
Better Than The Best: The Power of Cooperation

Tad Hogg Bernardo A. Huberman

1992 Lectures in Complex Systems, pp. 165–184, Addison-Wesley 1993

Abstract

We show that when agents cooperate in a distributed search problem, they can solve it faster than any
agent working in isolation. This is accomplished by having agents exchange hints within a computational
ecosystem. We present a quantitative assessment of the value of cooperation for solving constraint
satisfaction problems through a series of experiments. Our results suggest an alternative methodology
to existing techniques for solving constraint satisfaction problems in computer science and distributed
artificial intelligence.

1 Introduction

The development of parallelism in computation allows a number of agents to share the work required to
solve computational problems. The potential speedup offered by this approach has led to a large effort
devoted to the design of parallel algorithms and architectures. In spite of its obvious advantages however,
the effective use of concurrency is fraught with difficulties. Most of them stem from the fact that the
experience gained from programming single processor machines cannot be simply extrapolated to large
number of computational agents. This is because parallel computing involves a number of new issues: how
tasks can be usefully divided among many agents, how one program can exploit the knowledge generated
by another, and how the agents can communicate efficiently with each other. These issues are particularly
important for large scale distributed processing in which individual agents operate largely without central
controls. If the task to be performed is easily decomposed into fairly independent subtasks, requiring little
communication, a parallel implementation is relatively easy. However, this is not always possible, and also
misses the potential of using communication to significantly help with individual subtasks.
Some insights into how these issues can be effectively addressed for more complex cases can be gained from

studying the way human societies go about solving problems of collective interest. Although the individuals
differ from these computational agents in many important aspects, they nevertheless face the same general
problems of coordination and communication described above. In human societies, the benefit of cooperation
underlies the existence of firms, scientific and professional communities, and the use of committees charged
with solving particular problems. It is often observed that groups of people can solve a problem more
effectively than any single individual acting alone. This suggests implementing those mechanisms that seem
to work among humans in a computational context.
The existence of computational ecologies [10] provides a natural framework for using these methods be-

cause they share a number of key features in common with human societies. These include asynchronous
independent agents that solve problems from their local perspective involving uncertain and delayed infor-
mation that they can retrieve from the system. A number of attempts at collective problem solving from
this perspective have been made. These include work by several authors who have pointed out the beneficial
effects of cooperation on hard problems by constructing models in which agents cooperate to accomplish a
task [2, 5, 8, 14, 19].
It is important to understand what is meant by cooperation in a computational context. Cooperation

involves a collection of agents that interact by communicating information, or hints, to each other while
solving a problem. The most natural way to think of cooperation is as a collection of independent processes,
possibly running on separate processors. However, it is always possible to have a single computational
process that, in effect, multiplexes among the procedures followed by this diverse set of agents. In this way,
a single agent could also obtain the benefit of cooperation discussed here. This ability of one computational

1



process to emulate a collection of other processes is quite distinct from other cases of cooperation, e.g.,
human societies, where individuals have differing skills that are not easily transferred to others. What is
most important to the increase in performance is the diversity of approaches available by having many agent
processes.
The information exchanged between the agents may be incorrect at times, and should alter the behavior

of the agents receiving it. An example of cooperative problem solving is the use of a genetic algorithm [6]
to find states of high value in some space of possibilities. In a genetic algorithm members of a population of
states exchange pieces of themselves or mutate to create a new population, often containing states of high
value. Another example is a neural network, where the output of one neuron affects the behavior of the
neuron receiving it.
In what follows we will concentrate on a particular type of computational task, that of search. This is

an important general task which arises for problems in which no algorithmic method is known for directly
constructing a solution. Instead one must examine a large number of alternative candidate states in order
to identify a satisfactory solution. Typically, the number of states to consider grows exponentially as larger
problems are considered, making these problems considerably more difficult than, say, many numerical
operations such as linear algebra or solution of differential equations whose computational cost generally
grows as a fairly low-degree polynomial as problems scale up. Because of the huge number of states to
consider in a search, many heuristic methods have been developed to guide the selection of states to consider.
While not always correct, by guiding the search toward states that are more likely to lead to solutions, they
can considerably reduce the time required to find a solution. Most heuristics are meant to improve individual
searches. By contrast, the cases that we will discuss highlight the potential of cooperative methods which
can be thought of as heuristics in which information obtained by one agent is used to guide the search of
another. We also present a number of more practical issues that arise in applying cooperation to problems
in computer science and distributed artificial intelligence [5].
As a concrete illustration of the value of cooperation for search, we solve discrete constraint satisfaction

problems. These are problems in which values from a finite set must be assigned to a finite set of variables
such that a number of conditions (the constraints) are satisfied. Constraint satisfaction problems lie at the
heart of human and computer problem solving [13, 16, 18]. Examples are scheduling, navigating through a
maze, and crossword puzzles, to name a few. A complete state in the search is a set of assignments for all
the variables and a partial state has only some of variables assigned.
To evaluate the usefulness of cooperation in computational problems, we examine its behavior for two

specific problems. At one extreme, cryptarithmetic with a simple individual search method, shows how even
very simple methods can benefit from an exchange of information. By contrast, our second example, graph
coloring, a computationally hard problem, illustrates how simple hints can be used in conjunction with an
effective heuristic search method.

