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Abstract

A major impediment to using recommenda-
tion systems and collective knowledge for elec-
tronic commerce is the reluctance of individu-
als to reveal preferences in order to find groups
of people that share them. An equally im-
portant barrier to fluid electronic commerce is
the lack of agreed upon trusted third parties.
We propose new non-third party mechanisms
to overcome these barriers. Our solutions fa-
cilitate finding shared preferences, discovering
communities with shared values, removing dis-
incentives posed by liabilities, and negotiating
on behalf of a group. We adapt known tech-
niques from the cryptographic literature to en-
able these new capabilities.

1 Introduction

With the advent of the World Wide Web and
the ease of entry enabled by the Internet, elec-
tronic commerce is becoming an increasing re-
ality, with a consequent growth in the num-
ber and variety of information providers and
e-commerce sites. While this growth generates
a diverse set of offerings from which consumers
can only benefit, it also makes it hard for peo-
ple to choose, in part because it is difficult to
judge a priori the value of the offerings. In ad-
dition, since providers of electronic commerce
sometimes lack recognizable reputations and
can offer similar services, it is seldom possible
to make optimal decisions as to which sites to
access and which ones to avoid. As with many
other situations where choice is costly, people
resort to a cooperative mechanism which relies
on the collective search performed by a whole
community to find desirable and useful sites.
Large groups of people surfing and buying on

their own can sample a much larger informa-
tion space than single individuals, and any ex-
change of relevant findings can increase the
awareness of possibly interesting sites. Even
though recommendations, both personal and
institutional, can be unreliable and highly id-
iosyncratic, they decrease the cost of searching
for optimal sources of information, while lead-
ing to the discovery of new sites and improved
ways of surfing the Web.

Given these considerations, one would ex-
pect to find within the Web sites and commu-
nities that issue useful recommendations on a
number of topics[1][2][3]. This information can
then be used to create recommendations for
other users and to identify similar individuals,
thereby helping to make informal communities
apparent. But while a great deal of econom-
ically useful information is distributed widely
within groups of people such as large organi-
zations, communities of practice[4], scientific
communities and the economy at large, pri-
vacy issues make it hard to successfully exploit
that knowledge. The limitations range from
having to assess the quality of a recommenda-
tion from a group whose preferences might dif-
fer from the inquirer, to the natural reticence
people have to reveal their preferences to an
anonymous group with possibly different val-
ues. One issue that makes recommender sys-
tems perform below their potential is the dif-
ficulty of convincing potential advice-takers of
the credibility and reliability of the recommen-
dations. This depends in part on the willing-
ness of potential recommenders to make avail-
able the right information at the right times.
An important factor that dissuades potential
recommenders from participating effectively is
the risk that failed advice could lead to bruised
reputations and liabilities[5].

As in the physical world, there exist a num-
ber of useful mechanisms to circumvent prob-
lems of privacy, trust and liability. For ex-
ample, a useful strategy for maintaining pri-
vacy consists in the anonymous posting of in-
formation. In recommender systems this can
be useful when the recommendations are based



on coarse characteristics such as the num-
ber of people voting for a particular choice.
But anonymity has the drawback of prevent-
ing users from learning the usefulness of rec-
ommendations from particular people, track
trends over time, and to use reputations which
are built up over repeated interactions. The
consistent use of pseudonyms can address some
of these issues, but not all. One drawback of
pseudonyms is that the very link which estab-
lishes reputation over time becomes a vulnera-
bility if authorship can be established by other
means for any pseudonymous message. Issues
of privacy can also be tackled by the use of
trusted third parties to mediate the exchange
of information. However, it can be difficult to
get everyone in a community to agree on a suit-
able third party, particularly when new users
continually enter the system. Furthermore, the
collection of all information by a single third
party can lead to a system-wide failure if such
a party is compromised. What is truly desir-
able is the enhancement of privacy and trust in
electronic communities without having to re-
sort to anonymity, pseudonymity, or trusted
third parties.

In what follows we address the above is-
sues by the novel application of existing cryp-
tographic techniques. In particular, we pro-
pose solutions to the problems of finding
shared preferences, discovering communities
with shared values and removing the disincen-
tives posed by liabilities. In addition we pro-
pose a mechanism that allows an individual to
negotiate on behalf of a group by proving mem-
bership in that group without revealing one’s
identity.

