respectively.
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6 Stability and Minimal Diversity

As we showed in the previous section, rewarding the performance of large collections of agents engaging in
resource choices leads to a highly diverse mix of agents that stabilize the system. This suggests that the
real cause of stability in a distributed system is that provided by sufficient diversity, and that the reward
mechanism is an efficient way of automatically finding a good mix. This raises the interesting question of
the minimal amount of diversity needed in order to have a stable system.
The stability of a system is determined by the behavior of a perturbation around equilibrium, which can

be found from the linearized version of Eq. (4). In our case, the diversity is related to the range of different
delays that agents can have. For a continuous distribution of extra delays, the characteristic equation is
obtained by assuming a solution of the type eλt in the linearized equation, giving

λ+ α− αρ′
∫

ds f(s)e−λ(s+τ) = 0 (8)

Stability requires that all the values of λ have negative real parts, so that perturbations will relax back
to equilibrium. As an example, suppose agent types are uniformly distributed in (0, S). Then f(s) = 1/S,
and the characteristic equation becomes

λ+ α− αρ′
1− e−λS

λS
e−λτ = 0 (9)

Defining a normalized measure of the diversity of the system for this case by η ≡ S/τ , introducing the
new variable z ≡ λτ(1 + η), and multiplying Eq. (9) by τ(1 + η)zez introduces an extra root at z = 0 and
gives

(z2 + az)ez − b+ berz = 0 (10)

where

a = ατ(1 + η) > 0 (11)

b = −ρ′
ατ(1 + η)2

η
> 0

r =
η

1 + η
∈ (0, 1)

The stability of the system with uniform distribution of agents with extra delays thus reduces to finding
the condition under which all roots of Eq. (10), other than z = 0, have negative real parts. This equation is
a particular instance of an exponential polynomial, whose terms consist of powers multiplied by exponentials.
Unlike regular polynomials, these objects generally have an infinite number of roots, and are important in
the study of the stability properties of differential-delay equations. Established methods can then be used
to determine when they have roots with positive real parts. This in turn defines the stability boundary of
the equation. The result for the particular case in which ρ′ = −3.41044, corresponding to the parameters
used in §5, is shown in the left half of Fig. 8.
Similarly, if we choose an exponential distribution of delays, i.e., f(s) = (1/S)e−s/S with positive S, the

characteristic equation acquires the form

(z2 + pz + q)ez + r = 0 (12)

where

p = ατ +
1

η
> 0 (13)

q =
ατ

η
> 0

r = −
ατρ′

η
> 0

and z ≡ λτ . An analysis similar to that for the uniform distribution case leads to the stability diagram
shown in the right hand side of the figure.
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Figure 8: Stability as a function of β = ατ and η = S/τ for two possible distributions of agent types: a) f(s) = 1/S
in (0, S), and b) f(s) = (1/S)e−s/S . The system is unstable in the shaded regions and stable to the right and below
the curves.

Although the actual distributions of agent types can differ from these two cases, the similarity between
the stability diagrams suggests that regardless of the magnitude of β one can always find an appropriate
mix that will make the system stable. This property follows from the vertical asymptote of the stability
boundary. It also illustrates the need for a minimum diversity in the system in order to make it stable when
the delays aren’t too small.
Having established the right mix that produces stability one may wonder whether a static assignment

of agent types at an initial time would not constitute a simpler and more direct procedure to stabilize the
system without resorting to a dynamic reward mechanism. While this is indeed the case in a non-fluctuating
environment, such a static mechanism cannot cope with changes in both the nature of the system (e.g.,
machines crashing) and the arrival of new tasks or fluctuating loads. It is precisely to avoid this vulnerability
by keeping the system adaptive that a dynamic procedure is needed.
Having seen how sufficient diversity stabilizes a distributed system, we now turn to the mechanisms that

can generate such heterogeneity, as well as the time that it takes for the system to stabilize. In particular, the
details of the reward procedures determine whether the system can even find a stable mix of agents. In the
cases describe above, reward was proportional to actual performance, as measured by the payoffs associated
with the resources used. One might also wonder whether stability would be achieved more rapidly by giving
greater (than their fair share) increases to the top performers.
We have examined two such cases: a) rewards proportional to the square of their actual performance,

and b) giving all the rewards to top performers (e.g., those performing at the 90th percentile or better in the
population). In the former case we observed stability with a shorter transient, whereas in the latter case the
mix of changes continued to change through time, thus preventing stable behavior. This can be understood
in terms of our earlier observation that whereas a small percentage agents can identify oscillation periods
and thereby reduce their amplitude, a large number of them can no longer perform well.
Note that the time to reach equilibrium is determined by two parameters of the system. The first is the

time that it takes to find a stable mix of agent types, which is governed by γ, and the second the rate at
which perturbations relax, given the stable mix. The latter is determined by the largest real part of any of
the roots, λ, of the characteristic equation.

7 Discussion

In this paper we have presented a case for treating distributed computation as an ecosystem, an analogy
that turns out to be quite fruitful in the analysis, design, and control of such systems. In spite of the
many differences between computational processes and organisms, resource contention, complex dynamics
and reward mechanisms seem to be ubiquitous in distributed computation, making it also a tool for the
study of natural ecosystems.
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Since chaotic behavior seems to be the natural resultant of interacting processes with imperfect and
delayed information, the problem of controlling such systems is of paramount importance. We discovered
that rewards based on the actual performance of agents in a distributed computational system can stabilize
an otherwise chaotic or oscillatory system. This leads in turn to greatly improved system performance.
In all these cases, stability is achieved by making chaos a transient phenomena. In the case of distributed

systems, the addition of the reward mechanism has the effect of dynamically changing the control parameters
of the resource allocation dynamics in such a way that a global fixed point of the system is achieved. This
brings the issue of the length of the chaotic transient as compared to the time needed for most agents to
complete their tasks. Even when the transients are long, the results of this study show that the range
gradually decreases, thereby improving performance even before the fixed point is achieved.
A particularly relevant question for distributed systems is the extent to which these results generalize

beyond the mechanism that we studied. Since we only considered the specific situation of a collection of
agents with different delays in their appraisal of the system evolution, it is of interest to inquire whether
using rewards to increase diversity works more generally than in the case of extra delays.
Since we only considered agents choosing between only two resources, it is important to understand what

happens when there are many resources the agents can choose from. One may argue that since diversity is
the key to stability, a plurality of resources provides enough channels to develop the necessary heterogeneity,
which is what we observed in situations with three resources. Another note of caution has to do with the
effect of fluctuations on a finite population of agent types. While we have shown that sufficient diversity
can, on average, stabilize the system, in practice a fluctuation could wipe out those agent types that would
otherwise be successful in stabilizing the system. Thus, we need either a large number of each kind of agent
or a mechanism, such as mutation, to create new kinds of agents.
A final issue concerns the time scales over which rewards are assigned to agents. In our treatment, we

assumed the rewards were always based on the performance at the time they were given. Since in many cases
this procedure is delayed, there is the question of the extent to which rewards based on past performance
are also able to stabilize chaotic distributed systems.
The fact that these simple resource allocation mechanisms work and produce a stable environment pro-

vides a basis for developing more complex software systems that can be used for a wide range of computational
problems.
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