2 Cooperative Searches

A simple explanation of the success of cooperation is given by observing that hints change the way different
agents find the solution by combining them with their own current state. Although not always successful,
those cases in which hints do combine well allow the agent to proceed to a solution by searching in a reduced
space of possibilities. Even if many of the hints are not successful, this results in a larger variation of
performance and hence can still improve the performance of the group when measured by the time for the
first agent to finish.
The speed at which an agent can solve the problem depends on the initial conditions and the particular

sequence of actions it chooses as it moves through a search space. This sequence relies on the knowledge, or
heuristics, that an agent has about which state should be examined next. The better the agent is able to
utilize the heuristics, the quicker it will be able to solve the problem. When many agents work on the same
problem, this knowledge can include hints from other agents suggesting where solutions are likely to be.
Cooperative search methods are based on modifying individual search methods. A useful distinction

is whether a method is complete or incomplete. Complete methods systematically examine states and are
guaranteed to either eventually find a solution or terminate when no solution exists. By contrast, incomplete
methods explore more opportunistically and may miss some states in the search space; hence they can never

2



guarantee a solution does not exist. For parallel searches, a further issue is whether to split the search space
among the agents. In the simplest case, each agent examines the entire search space. However, this can mean
a single state is examined by more than one agent during the search. This can be avoided by partitioning
the search space into disjoint parts and assigning one to each agent. In this partitioned search, agents only
examine states in their assigned part of the space thus avoiding unnecessary duplicate examination of the
states. Restricting each agent to examine a state at most once, as well as partitioning the search space so
that a state is not examined by more than one agent, improve performance somewhat, but far less than the
enhancement due to cooperation [3].

2.1 The use of hints

There are a number of search methods an individual agent can use to solve a problem, as well as a variety of
methods for combining the partial information obtained from other agents. These choices determine if hints
build on each other and if so, how does the search improves.

2.1.1 searching with complete states

The most straightforward search method is generate and test. In this case, at each step an agent generates
a complete state and tests whether it is a solution. This generation can be done in a simple pre-specified
order or new states can be generated randomly. In random generation, states can be selected completely at
random (which we refer to as random selection with replacement) or the selection can be made only from
states that have not yet been examined. The latter case avoids some unnecessary search and guarantees the
search will terminate after all search states are examined, but does introduce an additional requirement of
storing previously examined states and the cost of checking that they are not subsequently generated.
Other restrictions on the generation of new states are possible as well. For instance, the assignments to

all the variables can be replaced in one step (which we refer to as “jumping” around the search space) or
some assignments can remain unchanged, with the extreme case being a change to only a single assignment
(“walking”). Walking rather than jumping through the space preserves the property that an agent near or
far from a solution is still fairly near or far after one step.
There are more sophisticated methods that share the same basic strategy, i.e., start from some randomly

selected initial state make a series of small adjustments to the state attempting to satisfy all the constraints.
If these adjustments do not produce a solution, a new initial state is selected. Examples of this strategy
include simulated annealing [12], heuristic repair [17], as well as simple hill climbing. By contrast, generate
and test makes no adjustments, and simply tests the initial state itself.
With this search strategy, if hints are only used to guide the selection of the initial state and each new

hint completely overwrites the old state, there will be no build up of progress from one hint to another.
Alternatively, if the new hint modifies just part of the state, then successive hints could correspond to a kind
of random walk in the state space in which there is (at least for the lucky agents) an overall bias to move
successive initial states closer to a solution which is eventually found by the local adjustments.

2.1.2 constructing solutions from partial states

Other search methods rely on a more systematic exploration of the space, attempting to construct a complete
solution by incrementally extending partial solutions. Such a hierarchical construction of a solution, combined
with some backtrack scheme when further progress is impossible, allows for pruning regions of the search
space that would be unproductive. With this depth-first search method, some ordering of the variables
is selected (e.g., either fixed in advance or chosen randomly) and partial states are constructed using this
ordering until a full solution is found or enough assignments are made to violate one of the constraints,
indicating that there is no solution corresponding to this partial state. Where these constraint violations
occur well before all assignments have been made, backtracking avoids a considerable amount of unnecessary
search.
A simple illustration of the resulting tree structured search is shown in Fig. 1a. Specifically this is for

a constraint problem with three variables, v1, v2, and v3, each of which can take on the values 1 or 2.
The nodes in the tree represent the variables, and the links from a node represent the two choices for the
values to assign to that node’s variable (corresponding to the value 1 for the left branch and 2 for the right

3



2 2

3 3 3 3

1

2 2

3 3 3 3

1(a) (b)

Figure 1: a) Illustration of the tree structured search space resulting from three variables, v1, v2, and v3, (corre-
sponding to the nodes in the tree) each with two possible values (corresponding to the branches). Searches generally
start at the top of the tree and examine successive branches until a complete state (corresponding to a leaf, at the
bottom of the tree) that satisfies the constraints is found. b) The pruning of the search tree for the constraint problem
{v1 6= v2, v2 6= v3}. The crosses indicate those states that violate one or more of the constraints. The arrows point
to the leaves corresponding to solutions, i.e., {v1 = 1, v2 = 2, v3 = 1} and {v1 = 2, v2 = 1, v3 = 2}.