The remainder of this paper is organized
as follows. We first review the basic crypto-
graphic capabilities required in our discussion.
In section 3 we introduce a protocol for find-
ing shared preferences and finding communi-
ties of similar interests that preserves privacy
and also allows for the use of selectivity based
on reputations. Moreover, we show how to al-
low private communication among the mem-
bers of such informal communities by sharing a
public key that is issued only to them. Section
4 uses deniable signatures to remove liabilities
in recommendations, while allowing users to
discriminate based on their view of the recom-
menders’ reputations. Section 5 deals with two
issues: proving membership in a community
without revealing one’s identity, and establish-
ing the size of that community without having
to list its membership. Section 6 summarizes
the findings and discusses the implications of
this technology for electronic communities and
their self-governance. Cryptographic details
for all of our protocols can be found in the
Appendix.

2 Cryptographic Primitives for Communities

The mechanisms we propose rely on a variety
of cryptographic techniques, which in turn ex-
ploit the use of two fundamental cryptographic
primitives: hash functions and public key sys-
tems. For the benefit of the reader unfamil-
iar with this field we now describe the general
properties of these two primitives.

In general, cryptographic functions oper-
ate on inputs such as “messages” and “keys”,
and produce outputs such as “ciphertexts” and
“signatures”. It is common to treat all of these
inputs and outputs as large integers according
to some standardized encoding. Throughout
this paper, you should assume that any value
involved in a cryptographic function is a large
integer, no matter what it may be called.

A cryptographic hash function, H, is a
mathematical transformation that takes a mes-
sage m of any length, and computes from it
a short fixed-length message, which we’ll call
H(m). This fixed length output has the im-
portant property that there is no way to find
what message produced it short of trying all
possible messages by trial and error. Equally
important, even though there may exist many
messages that hash to the same value, it is
computationally infeasible to find even two val-
ues that “collide”. This practically guarantees
that the hash of a message can “represent”
the message in a way which is very difficult to
cheat. An even stronger property that we will
require is that the output of a cryptographic
hash function cannot be easily influenced or
predicted ahead of time. Thus someone who
wanted to find a hash with a particular pattern
(beginning with a particular prefix, say) could
do no better than trial and error. In practice,
hash functions such as MD-5 and SHA are of-
ten assumed to have these properties.

Public key encryption (or signature) rely
on a pair of related keys, one secret and one
public, associated with each individual partic-
ipating in a communication. The secret key
is needed to decrypt (or sign), while only the
public key is needed to encrypt a message (or
verify a signature). A public key is generated
by those wishing to receive encrypted mes-
sages, and broadcasted so that it can be used
by the sender of the message to encode it. The
recipient of this message then uses his own pri-
vate key in combination with his public key to
decrypt the message. While slower than se-
cret key cryptography, public key systems are
preferable when dealing with networks of peo-
ple that need to be reconfigured fairly often.
Popular public key systems are based on the
properties of modular arithmetic.



3 Community Discovery

It is often the case that a group of individuals
shares a number of preferences while being un-
aware of the existence of each other. While
the Internet provides mechanisms for speed-
ing up the process of discovering people with
similar interests, it does not remove the disin-
centive inherent in having to disclose private
information to unknown people while search-
ing for a community that shares a given set of
preferences. Consider, for example, the prob-
lem of finding someone from whom to request
a recommendation about a particular topic.
This can be difficult if one is reluctant to re-
veal one’s preferences to people who might or
might not share them. It would be useful to de-
sign a mechanism that circumvents this prob-
lem. In what follows we present a procedure
that allows for a group of individuals to pri-
vately search for others with similar prefer-
ences while keeping their preferences private.
Furthermore, this discovery process is made
operational by producing keys that are avail-
able only to members of the group and allow
them to communicate with each other.

Another application of this mechanism
for community discovery obtains recommenda-
tions from users with similar interest profiles
without contacting them directly. This appli-
cation can be used in e-commerce situations
to recommend products likely to be of interest
based on the preferences of similar users. By
maintaining both privacy and selectivity based
on reputations, this mechanism allows for pre-
cise recommendations.

