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Abstract
One of the predominant modes of accessing information in
the World Wide Web consists in surfing from one docu-
ment to another along hypermedia links. We have studied
the dynamics of Web surfing within an economics context
by considering that there is value in each page that an indi-
vidual visits, and that clicking on the next page assumes that
the information will continue to have some value. Within
this formulation an individual will continue to surf until the
expected cost of continuing is perceived to be larger than
the expected value of the information to be found in the
future. This problem is similar to that of a real option in
financial economics.
We consider the options viewpoint as a descriptive theory
of information foraging by Internet users, and we show
how it leads to a kind of “law of surfing” which has
been verified experimentally in several large independent
datasets. But the real options perspective, which is by
now a well-established field in financial economics, may
also provide a rich normative model for designing rational
Internet agents.

1. Introduction
The remarkable growth and rapidly developing complexity
of the Internet and the World Wide Web has made clearer
the relevance of ideas from economics to the design and
understanding of the Web. For example, economics ad-
dresses congestion with usage-based pricing and auctions
as a general solution to the bandwidth resource allocation
problem [1–4]. The agent paradigm in artificial intelligence
imagines cyberspace to be populated with rational artificial
agents searching for relevant information and participating
strategically in virtual auctions on behalf of users [5–7].
Here, the notion of rationality and strategy are naturally
consistent with economics and game theory since they gen-
erally work from a bottom-up perspective. The models em-
ploy utility-maximizing agents, usually bounded-rational, in
an environment characterized by finite resources and uncer-
tainty. This is precisely the situation of the artificial agent.
It is also the situation of the millions of people who use
the Web today. Thus, to the extent that economic models
are descriptive, they may be used to understand the patterns

To be published in the proceedings of the First International Con-
ference on Information and Computation Economies, ICE-98, by ACM
press.

found in the behavior of Web users, in addition to providing
prescriptions for the design of artificial agents [8, 9].

Here we consider an economic model of Web surfing in
which an agent must decide at each page whether to stop
or continue surfing. This option to continue is treated as
a “real option”, in analogy with the problem in financial
economics of valuing the flexibility a firm has in making
investment decisions under uncertainty [10]. In this frame-
work, the option to continue is valued under general as-
sumptions about the utility of a sequence of pages to a
user, and a probability distribution for the number of pages
a user will visit before stopping is derived. The distribution
constitutes a kind of “law of surfing” which describes very
well empirical measurements of user behavior [11].

Thus, a real options approach has descriptive validity, but
it can also provide a rich normative model for designing
rational Internet agents. The approach is by now a very
well-developed area in financial economics with a large
body of literature exploring various extensions of the basic
theme, and the applicability to the Internet suggests new
problems.

2. The Economics of Surfing

2.1 The Model

Consider an agent surfing for information by moving from
page to page along hyperlinks of the Web. This clicking
action assumes that there is value to be found in each page
that an individual visits, and that clicking on the next page
will lead to information that continues to have some value.
Since the value of the next page is not certain, one can
assume that it is stochastically related to the previous one,
and different in value for different surfers.

Therefore, as an agent clicks on further links it faces a
sequential decision problem: whether to stop surfing at a
given page or to go on to the next one. Fig. 1 shows the
structure of the problem in a schematic way. An agent
starts at node 1 and proceeds until a decision is made to
stop. At each node, the agent accrues a value xn which is a
random variable. In this treatment, the value is taken to be
a scalar which summarizes various relevant factors, such as
the utility to the user of the information revealed at the page.
It might also include costs such as the latency-dependent
congestion cost associated with accessing the node. Thus,
the value is allowed to be negative. Since the agent wishes
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Fig. 1. The sequence of nodes at which a surfer must decide
whether to stop or pursue the option to continue. The value of
noden is a random variable denoted byxn.

to maximize the accrued utility by following an optimal
stopping policy, it must decide on the value of the option
to continue surfing.
In order to derive the optimal stopping policy, the values
of the pages are modelled as a random walk,

xn = xn�1 + zn (1)

where the value increments,zn, are independent and iden-
tically distributed with a densityp(z) having meanm and
variances2.
The optimal stopping policy can be found working back-
wards from a given nodeN by applying a dynamic pro-
gramming procedure [12]. IfxN is the value of the final
page, then an agent at nodeN � 1, having just accrued
the valuexN�1, will continue only if the expected value
of the final node is greater than zero. Let Vn denote the
value of the nth node plus the maximum value of the two
possibilities, stopping and continuing. If one assumes that
users discount the value of future pages at a rate �, the
dynamic programming approach then yields the following
backwards recursion relations,