branch). The leaves of the tree correspond to complete search states in which each variable has a value. For
example, the leftmost leaf corresponds to the assignments {v1 = 1, v2 = 1, v3 = 1}. Partial states, in which
some variables are not assigned, are found higher in the tree (in the ordering illustrated here, variable v1

is assigned first, v2 next and v3 last). Adding consideration of these partial states means that these search
methods could potentially examine more states than the those that use only complete states. However, this
increase in total states is usually more than offset by the ability to prune many states at one time high in
the tree. This pruning is illustrated in Fig. 1b for the constraints {v1 6= v2, v2 6= v3}, i.e., the values for the
first two variables, and the last two, are required to be different. For example, the leftmost pruned node is
due to the partial state {v1 = 1, v2 = 1} which already violates the first constraint so there is no need to
consider possible values for the third variable.
These basic methods can be improved with the use of heuristics to guide the selection of states. An

important class of heuristics uses information obtained in prior steps of the search. Such heuristics are fairly
readily modified for cooperative search allow us to directly evaluate the effect of cooperation. Specifically,
in a noncooperative search, an agent using such a method could only use information that it had previously
found itself, while cooperative search allows the agent to use information found by others as well.
Hints can naturally be used to guide the ordering of backtrack choices, which can be viewed as moving

in a tree structure. When a hint gives the correct choice for an agent, the remaining choices are, in effect,
pruned. More generally, these hints can give large partial solutions from other regions of the search space.
This is the case, for example, when putting together a puzzle by working on different regions and then
combining them. Genetic algorithms are another instance of this general strategy.

2.1.3 diversity

A more interesting possibility is to have a group of agents use different search methods. Such diverse
communities are particularly well-suited for the use of cooperation since a particular agent may not be able
to utilize all the information it generates, whereas another agent, using a different strategy, can. For example,
a systematic backtrack search method may rapidly find promising regions of the search space but take a long
time to finally reach a solution when this requires some changes to choices made early in the backtracking.
This could be quickly fixed by other methods that make adjustments opportunistically with no prespecified
ordering. Thus the exchange of information among methods can improve performance beyond that possible
without cooperation.
The effectiveness of these hints will depend on the search choices made by the agents. For example,

as the search progresses, agents may find better partial solutions so that hint quality increases over time.

4



Conversely, as agents get near the solution, hints become less important since they will tend to duplicate
partial solutions already found, or in fact incorrect hints may even become more detrimental.

2.2 Implementation issues

From this general discussion of using hints with various search methods, we now turn to a number of imple-
mentation issues and how they were resolved in our experiments. While there are many ways to address these
issues, we made fairly simple choices. We can expect further improvements from more sophisticated use of
hints, but the choices made here illustrate the potential of this method and have many direct correspondences
with a wide range of constraint satisfaction problems. As a note of caution in developing more sophisticated
strategies, the choices made should tend to promote high diversity among the agents [7, 9] so there will be
many opportunities to try hints in different promising contexts. This means that some choices that appear
reasonable when viewed from the perspective of a single agent, could result in lowered performance for the
group as a whole.

2.2.1 cooperative search

There are two basic steps in implementing a cooperative search based on individual algorithms. First, the
algorithms themselves must be modified to enable them to produce and incorporate information from other
agents, i.e., read and write hints. We should note that the first step may, in itself, change the performance
of the initial algorithm or its characteristics (e.g., changing a complete search method into an incomplete
one). Since this may change the absolute performance of the individual algorithm, a proper evaluation of
the benefit of cooperation should compare the behavior of multiple agents, exchanging hints, to that of a
single one running the same, modified, algorithm, but unable to communicate with other agents. In that
way, the effect of cooperation, due to obtaining hints from other agents, will be highlighted.
The second step concerns decisions as to exactly what information to use as hints, when to read them, etc.

must be made. The hints consist of any useful information concerning regions of the search space to avoid
or likely to contain solutions. A simple choice for constraint satisfaction problems is to use partial solutions,
i.e., partial states whose assignments do not violate any constraint. We must also specify the organizational
structure, i.e., which agents communicate with each other. In our experiments, all hints were written to
a central blackboard, so each agent could access the results of any other agent. Hierarchical organizations
more suitable to larger populations have also been studied [3].
The next major question is when during its search should an agent produce a hint. Generally, agents

should tend to write hints that are likely to be useful in other parts of the search space. Possible methods to
use include only writing the largest partial solutions an agent finds (i.e., at the point it is forced to backtrack)
or only if the hint is comparable in size to those already on the blackboard.
Another set of complementary questions has to do with the time at which an agent decides to read a

hint from the blackboard, which one should it choose and how should it make use of the information for
its subsequent search. Once again, there are a number of reasonable choices which have different benefits
in avoiding search and costs in their evaluation, as well as more global consequences for the diversity of the
agent population. For instance agents could select hints whenever a sufficiently good hint is available, or
whenever the agent is about to make a random choice in its search method (i.e., use the hint to break ties),
or whenever the agent is in some sense stuck, e.g., needing to backtrack, or at a local optimum of a hill
climbing search method. For deciding which available hint to use, methods range from random selection [2]
to picking one that is a good match, in some sense, to the agent’s current state.
A final issue concerns the memory requirements for the hints. To avoid the potential of an unbounded

growth in the size of the blackboard, one can limit the number of hints it could store. Once this limit is
reached, some hints have to be discarded. For our experiments, the oldest (i.e., added to the blackboard
before any others) of the smallest (i.e., involving the fewest assignments) hints were overwritten with new
hints. We found that relatively small blackboards were sufficient to obtain significantly better performance
than the independent searches.