Community discovery can also be useful in
creating additional services. For instance, as
discussed in section 4, it can be useful in dis-
tributing pieces of some information among a
group of people in such a way that no indi-
vidual can determine the information but the
group acting together can do so. Reputations
for trustworthiness are an important aspect of
discovering such groups, and preserving pri-
vacy can help encourage people to participate
in this community service. An example is pro-
viding backup storage of private information.

These techniques could be useful not only
for users providing information but also for
those requesting recommendations. Examples
include determining the majority opinion in
a group without revealing individual prefer-
ences, or identifying significant but unpopular
viewpoints. Furthermore, these protocols al-
low queries over a set of topics without reveal-
ing the particular question of interest. This
could be useful when a sudden shift of inter-
est in particular questions or products might
change the group behavior in undesirable ways,
e.g., causing changes in price levels before an
e-commerce transaction is completed.

Community Discovery: Our approach to
community discovery uses an idea that goes
back to work by Bellare and Micali on non-
interactive oblivious transfer[6]. Anyone can
ask a question Q by posting it on a bulletin
board. For simplicity, assume that Q is a
yes/no question, although our techniques gen-
eralize to arbitrary multiple-choice questions.
We can associate an unpredictable random
“challenge” with each question Q in a standard
way, by taking the challenge to be the hash of
Q together with some system-wide public keys.

To answer a question (Q, create two pub-
lic keys yo,y:1 that when multiplied together
equals the challenge associated with Q. It turns
out that it is easy to create these public keys
in such a way that you know the correspond-
ing private key for one of them. However, it is
widely believed to be hard to create the public
keys in such a way that you know the corre-
sponding private key for both of them. Post on
the bulletin board these two public keys yo, y1.
Your “answer” will be rejected if these keys
don’t multiply together to the challenge. Oth-
erwise, your answer is accepted, although no
one can tell how you’ve really answered, be-
cause that depends on whether you know the
private key for yo (in which case your answer
was no) or the private key for y; (in which
case your answer was yes). There is no need
to post your answer anonymously. In fact, it
may be desirable to require answers to be dig-
itally signed, to prevent someone from joining
both sides of the debate by answering the same
question twice.?

Now anyone can encrypt a message that
you can read only if you answered a question
in a certain way. Suppose that I want to send
you a message M, but I only want you to be
able to read it if you answered no to question
Q. Then I encrypt the message using yo as the
public key. I can send this message to you di-
rectly, or post it to a bulletin board, possibly
anonymously. If your answer was no, then you
know the private key for yo, and thus you can
decrypt my message. Otherwise, you know the
private key for y; but not yo, and you cannot
decrypt the message.

Community-Wide Conference Key: The
mechanism described above is already enough
for the community to find itself and begin a
discussion. It might be desirable to generate
a single key that was known to all members
of the community to facilitate a community-
wide discussion. One way to achieve this is to
have any member of the community choose a
secret key and encrypt it so that every other
community member can decrypt it. For ex-

! Alternatively, cryptographic pre-registration tech-
niques (e.g., using off-line electronic coins [22] as “one-
show” credentials) could be used to prevent double
answering.



ample, if I answered no to question Q, then I
can choose a random “community-wide confer-
ence key” and encrypt it using the “no” public
key for every answerer. All of these encryp-
tions can be posted anonymously if desired,
and signed with a proof of anonymous group
membership as described in Section 5. Then
everyone in the community (i.e., everyone who
answered no to question Q) can decrypt to re-
cover the community-wide conference key. It
is easy for a new member to join the commu-
nity in an ongoing discussion. This is achieved
by posting an encryption of the conference key
that the newcomer can decrypt only if he has
joined the community, together with a signa-
ture of anonymous group membership so the
newcomer knows that the key came from a fel-
low community member.

Private Preference Matching: The com-
munity discovery techniques described above
could be repeated for a number of different
questions. Then I could send you a message
which you could read only if you answered each
question a certain way, by encrypting the mes-
sage so that all of the corresponding keys were
necessary to decrypt. Another approach to
multiple shared preferences is to perform a “se-
cure distributed computation” to find people
who answered questions in a compatible way.
This can be done quite efficiently in the case
where compatibility is measured by the num-
ber of yes/no questions that were answered in
common.