VN (xN ) = xN (2)

Vn(xn) = xn +max

�
0;

1

1 + �
E[Vn+1(xn + zn+1)]

�

where the expectation is taken with respect to the indepen-
dent random variable zn+1.
From this it follows that the value of the option to continue
from node n is a function of the value of the node just
revealed and given by,

Fn(xn) = max

�
0;

1

1 + �
E[Vn+1(xn + zn+1)]

�
(3)

These results can be understood intuitively by considering
that under the assumption of a random walk in page values,
when a particular page is very valuable it is likely that

5 10 15 20 25
n

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

t
h
r
e
s
h
o
l
d

Fig. 2. The threshold value x�n versus the node index n for
N = 25 nodes and m = 0, s2 = 1, and � = :3. As long as the
value of the nth page is greater than the corresponding x�n, the
option to continue has value and it is optimal to keep surfing.

the next page will be valuable as well, and so pursuing
the option to continue will tend to be profitable. On the
other hand, if the page is costly, the next one will probably
be costly as well, and so, when the value of the current
page falls below a certain threshold, it will no longer be
optimal to continue. Notice that when the expected value
of continuing is greater than zero, it is optimal to do so.
Thus, the threshold value, denoted by x�

n
, is the value of

xn which solves the equation

E[Vn+1(x
�

n + zn+1)] = 0 (4)

which implies that after the value of a node is revealed, it
is optimal to continue when xn > x�

n
and optimal to stop

when xn < x�
n

.
These results can be made more concrete by considering the
situation in which p(z) is normally distributed with m = 0,
s2 = 1, and the discount rate � = :3. The optimal policy
is then completely specified by the curve of thresholds x�

n

plotted versus the node index n as in Fig. 2 where the total
number of nodes is set at N = 25. Notice that the value
of the option to continue is a function of the value of the
node just revealed, and that the function is different for each
node. The functions for several nodes are plotted in Fig. 3
using the same parameter values as Fig. 2. Consider one
of these curves. As described above, when the value of the
node just revealed xn is large, future pages are expected to
be valuable as well, so the option to continue is valuable,
and F (x) increases with x. As x decreases, the expected
value of the future pages decreases, the option to continue
becomes less valuable, and F (x) decreases with decreasing
x. At some value x = x�, F (x) = 0 which defines the
threshold for continuing, since stopping is preferable to
accepting the negative expected value of continuing.
Thus, the zeroes of F

n
(x) are just the thresholds x�

n
plotted

in Fig. 2. Notice also that the curves Fn(x) become flatter
(monotonically) as n gets larger, or the agent progresses
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Fig. 3. The value Fn(x) of the option to continue as a function
of the value x of the page just revealed. The functions are shown
for the indicated nodes, and for the same parameter values as in
Fig. 2.

towards the final page. This reflects the fact that the option
has less value as the end is near.

2.2 Discussion

This model of optimal surfing can be used for designing
Internet agents. It may be possible, for example, to design
an agent which forages for information in such a way that
the value it accrues can be described by a model like the
one given here. That is, if its decisions are such that the
values of the pages it finds tend to follow, say, a random
walk, then the above model provides the optimal policy for
stopping.

Indeed, the model presented here can be easily put into the
simple framework presented in the standard artificial intel-
ligence textbook [13] by Russell and Norvig. On p. 490
they formalize an INFORMATION-GATHERING-AGENT
who “works by repeatedly selecting the observation with
the highest information value, until the costs of observing
are greater than the benefits.”

Computational tractability may be an issue in designing
such agents. In the case of a random walk, the number, N ,
of possible nodes (which could be an externally imposed
“node budget” ), the discount rate �, and the parameters m
and s are required for the calculation of the optimal policy.
Because analytical results are not available and numerical
calculation can be computationally intensive, the policies
could be calculated off-line and interpolated. Furthermore,
several simplifications may be appropriate and useful in
designing such agents. For example, if no node budget is
imposed and the node horizon is infinite, then the thresh-
old is simply a flat threshold at some level. In many other
cases the “curse of dimensionality” which plagues dynamic
programming could be overcome by the use of machine
learning techniques such as neural networks and reinforce-
ment learning [14].