5



2.2.2 performance measures

Before turning to our experimental comparison of cooperating and non-cooperating agents, we must specify
how the performance of a group of agents is to be measured. The appropriate performance measure depends
on the nature of the problem [3]. In many cases, one is interested in finding a single solution to the problem
and each agent is individually capable of finding a complete solution. This means that the search is completed
as soon as one agent finds a solution. The appropriate overall performance measure is then just the time
required until some agent in the group finds a solution.
As a simple performance criterion we use the number of search steps required for the first agent to

find a solution. However, we should note that this ignores the additional overhead involved in selecting
and incorporating hints. Including such costs doesn’t change the qualitative observation of cooperative
improvement in simple cases [3]. Whether this remains true for the more sophisticated search methods
remains open and is ultimately best addressed by comparing execution times of careful implementations
of the algorithms. Moreover, an actual parallel implementation would also face possible communication
bottlenecks at the central blackboard though this is unlikely to be a major problem with the small blackboards
considered here due to the relatively low reading rate and the possibility of caching multiple copies of the
blackboard which are only slowly updated with new hints. Nevertheless, the improvement in the number of
search steps reported below, as well as comparisons of the execution time of our unoptimized code, suggest
the cooperative methods are likely to be beneficial for large, hard problems.

3 Cryptarithmetic

For our first example, we consider a very simple search method, used in the familiar problem of solving
cryptarithmetic codes. These problems require finding a unique digit assignment to each of the letters of
a word addition so that the numbers represented by the words add up correctly. An example is the sum:
DONALD + GERALD = ROBERT, which has one solution, given by A = 4, B = 3, D = 5, E = 9,
G = 1, L = 8, N = 6, O = 2, R = 7, T = 0. In general, if there are n letters then there are 10n possible
states. However, the requirement of a unique digit for each letter means that there are

(

10

n

)

ways to choose
the values and n! ways to assign them to the letters, which reduces the total number of search states to
n!
(

10

n

)

= 10!/(10− n)!. Thus the above example, which has 10 letters has 10! states in its search space.
Solving a cryptarithmetic problem involves performing a search. Although clever heuristics can be used

to rapidly solve the particular case of cryptarithmetic [15], our purpose is to address the general issue of
cooperation in parallel search using cryptarithmetic as a simple example. Thus we focus on simple search
methods, without clever heuristics that can lead to quick solutions by a single agent. This is precisely
the situation faced with more complex constraint problems where searches remain long even with the best
available heuristics.
The basic search paradigm we have used in the cryptarithmetic problem is random generate and test with

replacement. We used hints consisting of letter-digit assignments in columns that add correctly. These hints
were posted to a blackboard. Agents used the available hints to select their next state. In a noncooperative
search, an agent using this method could only use hints that it had previously found so that each agent had
a separate blackboard. Cooperative search allowed the agent to use hints found by others as well, using a
single blackboard.
For each search step, an agent chooses a hint randomly from the blackboard and replaces assignments

in its current state with those specified by the hint. If there are no hints, it chooses a random letter-
digit assignment using random generate and test. Once the agent obtains the new state it generates and
posts all possible hints from its state, if any. Thus, assignments that work for more than one column are
posted as several different hints. When random states are generated by jumping, rather than single letter
replacements, there is a greater possibility of generating more hints faster but at the expense of frequently
overwriting partially correct states.
As an example of this search method consider an agent solving the problem AB + AC = DE. This

problem has 10!/5! = 30240 possible states and 144 solutions (determined by exhaustive search). In the
first step, each agent selects a random set of letter-digit assignments such that no digit is assigned to more
than one letter. Suppose the letter-digit assignments, or state, of the first agent are: A = 4, B = 2, C = 7,
D = 3, E = 9. In this case the assignments do not correspond to a solution since 42 + 47 does not equal

6



39. However, the rightmost column, B +C = E (2 + 7 = 9), does add up correctly so that the agent’s state
is partially (or locally) correct. Partial correctness includes cases where a carry has been brought over from
the previous column or may be sent to the next column. Note that although a particular column may be
locally correct, it may not lead to a solution. In this example, the agent has one column correct (3 letters:
B, C and E). If these letter assignments do lead to a solution then there are only two letters that need to be
assigned from 7 possible choices. Thus the agent went from a search space of size 30240 to one of 7!/5! = 42
states, a reduction by a factor of nearly 1000. In a cooperative search, this reduction could also be used by
other agents, perhaps in other regions of the search space where this hint is more successfully used.

3.1 Results

As a specific case, we examine the effect of cooperation for groups of 100 agents solving the problem WOW+
HOT = TEA. This problem, with 6 distinct letters, has 151200 search states and 82 different solutions. The
comparative performance of cooperation is illustrated in Table 1.

search method relative time relative
deviation

cooperative 1 .87
independent, with memory 7.5 .49
independent, no memory 23.9 1

Table 1: Average performance of 10 trials of 100 agents solving WOW + HOT = TEA for different search
methods. The relative time is the average time required for the first agent of the group to find a solution,
divided by the average time required for the cooperative case. The relative deviation is the standard deviation
in the time to first solution divided by the average time for each method. The benefit of cooperation, i.e.,
sharing hints among the agents, is shown by the comparison between the cooperative case and that where the
agents used the same method, i.e., had memory, but did not share it. The last row shows, for comparison,
the theoretical performance of the unmodified random generate-and-test method.