A basic preference-matching function takes
as input two lists of yes/no answers and a
threshold. It outputs “true” if the number
of answers where the two lists match is at or
above the threshold. The one-against-many
variant takes as input a “query” answer list,
a “database” of answer lists, and a thresh-
old. It outputs pointers to all answer lists
in the database that have a sufficiently large
match with the query list. The many-against-
many variant is similar, except there are two
database lists, or a single list compared against
itself.

There are a number of techniques in the
cryptographic literature for two or more par-
ties to compute these kind of preference match-
ing functions, under a wide variety of assump-
tions about the fault model, the amount of in-
formation leakage, the communication model,
and so forth (see, e.g., [13, 17]). In the Ap-
pendix, we present one technique that is some-
what easier to describe, and quite efficient.
Note that this scheme leaks a small amount
of additional information, i.e., the number of
matches in two preference lists rather than the
one-bit decision about whether the number of
matches exceeds some threshold. This is not
an inherent limitation. It is a design trade-off
to achieve greater efficiency.

4 Removing Liability

Finding someone satisfying a number of shared
preferences is not enough in order to obtain a
valuable recommendation. A potential recom-
mender might be concerned about the liabil-
ity that would result if the recommendation
turned out to be of negative value to the re-
quester. This is a concern for a number of com-
munities, including malpractice-sensitive doc-
tors, financial advisors, or even members of
a recommendation system such as knowledge
pump[3]. While anonymity might address this
problem, it then generates another one, which
has to do with the lack of a reputation that
could be built over time. Pseudonyms allow
reputations to be built over time, but they are
“brittle” in the sense that uncovering the au-
thor of any message would establish the au-
thorship of all messages with that pseudonym.
Another possible approach is a contract in
which the parties explicitly agree to waive lia-
bility, but this may be cumbersome and costly
to devise, especially when multiple jurisdic-
tions are involved.

We propose the use of “deniable signatures”
to allow reputations and limited associations
without fear of liability. With a deniable signa-
ture, the recipient of a recommendation knows
it came from a person with an appropriate rep-
utation, but cannot prove that connection to
anyone else.

A further enhancement can give deniable
signatures that are “convertible”. The signer
keeps an additional secret for each signed mes-
sage which, when revealed, converts a deniable
signature into an “ordinary” signature that
is clearly and convincingly connected to the
signer. This could give the recommender the
flexibility to avoid liability as a default, while
maintaining the ability to prove authorship if
necessary. A further enhancement can dis-
tribute the conversion mechanism among many
parties, to prevent the signer from being co-
erced to convert a deniable signature against
his will.

If the verifier first tells the signer what sign-
ing key to use, then the resulting signature
could be deniable. This interactive approach
could be implemented using symmetric-key en-
cryption and message authentication, which
could make it especially efficient computation-
ally. When it is infeasible to send a set-up mes-
sage from verifier to signer, then other meth-
ods are needed. One particularly efficient ap-
proach to (non-interactive) deniable signatures
that relies on ideas from Cramer, Damgaard
and Schoenmakers [9] and Jakobsson, Sako and
Impagliazzo[11]. It relies on a technique to
prove knowledge of one out of two secret keys
without revealing which is known.



Deniable Signatures: To begin, we describe
a generic kind of three-round proof of knowl-
edge. The Schnorr protocol [18] is an example
that fits the model we describe. The prover
knows a secret key that corresponds to a given
public key. To authenticate himself to a veri-
fier, the prover wishes to demonstrate knowl-
edge of the secret key. They proceed as follows:

1. Prover — Verifier: cryptographic com-
mitment based on prover’s secret key

2. Verifier — Prover: random challenge
based on verifier’s random coin flips

3. Prover — Verifier: consistent response

4. Verifier accepts if response is consistent
with commitment, challenge, and prover’s
public key. This is convincing to the veri-
fier because it would have been very diffi-
cult for the prover to compute a consistent
response without knowing the secret key.

To create a one-out-of-two proof of knowl-
edge, another trick is needed. Many of these
three-round proofs of knowledge (including the
Schnorr protocol) have the remarkable prop-
erty that it is very easy to forge transcripts
— without knowing the secret key. The forger
works backwards, starting with a (third-round)
random response, and then choosing a (second-
round) random challenge. Given these, it easy
to compute a (first-round) commitment that
will complete a valid transcript. (Of course,
this doesn’t contradict the security of the proof
of knowledge, since there is a big difference be-
tween being able to forge a transcript by work-
ing backwards, and being able to fool a verifier
in real-time going forwards.)