We stress the fact that this economic design framework is
quite flexible. For one can assume an arbitrary drift for

the random walk, which might indicate the quality of the
agent. That is, an agent able to find pages which are on
average increasingly valuable can be modelled by a process
which has a positive drift. Also, other underlying stochastic
processes can be used as well [10]. Therefore, as long as the
process can be characterized, the kind of model presented
here can be used to design a rational agent.
As a concrete example of these considerations, we can con-
sider Menczer’s [15] distributed algorithm for information
discovery on the World Wide Web using an adaptive pop-
ulation of intelligent agents making local decisions. A key
issue of this work is whether the Web environment has a
“semantic topology” that agents can exploit, using concepts
such as “ relevance autocorrelation,” which essentially en-
codes the notion that if the current document is relevant,
one may expect that some of its neighbors will be as well.
Actual Web data corroborates this view [16, 15]. The algo-
rithm explicitly includes relevance estimation (to an original
query), and possible latency costs due to network conges-
tion as components of the “energy” (corresponding to our
accrued “value” ) that determines the survival of an agent.
However, the actual mechanism by which the agents try
to maximize the accrued “energy” is not very sophisticated
and may be sub-optimal. The approach suggested here can
provide a more rigorous normative model for the rationality
with which these intelligent agents are endowed. In fact,
it would amount to a model of decision-making very close
to that advocated by financial economists in other contexts,
and so is an attractive methodology for the design of such
multiagent systems.

3. A Law of Surfing

3.1 Theory

The model of surfing as a real option that we just pre-
sented can also be used to elucidate the surfing patterns of
individuals searching for information in the Web. In fact,
under certain assumptions, we will show that a “ law of
surfing” holds. It specifies the probability distribution for
the number of links that a surfer follows before stopping.
Interestingly, this distribution was found to describe well
the data obtained from several large-scale empirical studies
of user behavior.
To derive the law, consider the threshold curve of Fig. 2.
Clearly, because of the existence of a discount factor the
threshold is asymptotically flat with the distance in nodes
from the endpoint, since without discounting � = 0 and the
threshold diverges to �1 as N1=2 [17]. Given the fact that
the Web is so large and interconnected, and that it seems
safe to assume that users discount the future while surfing,
it is reasonable that a flat threshold is the appropriate model
for actual users. Then, from an initial page value, a user
continues surfing, with page values following a random
walk as specified by Eq. 1, until the value of a page first
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visits the threshold value. Thus, the number of clicks until
arrival to the threshold is a random variable. In the limit of
true Brownian motion, the first passage times are distributed
according to the inverse Gaussian distribution [18].
Thus, the probability density of L, the length of the se-
quence of page visitations until stopping (determined by
first passage to the fixed threshold), is given by

p(L) =

r
�

2�
L
�3=2

e
�

�

2�2L
(L��)2

(5)

whose mean and variance are given in terms of the param-
eters � and � according to E[L] = � and V ar[L] = �3=�.
We discuss more fully the properties of this distribution
below.

3.2 Measurements

To test the validity of Eq. 5, we analyzed data collected
from a representative sample of America Online (AOL)
Web users. For each of 5 days (29 and 30 November
and 1, 3, and 5 December 1997), the entire activity of one
of AOL’s caching proxies was instrumented to record an
anonymous but unique user identifier, the time of each URL
(uniform resource locator) request, and the requested URL.
For comparison with the predicted distribution, a user who
starts surfing at a particular site, is said to have stopped
surfing after L links as soon as he or she requests a page
from a different Web site. For this analysis, if the user
later returned to that site, a new length count L was started.
Requests for embedded media (such as images) were not
counted. On 5 December 1997, the 23,692 AOL users in
our sample made 3,247,054 page requests from 1,090,168
Web sites. The measured cumulative distribution function
(CDF) of the depth L for that day is shown in Fig. 4.
Superimposed is the predicted function from the inverse
Gaussian distribution fitted by the method of moments [19].
To test the quality of the fit, we analyzed a quantile-quantile
against the fitted distribution. Both techniques, along with a
study of the regression residuals, confirmed the strong fit of
the empirical data to the theoretical distribution. The fit was
significant at the P < 0:001 level and accounted for 99% of
the variance. Although the average number of pages surfed
at a site was almost three, users typically requested only
one page. Other AOL data from different dates showed the
same strength of fit to the inverse Gaussian with nearly the
same parameters.
We also examined the navigational patterns of the Web user
population at Georgia Institute of Technology for a period
of 3 weeks, starting on 3 August 1994. The data were col-
lected from an instrumented version of the National Center
for Supercomputing Applications’ Xmosaic that was de-
ployed across the students, faculty, and staff of the College
of Computing [20]. One hundred and seven users (67% of