It also worthwhile to note the effect of cooperation as the problems become more difficult. One way of
measuring the difficulty of problems is by the ratio of the number of states in the search space, T , to the
number of solutions, S. Table 2 below shows the relative speed for the first finisher of 100 agents for four
problems of vastly different complexities. The data for the cooperative case came from experiments while
the behavior of the noncooperative case was obtained theoretically [3] by noting that each random generate
and test step has probability S/T to find a solution. Note that as the problem becomes more difficult the
importance of cooperation and use of memory in speedup is increased. The relative increase becomes even
more startling when one considers that the fraction of hints posted on the blackboard that are subsets of
any of the solutions (not necessarily the one found first) decreases as the problems become more complex.
Thus the high performance is due to some agents finding combinations of hints that lead to solutions even
though the full hints are rarely part of a solution.
Another way of studying the effect of cooperation vs. problem complexity is to vary the effectiveness of

the search performed by the agent itself, i.e., the self-work, without utilizing the hints from the other agents.
For example, suppose that when the agents are not using hints they perform a depth-first backtrack search,
each using a randomly selected ordering of the variables. During the depth-first search the agents have the
opportunity to prune partial states which do not lead to any solution. For example, if some columns do
not add up correctly there is no point in considering assignments to uninstantiated letters for this state.
Whenever a hint is used it overwrites the current partial state, in the same manner as for the agents
using simple generate and test, so that there may be very large jumps through the search space and the
resulting search is no longer complete. We can simulate the effect of this pruning by probabilistically pruning
partially assigned states that are known not to lead to a solution. (We can do this with cryptarithmetic
by generating all the solutions ahead of time.) When the probability of pruning is small this corresponds
to difficult problems because the agents must instantiate nearly all the letters of an incorrect assignment
before pruning. The results of this study, which are shown in Fig. 2, show the greater relative importance
of cooperation for harder problems.

7



problem ratio of T/S fraction of hints that
speeds are subsets of solutions

AB + AC = DE 7 210 0.9–1.0
WOW+HOT = TEA 45 1844 0.5–0.6

CLEAR+WATER = SCOTT 145 181440 0.1–0.2
DONALD+GERALD = ROBERT 315 3628880 0.004

Table 2: Scaling of cooperative performance for cryptarithmetic problems of increasing difficulty for 100
agents. The second column is the ratio of speeds between the cooperative search and that of independent
agents with no memory, and represents an average over about 100 trials for the first three cases, and a few
trials for the last case. (Note that the entry for the second problem is 45, compared to 23.9 of Table 1,
since this was from a separate run of the experiment and indicates the degree of statistical fluctuation in
the cooperative search.) The fourth column shows the range in the fraction of hints on the final blackboard
that were subsets of some solution for some of these cooperative searches. Typically these were added just
before the end of the search by the agent that found the first solution.

����� ����� ����� ����	 
 ���������
�����
�

� ���

 �


 �����

 �


 � ���
���
����� �

Figure 2: Cooperation works best for harder problems. Time to first solution as a function of decreasing problem
hardness. Specifically, the plot shows the average time to first solution for 100 agents solving AB + AC = DE as
a function of the probability of pruning, P (bt), a state that is known not to lead to a solution. The left side of
the plot corresponds to “hard” problems where pruning of the search space is very poor, and the right side of the
plot corresponds to “easy” problems where pruning is very effective. The light line is for the case of noncooperating
agents, in this case a depth-first search. The dark line is for the case where the agents spend 80% of their time doing
depth-first self-work and 20% cooperating, i.e., using hints from the blackboard. The lines show the best linear fits
to the data. The data points correspond to the average solution time from 50–100 runs. The error bars are the error
of the mean.

In summary, these results show the value of cooperation in solving a relatively easy constraint satisfaction
problem using very simple search methods. There remains the question of how this methodology can be
used in solving harder problems.

4 Graph Coloring

The distinction between easy and hard problems is important in determining the feasibility of computations,
and a great deal of research has been devoted to it [4]. An important distinction among problems is based on
how rapidly the number of elementary operations required to solve them grows as the problems are scaled up
to larger instances. Particularly whether the scaling is dominated by polynomial or exponential growth. An
elementary operation could typically be an arithmetic operation for a numerical problem or the examination
of a single state in a search problem.
A surprising result is that sometimes the difference between these classes of problems is extremely subtle.