For the one-out-of-two proof of knowledge,
the Prover forges a transcript ahead of time for
the secret key that he does not know. Then the
protocol is as follows:

1. Prover — Verifier: commit;, commits
2. Verifier — Prover: challenge (only one!)

3. Prover — Verifier: challenge;, response;,
challenges, responses such that
challenge; + challenge> = challenge

4. Verifier tests the following:

(a) consistency of commiti, challenge,
responsei, public key:

(b) consistency of commits, challenges,
responses, public keys

(c) challenge = challenge; + challenge,.

The intuition behind this protocol is that
the Prover is free to split the Verifier's chal-
lenge so that one of the pieces matches the pre-
forged transcript. This leaves the Prover to re-
spond to the other piece of the challenge, which

he can do because he knows that secret key. If
the Prover knows neither secret key, then it is
very unlikely that the Verifier’s challenge can
be split to match two pre-forged transcripts.

These interactive protocols can be con-
verted into non-interactive signature schemes
by using the Fiat-Shamir heuristic [14]. The
idea is that the signer plays the role of the
Prover, but computes the Verifier’s challenge
himself using a cryptographically strong hash
function such as MD5 or SHA. The signer ap-
plies the hash function to the message to be
signed, the public key(s), and the commit-
ment(s) “sent” in the first round.

Now we can describe the deniable signa-
ture scheme at an intuitive level (see Appendix
for details). Sign a message using the non-
interactive version of a one-out-of-two proof of
knowledge, where the two public keys belong
to the signer and the receiver. That is, the
signer is proving knowledge of either his own
private key or the receiver’s private key. This
signature could only have been produced by
the signer or the receiver, and thus it is com-
pletely convincing to the receiver (by process of
elimination!). However, no third party can tell
whether the signer or the receiver has created
this signature, and so the signer has deniabil-
ity.

For convertibility, the signer takes advan-
tage of the freedom that he has in generating
the forged transcript. Instead of beginning his
forgery with a random third-round response,
the forger computes this value as the output of
a cryptographic hash function. Revealing the
input to the hash function would be convincing
evidence as to which part of the transcript was
forged, and thus which secret key must have
been known to the signer. It is easy to dis-
tribute the conversion function among many
parties, by using a sum of hash outputs instead
of a single hash output to compute the forged
response, where each party knows only one of
the hash inputs.

5 Proving Membership in a Group

It is often the case that membership in a par-
ticular group or community can be valuable
for establishing one’s credentials, reputation or
even for negotiating with another group or firm
on behalf on one’s group. And yet, there are
many situations when one might desire to re-
main anonymous in case the group that one
belongs to has an image or value that could
be negative to the firm. Finally, group mem-
bership could be established without revealing
the particular individual identity, which could
be used as authorization or capability for some
transaction or to negotiate with a firm or indi-
vidual on behalf of the whole group.



There are a number of schemes in the cryp-
tographic literature that can be used to solve
these problems. We show one such scheme by
adapting the approach from the previous sec-
tion. One drawback of what we present here is
that the effort involved (and the size of the
messages) is proportional to the size of the
group. It may be desirable to hide one’s iden-
tity within a smaller group, giving up a degree
of anonymity for greater efficiency.

The deniable signature scheme from the
previous section relied on a kind of “one-out-of-
two” proof of knowledge. The message signer
proved that he knew either his own private
key or the recipient’s private key. This tech-
nique generalizes easily to a l-out-of-n proof
of knowledge, which is useful for anonymously
proving membership in a group. It also gener-
alizes to a t-out-of-n proof of knowledge, which
is useful for anonymously demonstrating nego-
tiating power. These generalizations can be
realized as either an interactive identification
protocol or a non-interactive signature scheme.
We describe both of these generalizations fol-
lowing [9].