those invited) chose to participate in the experiment. The in-
strumentation of Xmosaic recorded all user interface events.
Of all the collected events, 73% were navigational, result-
ing in 31,134 page requests. As with the AOL experiment,
the surfing depth of users was calculated across all visits to
each site for the duration of the study. For the combined
data, the mean number of clicks was 8.32 and the variance
was 2.77. Comparison of the quantile-quantile, the CDF,
and a regression analysis of the observed data against an
inverse Gaussian distribution of same mean and variance
confirmed the ability of the law of surfing to fit the data
(R2 = 0:95; P < 0:001). Hence, the model was able to fit
surfing behavior with data sets from diverse communities
of users, several years apart, who used different browsers
and connection speeds.

The previous data validated the law of surfing for a pop-
ulation of users who had no constraints on the Web sites
they visited. We also considered the case of surfing within
a single large Web site, which is important from the point
of view of site design. The site used was the Xerox Cor-
poration’s external Web site (www.xerox.com). During the
period 23 to 30 August 1997, the Xerox site consisted of
8432 HTML documents and received an average of 165,922
requests per day. The paths of individual users were recon-
structed by a set of heuristics that used unique identifiers
("cookies"), when present, or otherwise used the topology
of the site along with other information to disambiguate
users behind proxies. Automatic programs that request the
entire contents of the site ("spiders") were removed from
the analysis. Additionally, a stack-based history mecha-
nism was used to infer pages cached either by the client
or by intermediary caches. This resulted in a data set con-
sisting of the full path of users and the number of clicks
performed at the Xerox Web site. Fig. 5 shows the CDF
plot of the Xerox Web site for 26 August 1997 against the
fitted inverse Gaussian defined by Eq. 5. The mean number
of clicks was 3.86, with a variance of 6.08 and a maximum
of 95 clicks. As with the client path distributions, both the
quantile-quantile and the CDF plots of the site data showed
a strong fit to Eq. 5. Moreover, these results were very
consistent across all the days in the study.

For further confirmation of the model, we considered the
simplest alternative hypothesis, in which a user at each page
conducts an independent Bernoulli trial to make a stopping
decision. This model leads to a geometric distribution of
depths, which was found to be a poor fit to the data.

3.3 Discussion

An important property of the function p(L) is its long
tail. This means that concentrating on the average value
of the depth of surfing, given by L, obscures a great deal
of information. In the case of the Xerox data just analyzed,
for example, while the mean length was 4.2, the mode of
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Fig. 4. The points are the empirical cumulative distribution
function of the length L, the number of pages visited before
stopping, for AOL users. The data were collected on 5 December
1997 from a representative sample of 23,692 AOL users who made
3,247,054 clicks. The curve is the CDF of a fitted inverse Gaussian
distribution with a mean of � = 2:98 and � = 6:24.
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Fig. 5. The points are the empirical cumulative distribution
function of the length L, the number of pages visited before
stopping, for measurements made on August 26, 1997 at the Xerox
Corporation’s Web site (http://www.xerox.com). The curve is
the cumulative distribution function of the maximum likelihood
inverse Gaussian. The mean length for this data set was 4:2 with
a variance of 8:9, and a maximum of 110.

the distribution was located near one, which implies that
typically most users don’ t go beyond one click.
Another interesting property of the law of surfing can be
obtained by taking logarithms of both sides of Eq. 5. One
obtains

log p(L) = �
3

2
logL �

�(L� �)2

2�2L
+ log

r
�

2�
(6)

When E[L] < V ar[L], �
�2

< 1, which implies that there is
a range of values of L such that ,

p(L) / L
�1:5 (7)

i.e. it scales like a Pareto distribution. This scaling be-
havior can be tested by noticing that on a log-log plot, the

probability density is well-approximated for large variance
by a straight line with slope �3=2 and that for larger val-
ues of L, the second term in Eq. 6 begins to dominate and
provides a downward sloping correction. Fig. 6 shows that
the approximation holds over a range of depths.
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Fig. 6. The frequency distribution of surfing clicks on log-log
scales. Data collected from the Georgia Institute of Technology,
August 1994.