8



For instance, consider two given nodes of a graph, which consists of a number of nodes and links between
them. The problem of deciding whether there is a path between them, i.e., a series of distinct linked nodes
that connect the two given nodes, whose total length is less than a given boundM can be solved in polynomial
time with respect to the number of nodes in the graph. On the other hand, the similar problem of whether
there is a path with length greater than M has no known solution in polynomial time. However, if one is
given a path whose length is claimed to be larger than M so that such a path exists, there is an algorithm
that will quickly verify that the answer is correct, namely to count the links in the path and check that the
length is indeed larger than M . This procedure operates in time which is linear in the length of the path
which in turn is no more than the total number of nodes in the graph. This is an example of a simple yes
or no problem in which an affirmative answer can be verified in polynomial time, even though there may be
no way to actually construct the answer readily.
Such problems are said to belong to the class NP (for nondeterministic polynomial). Conceptually, these

problems can be rapidly solved by a nondeterministic algorithm, i.e., one which can somehow guess the
correct answer, and then rapidly verify it. Actual implementations, however, are deterministic and appear
to be unable to solve the problem in polynomial time. Note that NP includes all problems in P, the class of
problems for which there is a deterministic polynomial time algorithm. Whether NP is in fact the same as
P remains an open question.
Although the class NP is based on the ability to easily verify solutions, it can also be shown to include

many optimization problems whose solutions would seem more difficult to check. For instance, corresponding
to the path problems mentioned above are the optimization problems of determining the shortest and longest
paths between the vertices, respectively. The shortest path can be found in polynomial time, but there is
no known rapid solution (i.e., short of checking all possible paths) for determining the longest one. In the
latter case, being given a path which is claimed to be the longest is difficult to directly verify since not only
must its length be determined but it must also be compared to all other possible paths. However, this latter
problem does in fact belong to NP because it can be transformed into a series of verifiable problems involving
specified bounds on the lengths such that the total time to verify all the subproblems is still polynomial.
Another example of such a problem is the travelling salesman problem, in which a collection of cities and
distances between them is given, and the task is to find the shortest path which visits each city. Among
the problems in the class NP, some are known to be at least as hard, up to a polynomial factor, as any
other problem in the class. In this sense, these so-called NP-complete problems constitute the most difficult
problems in NP. As far as currently known, the solution cost grows exponentially in the worst case as the
size of the problem increases.
As our second example of cooperative search, we consider such an NP-complete problem, that of graph

coloring. The problem consists of coloring the nodes in a graph, from a limited set of colors, in such a way
that no two adjacent nodes (i.e., nodes linked by an edge in the graph) have the same color. An example of
such a colored graph is shown in Fig. 3. Graph coloring has received considerable attention and a number of
search methods have been developed [11]. Paradoxically, although their are some graphs that are very hard
to color, among graphs of a given size there is considerable variation in the difficulty of finding a solution,
and most of them can be colored (or determined to have no coloring) quite rapidly with existing heuristic
methods.
For this problem, the average degree of the graph γ (i.e., the average number of edges coming from a

node in the graph) distinguishes relatively easy from harder problems, on average. For the case of 3-coloring,
(i.e., when 3 different colors are available) which we focus on in this paper, the region of hardest problems is
empirically observed to occur near [1] γ = 5. We used the Brelaz search heuristic [11] which effectively finds
colorings by assigning most constrained nodes first (i.e., those with the most distinct colored neighbors),
breaking ties by choosing nodes with the most uncolored neighbors (ties that remain after applying this
criterion are broken randomly). For the chosen node, the smallest available color is examined first, with
successive colors considered when the search is forced to backtrack. As an example, for the graph shown in
Fig. 3, this heuristic would first color the central node with four neighbors, then randomly select one of those
neighbors to color (since after the first node is colored, each of its neighbors will have the same number of
uncolored neighbors), etc; continuing until a complete coloring is found or the search is forced to backtrack
because no consistent coloring is possible for the next node selected. By focusing attention on the most
constrained nodes first, this will generally rapidly determine if a proposed partial coloring is inconsistent,
thus pruning unproductive searches high in the tree and avoiding substantial wasted effort. This heuristic

9



Figure 3: A graph with nine nodes colored with three colors (black, gray, and white) such that no two adjacent
nodes have the same color.

is considerably more efficient than simple generate-and-test or backtracking with a random ordering of the
nodes.
To generate a collection of hard problems we examined a large number of random graphs. Trivial cases

with underconstrained nodes were removed by ensuring each node had at least three edges. Notice that
nodes with fewer edges are underconstrained in that they can always be colored differently from the nodes
they are linked to when there are three available colors. The resulting graphs were searched repeatedly
with the Brelaz heuristic, and only those with high search cost were retained. Moreover, to correspond with
the cooperative methods used for the cryptarithmetic example and simplify the use of hints, we considered
only graphs that did in fact have solutions. In addition to high average cost for solution with the Brelaz
heuristic, these graphs also had a large variance in the cost of repeated searches due to different choices
made at tie points. This variance gives rise to improved performance of using multiple independent searches
in parallel, stopping when the first one finishes. The experiments reported here show the additional benefit
from exchanging hints.
At any point in a backtracking search, the current partial state is a consistent coloring of some subset

of the graph’s nodes. When writing a hint to the blackboard, the Brelaz agents simply wrote their current
state. Specifically, each agent independently wrote its current state at each step with a fixed probability q.
Each time the agent was about to expand a node in its backtrack search, it would instead, with probability

p, attempt to read a compatible hint from the blackboard, i.e., a hint whose assignments were: 1) consistent
with those of the agent (up to a permutation of the colors1) and 2) specified at least one node not already
assigned in the agent’s current state. Frequently, there was no such compatible hint (especially when the
agent was deep in the tree and hence had already made assignments to many of the nodes), in which case
the agent continued with its own search.
When a compatible hint was found, its overlap with the agent’s current state was used to determine

a permutation of the hint’s colors that made it consistent with the state. This permutation was applied
to the remaining colorings of the hint and then used to extend the agent’s current state as far as possible

1We thus used the fact that, for graph coloring, any permutation of the color assignments for a consistent set of assignments

is also consistent.