Group Membership: For a 1-out-of-n proof
of knowledge, the prover begins by forging the
Schnorr transcript for the n — 1 private keys
that he does not know. Then the protocol is
as follows:

1. Prover — Verifier: commit;, .., commit,
2. Verifier — Prover: challenge (only one!)

3. Prover — Verifier: chally, respy, .., chall,,
resp, such that challenge = chall; + .. +
chall,,

4. Verifier tests the following:

(a) consistency of commit;, chall;, resp;,
public key; for every i, 1 <14 < n.

(b) challenge = chall; + ...+ chall,

The intuition is as in the one-out-of-two case.
The prover has the freedom to choose all but
one of the challenges, and can use his knowl-
edge of the secret key to respond to the one
challenge he cannot control. The verifier can-
not tell which transcripts were forged.

For proving knowledge of t-out-of-n private
keys, everything is the same as before except
for the relationship of challenge, challenge;,
..., challenge,,. There must be a degree n —¢
polynomial f(z) such that f(i) = challenge;
for every i, 1 < i < n, and such that f(0) =
challenge. The intuition is that the Prover can
forge transcripts ahead of time for the n — ¢
private keys that he does not know, and then
interpolate to find f(z) (uniquely determined)
from those challenges together with the chal-
lenge from the verifier.

Signature versions of both of these proto-
cols can be derived by using the Fiat-Shamir
heuristic as before. More details of the crypto-
graphic schemes described in this section can
be found in the Appendix.

The signature version of the l-out-of-n
proof of knowledge is useful for distributing
community-wide conference keys as discussed
in Section 3. Say that I have created a con-
ference key for everyone who answered yes to
question Q. I randomly choose an additional
n — 1 parties who answered question Q, with-
out knowing how they answered. Then I can
prove knowledge of one of the private keys cor-
responding to the set of n “yes” public keys.
By choosing a suitably large n, my identity is
hidden well. By signing the encrypted confer-
ence keys in this way, anyone who successfully
decrypts the conference key will have the added
assurance that it was created by a fellow mem-
ber of the community.

There are variations on these ideas in the
cryptographic literature that allow for “iden-
tity escrow”. This means that the true iden-
tity of the prover or signer might be recoverable
under exceptional circumstances (e.g., with a
search warrant). Relatively efficient implemen-
tations can be found in [8, 16]. These schemes
also scale well as the size of the group increases,
which is not the case for the simpler schemes
described in this section.

6 Discussion

In this paper we introduced a number of new
techniques for finding members of groups shar-
ing similar preferences and obtaining their rec-
ommendations in ways that protect privacy
while also allowing reputations to be built
and updated. Moreover, these mechanisms do
not require the creation of trusted third par-
ties and their attendant problems. Reputa-
tions are extremely valuable in the context of
electronic commerce, for when authenticated
they provide a mechanism for trust to estab-
lished, thus circumventing a number of costly
transactions[19]. Trust is an important compo-
nent of an efficient market, since fake postings
of particular messages can lead to inefficient al-
location of resources. Witness the recent post-
ing of a bogus Bloomberg financial news story,
which sent shares of a small technology com-
pany soaring 31 percent in one day, only to
fall to previous values when the story proved
false[20].

Another application we designed consists in
the removal of the disincentive associated with
the liability implied in issuing recommenda-
tions, thus making recommender systems more
effective. Finally, we showed how individuals
can prove membership in groups without re-



vealing their identity, thus paving the way for
negotiations between groups that seek to re-
main anonymous and firms that could profit
from dealing with them.

These mechanisms involve trade-offs among
computational efficiency, the leaking of infor-
mation and ease of use. These trade-offs can
be resolved differently depending on the spe-
cific application. For example, one may want
to make it easier for new people to join a com-
munity by lowering the number of passwords
and preferences that need to be listed, at the
expense of reduced privacy. Another instance
would be one in which everybody in a group
shares the same key, which is a simple and se-
cure procedure as long as no one leaves the
group.

Additional trade-offs appear when on con-
siders spoofing, whereby people can present
false preferences in order to gain access to priv-
ileged information or to deter others from gain-
ing an advantage from a weak adversary. One
response might be anonymity, but at the cost
of loosing the benefit of reputation building.
Another one could be analogous to biologi-
cal situations, where false signalling is used
by many organisms to deter attack or to gain
access to valuable resources. A strategy that
has evolved to address the problem of spoof-
ing in that context is for signals themselves to
be costly to produce, and thus to imitate[21].
Similar strategies could be applied to elec-
tronic communities by increasing the number
of challenges needed to access a given group,
or by imposing a waiting period. On the other
hand, this could deter legitimate new people
from joining the group. Moreover, even if
the trade-offs could be negotiated successfully,
there remains the problem of misusing these
techniques, as in the case of fraudulent finan-
cial transactions, insider trading or the unau-
thorized collection of personal data.