This scaling relation is similar to the well-known Zipf’s
Law [21] found in an extremely wide variety of data, which
says that up to a constant, the approximate frequency of a
word in a given body of text (or database, etc.) is related to
its rank in frequency by an inverse power law. In order to
make the analogy apparent in Eq. 7, rank is taken to be the
depth in pages from a user’s current position in a hyper-
linked environment. It thus gives a description, appropriate
for each user, of the likelihood that the user will arrive at a
particular page which is some link distance L away. Thus,
it may have implications for the valuation of advertising
space on a Web page which is a given link distance away
from typical entry points into Web sites.
Random variables distributed according to the inverse
Gaussian also have the interesting property that they are
stable [22]. That is, the sum of a set of independent ran-
dom variables distributed according to the inverse Gaussian
is itself an inverse Gaussian. This can be seen easily by
considering the decomposition of a random walk to a fixed
threshold into first passage time problems to intermedi-
ate thresholds. This relatively special property adds to
the robustness of the distribution when comparing with
measurements, because it allows the threshold to be more
loosely defined (as long as it is defined fairly consistently
over the samples in the dataset). For example, the Georgia
Tech data in Fig. 6 is made up of length observations, one
for each user, over a length of time. As long as users on
average visit the same number of sites during that time,
each observation is then the sum of inverse Gaussian ran-
dom variables, and their stability ensures the validity of
this kind of measurement process.
Finally, we note that the inverse Gaussian distribution is,
strictly speaking, the first passage time distribution for
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Brownian motion [23, 24]. Here we have a random walk
which is not Brownian, but rather is discrete in “ time”
(links) but with continuous increments. This form of the
stopping problem was studied by Wald [25] who showed
that the discrete form converges to the result for Brownian
motion. Furthermore, the independent increments zn in Eq.
6 need only have finite variance for the first passage times
to converge to the inverse Gaussian [26]. In fact, the two
parameters of the inverse Gaussian can be written in terms
of the three parameters that define the stopping problem:
� = a=m and � = a2=s2 where a is the threshold and m
and s are the mean and standard deviation of z

n
as was

previously defined. It is a simple consequence of these
relations and the definition of the variance that

s
V ar[L]

E[L]
=

s

m
(8)

which gives, independent of the threshold, some informa-
tion about the “noisiness” of the underlying random walk.
This dimensionless ratio, yields an answer � 1 for most
of the datasets, indicating that the underlying walk is quite
noisy.

4. Conclusion
In this paper we presented a real options approach to the
design of agents that could forage the World Wide Web in
search of information for their sponsors. In this context,
the option to continue was treated as a “ real option” , in
analogy with the problem in financial economics of valuing
the flexibility a firm has in making investment decisions
under uncertainty. We then obtained expressions for the
optimal stopping policy which can be incorporated into the
agent’s design and also derived a law of surfing for human
users of the Web. Remarkably, several independent large
data sets of user surfing patterns corroborate this law [11].
The most important modelling simplification we have made
is to abstract away from the topology of real Web spaces.
A real Web surfer can be modelled in greater detail by
taking explicit account of the graph and tree-like structure
of the available pages. Our “one-dimensional” model ab-
stracts from the topology and considers only the path actu-
ally taken. It therefore neglects the possibility of backtrack-
ing along the nodes in order to pursue another path. Such a
situation can be modelled, in principle, by the methods used
here, but is considerably more complicated. Constructing
more detailed models may be worthwhile, however, espe-
cially since they can be tested by comparison with mea-
surements such as those described by Cunha, et. al. in
[27], which show in nice graphical form the actual traces

of users’ paths, taking account of backtracks. We note how-
ever, that in spite of these simplifications the model appears
to provide a good description of empirical surfing patterns.

We have made a distinction between the normative and de-
scriptive implications of our treatment of surfing as a real
option. On the one hand, since the construction of artifi-
cial Internet agents is now an important topic of research,
the formal option model seems an attractive approach for
designing agents that behave in a manner consistent with
basic economic principles. The approach may thus have
interesting normative implications for the design of agents,
a great deal of which is now going on.
On the descriptive side, modelling real surfing as a real
option leads to simple predictions which can actually be
tested experimentally. The success of the “ law of surfing”
in describing actual user data is encouraging in two senses.
First, it helps to fix to what degree formal economic models
are actually descriptive of real users of the Web. Second,
given the descriptive accuracy, it allows the construction of
probabilistic algorithms which can be used to predict the
activity of users [11].
Finally, these models can be used to build better browsers
and interfaces, as well as provide ways to price advertising
space on Web pages.
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