10



(ordering the new nodes as determined by the Brelaz heuristic), and retaining necessary backtrack points
so that the overall search remained complete. In effect, this hint simply replaced decisions that the Brelaz
heuristic would have made regarding the initial colors to try for a number of nodes. Thus, this amounts to a
fairly conservative use of hints, compared to the backtrack search for cryptarithmetic in Fig. 2; where hints
overwrote the agent’s state without retaining backtrack points.

4.1 Results

The experimental results show the benefit of cooperation for graph coloring using a variety of search meth-
ods [8]. In Fig. 4, we compare the performance of a group of 10 independent and 10 cooperative agents,
all using the same Brelaz search algorithm described above. We generated a set of graphs whose search
cost was one to three orders of magnitude more than the minimum possible. To highlight the benefit of
cooperation, beyond that achieved with multiple runs of independent agents, we compare the cooperative
case with the same number of agents running independently. Note that in both cases, cooperation gives
better performance than simply taking the best of 10 independent agents. Moreover, cooperation appears
to be more beneficial as problem hardness (measured by the performance of a group of independent agents)
increases. We obtained a few graphs of significantly greater hardness than those shown here which confirm
this trend.

����� 
 �!��� 
 ���!� �"�!��� �!���!� #����!� #!����� �!�!�!�
$&%�'!�)("��%!'!��% �+*�,�-&�

�
�����

 �!�!�

 ���!�
�"�!���
�������
#��!���
#!�����
���!�!�

. /
01

Figure 4: Performance of groups of 10 cooperating agents using the Brelaz search method on a range of graphs
vs. the performance of a group of 10 independent agents using the same method. The performance values used for
each graph are the median, over 10 trials, of the search steps required for the first agent in the group to find a solution.
For comparison, the line shows the performance of the independent agents. In these experiments, the blackboard was
limited to hold 100 hints, and we used p = 0.5, q = 0.1 and graphs with 100 nodes.

example independent T/S avg. hint fraction of hints that
search cost size are subsets of solutions

A 3614 9× 1042 64.2 0.02
B 985 7× 1041 42.3 0.05

Table 3: Extreme cases from Fig. 4. Note that the search space for this problem has 3100 ≈ 5 · 1047 states,
giving much larger values of T/S than for the cryptarithmetic problems. The number of solutions was found
by exhaustive search. The fourth column shows the average size (i.e., number of colored nodes) of the hints
on the blackboard at the time the solution was found. The fifth shows the fraction that are subsets of a
solution.

As with cryptarithmetic, most hints on the blackboard are not subsets of solutions. As an example, for
two of the cases shown in Fig. 4, Table 3 shows the number of hints on the final blackboard (for a single

11



relative time relative deviation
search method A B A B
cooperative 1 1 0.03 0.14
independent, with memory 1.6 2.7 0.03 0.05
independent, no memory 1.8 3.1 0.06 0.11

Table 4: Performance for the examples, A and B, given in Table 3 for different search methods. The
relative time is the median time required for the first agent of the group to find a solution, divided by the
median for the cooperative case. The relative deviation is the standard deviation in the time to first solution
divided by the median time for each method. The benefit of cooperation, i.e., sharing hints among the
agents, is shown by the comparison between the cooperative case and that where the agents used the same
method, i.e., had memory, but did not share it. The last row shows, for comparison, the performance of the
unmodified backtrack using the Brelaz heuristic. Note that the deviations for this backtrack search method
are considerably smaller than for the generate and test search used for the cryptarithmetic example.

run) that are subsets of solutions. Note that unlike the cryptarithmetic case, here the blackboard is limited
to 100 hints. Finally, Table 4 shows the speedup obtained for some of the graph coloring cases. These are
considerably less than obtained starting from the simple generate and test search with cryptarithmetic, but
are comparable to the speedup obtained with a backtrack search shown in Fig. 2.
Similar cooperative improvements are obtained for other search methods [8], including heuristic re-

pair [17], in which changes are made to complete colorings that minimize the number of violated constraints,
and a mixed group of agents in which some use the Brelaz heuristic with backtracking as described above
while others use heuristic repair.

5 Discussion

We have shown how cooperating agents working towards the solution of a constraint satisfaction problem
can lead to a marked increase in the speed with which they solve it compared to their working in isolation.
A summary of the cases studied is shown in Table 5.

search problem cryptarithmetic graph coloring

individual method random generate and test backtracking using Brelaz heuristic
blackboard size unlimited 100 hints, old ones overwritten with new ones
hints digits for some letters that

added correctly
consistent colors for some nodes

when to write a hint whenever some columns added
correctly

randomly with probability q = 0.1 at each step

when to read a hint every step when hint was avail-
able

randomly with probability p = 0.5 at each step
a compatible hint was available

how to use a hint overwrite current state extend current state

Table 5: Comparison of cooperative search methods used for cryptarithmetic and graph coloring, except that
the cryptarithmetic results shown in Fig. 2 use simple backtrack and only use hints on some of the search
steps.