In spite of the great potential for electronic
commerce that the Web is enabling through its
global reach, there are vast areas of knowledge
and expertise that remain untapped for lack
of mechanisms that ensure privacy and trust.
The techniques that we proposed make it easier
to access vast repositories of information that
are not readily known to producers and con-
sumers, thus leading to improvements in eco-
nomic efficiency through the more focused use
of resources.
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A Cryptographic Details

Discrete Log Problem: Let p be a large
prime, and let ¢ be a large prime factor of
p—1. Let g be an element of order ¢ modulo p.
That is, g,9°,...,¢? are all distinct elements
modulo p, and g? = 1 mod p. It is widely be-
lieved that the “discrete log” problem is hard
in this setting: Given g,p,y, find x such that
g®° =y mod p.

Discrete Log Based Community Discov-
ery: The values p and g are system-wide pa-
rameters. The challenge associated with ques-
tion Q is the cryptographic hash of Q, p, and
g. To answer the question Q with b = 0 or
b = 1, choose a random = between 1 and g,
and compute y, = ¢g° mod p. Then compute
y1—» = ¢/yp mod p. Then post on the bulletin
board your “answer” (yo,y1). If yoy1 mod p is
not equal to ¢, then your answer is considered
to be invalid, and it is ignored. Otherwise,
your answer is accepted. If your answer is ac-
cepted, then it is extremely unlikely that you
could know the discrete log of both yo and y:.
If someone encrypts a message using one of yo
or y1 as the public key, you will be able to
decrypt it only if you know the corresponding
private key.

One example of a discrete log based pub-
lic key encryption scheme that can be used
is due to Elgamal [12]. In the ElGamal pub-
lic key encryption scheme, the public key for
a user is some g,p,y, and the corresponding
private key is the discrete log z such that
g® = y mod p. The encryption of message m is
(¢" mod p, my” mod p), where r is chosen ran-
domly by the encryptor. Given a ciphertext
(u,v), the decryptor computes v/u” mod p =

m. Without knowing z, it is believed to be
hard to decrypt ciphertexts (by an assumption
related to the hardness of the discrete log prob-
lem)).

Private Preference Matching: Here is a
protocol for Alice and Bob to evaluate the ba-
sic preference-matching function. It is related
to the classic key exchange protocol of Diffie
and Hellman [10], and to the encrypted key
exchange protocol of Bellovin and Merritt [7].
Alice has the list z1,...,z, and Bob has the
list y1,... ,Ym.

1. A - B : H(z1)%,...,H(z,)* modp,
where a is randomly chosen, and where
the list is randomly permuted.

2. B — A H®y)’,...,H(ym)" modp,
where b is randomly chosen, and where
the list is randomly permuted.

3. A = B: H(yi)™,...,H(ym)* mod p,
where the list is randomly permuted.

4. B = A H(x1),...,H(x,)* mod p,
where the list is randomly permuted.

5. Each party can now count the matches.

There are some interesting variations to
consider. Suppose Alice and Bob don’t ran-
domly permute their lists in steps 3 and 4.
Then they get to learn exactly which elements
they have in common, and not just how many.
Suppose Alice and Bob don’t randomly per-
mute their lists in steps 1 and 2, but do ran-
domly permute in steps 3 and 4. Then they
don’t know exactly which elements they have
in common, but they do learn the exact posi-
tions of those matches in the other party’s orig-
inal list. If those lists are originally sorted by
preference, then this might be useful. Suppose
Alice and Bob use a different random exponent
for each element in each list. Further suppose
that they don’t randomly permute in steps 1
and 2. Now they learn only about those com-
mon elements that are in the same position in
both original lists. Lastly, it is possible to in-
corporate a relatively efficient zero-knowledge
proof that each party is following the proto-
col honestly, so that active cheating by either
party (other than strategic choice of inputs)
will be detected.

Schnorr Public Key Signature Scheme:
In the Schnorr public key signature scheme,
the public key for a user is some g,p,y, and
the corresponding private key is the discrete
log « such that ¢°* = y mod p. The signature
of message m is (¢" mod p,c,r + cx mod q),
where r is chosen randomly by the signer,
and where ¢ is random but not chosen by
the signer. Omne way to get c is to compute
¢ = H(g,p,y,m,g" modp) for some crypto-
graphically strong hash function. To verify



that (z,c,u) is a signature of m with respect
to public key g,p,y, the verifier confirms that
zy® = g* mod p and that ¢ = H(g,p,y,m, z).

Deniable Schnorr Signature: Suppose that
party ¢ wants to deniably sign a message m
to party j. The deniable signature will be
Ziy Ciy Ui, Zj, Cj, U, where [z;,¢;,u;] is a valid
Schnorr identification transcript for prover i,
and where [zj,¢j,u;] is a valid Schnorr iden-
tification transcript for prover j, and where
cit+c = H(m7 RiyZj,Yi, Yjs Py g) Party ¢ pro-
ceeds as follows:

1. Forge a transcript [z, ¢j,u;] of a Schnorr
identification protocol for prover j, by
choosing random wuj,c; € [l...q] and
computing z; = g% /y;% mod p.

2. Choose a random r; € [1...¢] and com-
putes z; = ¢"* mod p. (to “begin” the id
protocol for prover i.)

3' ComPUte c= H(m7ziazj7yi7yjap7 g)a a‘nd
let ¢; = ¢ —c; mod g.

4. Compute u; = r; +c¢;z; mod q. (To “com-
plete” the id protocol for prover i.)

A deniable signature is valid if the two identi-
fication transcripts are valid, and if the chal-
lenges add up to the hash output as indicated.
This signature could only be efficiently com-
puted by someone who knows the private key
of party i or party 7. That is why it is convinc-
ing to party j when he receives it, and why it
is deniable by party i afterwards.

Anonymous Group Membership For nota-
tional convenience, assume the group is parties
1 through n, and the prover is party 1. The
prover begins by forging Schnorr transcripts
[22,C2,u2],. .. ,[2n, Cn, un] for the private keys
he does not know. The protocol proceeds as
follows:

1. Prover (party 1) — Verifier: zi,...2zn,
where z1 = ¢"! mod p for a random r; €

1...q]

2. Verifier — Prover: ¢ random in [1...¢q]

3. Prover — Verifier: (ci,u1),...,(Cn,uUn)
such that ¢ = ¢1 +...¢, mod ¢ and such
that w1 = r1 4+ c121 mod q.

Ujg

4. Verifier accepts if z;y;’ = ¢g"* modp for
all 4, and c=c¢1 + ...+ ¢, mod gq.

For the signature version, the signer
computes his own challenge ¢ =
H(m,z1,...,2n,Y1,-- ,Yn,P,g) where m
is the message to be signed.

Anonymous Group Power For nota-
tional convenience, assume the group is par-
ties 1 through n, and the prover knows

the private keys of parties 1,...,t. The
prover begins by forging Schnorr transcripts
[2¢41, Ct+1, Utt1]y - - - [2n, Cn, un] for the private
keys he does not know. The protocol proceeds
as follows:

1. Prover — Verifier: zi,...z,, where z; =
g"* mod p for a random r; € [1...¢] for
every ¢, 1 <1< ¢,

2. Verifier — Prover: c € [1...q]

3. Prover — Verifier: (ci,u1),...,(cn,un)
such that u; = r; + ¢;z; mod q for every 1,
1 < i < ¢, and such that ¢; = f(¢) mod ¢
for the unique polynomial f of degree at
most n — ¢ satisfying f(0) = ¢ mod ¢ and
f(j)=cjmodgforall j,t+1<j<n.

Ui

4. Verifier accepts if z;y;' = ¢g"* mod p for
all i, 1 < i < n, and if there is a polyno-
mial f of degree at most n — ¢t such that
f(0) = cmod g and f(i) = ¢; mod g for
all4, 1 <i<n.

For the signature version of anonymous group
power, the signer computes his own challenge
c=H(m,zi,... ,2n,Y1,--- ,Yn,P,g), where m
is the message to be signed.