In our implementation we defined hints in terms of information that moved the agents toward a region
of the space that could have a solution. Another possibility is for hints to contain information that tends
to move them away from regions that can have no solutions. More generally, any search algorithm that
agents may use will have parameters that will affect the benefit of cooperation. Another consideration is
when are the hints most useful for problem solving. At the beginning of a problem the hints provide crucial
information for starting the agents off on a plausible course, but will usually be fairly nonspecific. Near the
end of the problem however, there are likely to be many detailed hints but also of less relevance to the agents
since they may have already discovered that information themselves. This suggests that typical cooperative

12



searches will both start and end with agents primarily working on their own and that the main benefit of
exchanging hints will occur in the middle of the search.
This work suggests an alternative to the current mode of constructing task-specific computer programs

that deal with constraint satisfaction problems. Rather than spending all the effort in developing a monolithic
program or perfect heuristic, it may be better to have a set of relatively simple cooperating processes work
concurrently on the problem while communicating their partial results. This would imply the use of “hint
engineers” for coupling previously disjoint programs into interacting systems that are able to make use of
each others (imperfect) knowledge.
This new methodology may be particularly useful in areas of artificial intelligence such as design, qualita-

tive reasoning, truth maintenance systems and machine learning. Researchers in these areas are just starting
to consider the benefits brought about by massive parallelism and concurrency, and our work suggest the
additional benefits that could be obtained from cooperation.
In closing, we have seen how computational ecosystems can be used to solve complex problems by

exploiting the benefit of cooperation in a distributed context. We believe this is just the beginning; one can
envision systems where the demands of a particular task will dynamically spawn new processes to work on
promising avenues while deleting those agents that are not making much progress. This will require new
programming methodologies for resource allocation in these systems. The spread of these ecosystems will
make it easier to program them in order to use cooperative methods for the solution of even harder problems.

6 Acknowledgments

We thank S. Clearwater and C. Williams for helpful discussions.

References

[1] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the really hard problems are. In
J. Mylopoulos and R. Reiter, editors, Proceedings of IJCAI91, pages 331–337, San Mateo, CA, 1991.
Morgan Kaufmann.

[2] Scott H. Clearwater, Bernardo A. Huberman, and Tad Hogg. Cooperative solution of constraint satis-
faction problems. Science, 254:1181–1183, 1991.

[3] Scott H. Clearwater, Bernardo A. Huberman, and Tad Hogg. Cooperative problem solving. In B. Huber-
man, editor, Computation: The Micro and the Macro View, pages 33–70. World Scientific, Singapore,
1992.

[4] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms. MIT
Press, Cambridge, MA, 1990.

[5] Les Gasser and Michael N. Huhns, editors. Distributed Artificial Intelligence, volume 2. Morgan Kauf-
mann, Menlo Park, CA, 1989.

[6] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-
Wesley, NY, 1989.

[7] Tad Hogg. The dynamics of complex computational systems. In W. Zurek, editor, Complexity, Entropy
and the Physics of Information, volume VIII of Santa Fe Institute Studies in the Sciences of Complexity,
pages 207–222. Addison-Wesley, Reading, MA, 1990.

[8] Tad Hogg and Colin P. Williams. Solving the really hard problems with cooperative search. In Haym
Hirsh et al., editors, AAAI Spring Symposium on AI and NP-Hard Problems, pages 78–84. AAAI, 1993.

[9] Bernardo A. Huberman. The performance of cooperative processes. Physica D, 42:38–47, 1990.

[10] Bernardo A. Huberman and Tad Hogg. The behavior of computational ecologies. In B. A. Huberman,
editor, The Ecology of Computation, pages 77–115. North-Holland, Amsterdam, 1988.

13



[11] David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon. Optimization by
simulated annealing: An experimental evaluation; part ii, graph coloring and number partitioning.
Operations Research, 39(3):378–406, May-June 1991.

[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science, 220:671–
680, 1983.

[13] W. A. Kornfeld and C. E. Hewitt. The scientific community metaphor. IEEE Transactions on Systems,

Man and Cybernetics, SMC-11:24–33, 1981.

[14] William A. Kornfeld. The use of parallelism to implement heuristic search. Technical Report 627, MIT
AI Lab, 1981.

[15] Jean-Louis Lauriere. A language and a program for stating and solving combinatorial problems. Artificial
Intelligence, 10:29–127, 1978.

[16] A. K. Mackworth. Constraint satisfaction. In S. Shapiro and D. Eckroth, editors, Encyclopedia of A.I.,
pages 205–211. John Wiley and Sons, 1987.

[17] Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Solving large-scale constraint
satisfaction and scheduling problems using a heuristic repair method. In Proceedings of AAAI-90, pages
17–24, Menlo Park, CA, 1990. AAAI Press.

[18] A. Newell and H. Simon. Human Problem Solving. Prentice-Hall, Englewood Cliffs, NJ, 1972.

[19] H. Penny Nii, Nelleke Aiello, and James Rice. Experiments on Cage and Poligon: Measuring the
performance of parallel blackboard systems. In Les Gasser and Michael N. Huhns, editors, Distributed
Artificial Intelligence, volume 2, pages 319–383. Morgan Kaufmann, San Mateo, CA, 1989.

14


