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Abstract

Recent empirical and theoretical studies have shown that simple parameters characterizing constraint
satisfaction problems predict whether they have a solution and the cost to solve them, on average. This
paper examines the effectiveness of using these predictions as a heuristic for solving the graph coloring
problem. Specifically, by adding some global information on the consequences of various choices, the
use of these parameters can reduce the search required to find a solution. Current limitations of this
approach, due to the high variance associated with the predictions, are also presented. More generally,
observations of universal behaviors analogous to physical phase transitions can be applied to improve
search methods.

1 Introduction

Combinatorial search problems have easily computable characteristics that determine, on average, both the
likelihood they have solutions and their hardness, i.e., the cost to solve them with a variety of heuristic search
methods [3, 20, 5, 30, 16, 28, 25, 12]. Important recent observations are abrupt transitions in behavior,
analogous to physical phase transitions in percolation problems [26]. In particular, these transitions are
universal characteristics of classes of hard computational problems, independent of the choice of particular
search algorithms.
These results provide insight into the nature of NP-hard problems, but can they also lead to improved

search methods? On the one hand, this seems likely in that all heuristics rely on approximate estimates
of solubility and search cost associated with various choices to be made during the search. Thus the use
of universal problem characteristics may usefully add global information to heuristics that evaluate choices
based on limited, local views of the problem. However, the relation between these characteristics, solubility
and hardness only holds on average: the large observed variances indicate that any individual problem
instance can deviate significantly from the average behavior. This variance could easily render useless any
reliance on average behavior.
This issue has been successfully resolved for some search problems using genetic algorithms [4]. Genetic

algorithms provide an appealing basis for using knowledge of the average problem behavior as a heuristic
because they are a statistically based search method relying on improvements to a population on average.
Thus they are likely to be less sensitive to the variance associated with the heuristic than, say, a conven-
tional backtrack search method. More recently this improved understanding of the likely difficulty of search
problems has been applied to create a simple domain-independent heuristic [9].
This paper continues this line of work by evaluating the use of problem hardness for a complete search

method based on depth-first backtracking. This involves extending previously developed theories to apply
to the situations encountered during such a search, and making specific choices on how to use the global
information provided by the theory. The key insight allowing the theory to apply is that, at any point during
a backtrack search, the remaining unassigned variables and the constraints on them constitute a subproblem
of the original one. The theory can then be applied to this subproblem to suggest improvements in subsequent
choices. The results are evaluated empirically for the particular search problem of graph coloring.
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2 Problem Characteristics

In this section, we relate solubility and search cost to easily computed problem characteristics. This gives
an abrupt transition from underconstrained problems that are mostly soluble to overconstrained ones that
are mostly insoluble as a parameter is varied. This behavior and its scaling properties are analogous to
phase transitions seen in many physical systems [14, 16]. In terms of search cost, the hardest cases are
concentrated near this transition for a variety of search methods. For use as a heuristic, the most accurate
approach for a given class of constraint problems is to make use of known empirical results for the location
of the transition point. However, computationally this is cumbersome for use as a general-purpose method,
and in many cases the required empirical results are not available, or the actual search problems could differ
significantly from the randomly selected ones used in most of these studies. Hence we consider instead an
approximate theory [30] which can be readily applied, but does not exactly determine the transition points
in particular cases. Although this would appear to reduce the accuracy of the results, we should note that
real problems, and especially those subproblems encountered during a search, may differ from the classes of
random problems considered in these studies. This is likely to make more of a difference than the relatively
small error in the location of the transition point introduced by using the theory instead of exact results, and
thus provides additional motivation for using the readily computed theoretical values rather than relying on
a table of empirical values1.

2.1 Hardness theory

A constraint satisfaction problem (CSP) [18, 17] consists of a set of n variables, a domain of values for each
variable, and a set of constraints each of which restricts the allowable assignments of values to some of the
variables. Let bi be the number of values for variable i. The task is to find a solution, i.e., an assignment
of a value to each variable such that all constraints are satisfied, or else to establish that no such solution
exists. We define a state as a set of assignments, not necessarily consistent with all the constraints, to some
of the variables. Theoretically, it is sufficient to characterize the constraints by the number m and size k of
the minimized nogoods. These nogoods are simply those smallest subsets of all possible states in the problem
that violate at least one constraint, and are readily determined from the nature of the constraints. The
size of a nogood is just the number of variables it gives an assignment to. For simplicity we consider the
case of binary constraints, for which each of the nogoods involves assignments to exactly two variables (i.e.,
k = 2). This is the relevant case for the problem of graph coloring considered below. Cases with constraints
involving more variables (such as 3-SAT used in many empirical studies of the transition behavior), as well
as different-sized constraints, can be handled as a generalization of this theory [9, 29].
A simple example is a problem with three variables, x, y and z, with 2, 3 and 4 values respectively, and

the constraint that each pair has distinct values. In this case, the minimized nogoods are all assignments of
the same values to a pair of variables. E.g., those involving the variable x are {x = 1, y = 1}, {x = 1, z = 1},
{x = 2, y = 2} and {x = 2, z = 2}. The remaining nogoods involve y and z, namely {y = 1, z = 1},
{y = 2, z = 2} and {y = 3, z = 3}.
Theoretically, the search behavior is determined by the expected number of consistent states with various

numbers of assigned variables. To allow for the variables having different domain sizes, we present an
extension to the previously developed theory [30]. First, note that there are bibj possible minimized nogoods
for variables i and j, for a total of N =

∑

bibj where the sum is over all distinct pairs of variables.

Equivalently N = 1
2

(

(
∑

bi)
2
−
∑

b2i

)

, with the sums over all variables. A given state with assignments to

j variables will satisfy all constraints provided none of the value pairs specified in the state are in the set of
nogoods for the problem. Assuming random selection of the minimized nogoods, the state is consistent with
probability

pj =

(

N−(j2)
m

)

(

N
m

) (1)

This is simply the ratio of the number of ways the m nogoods can be selected so that the given state is
consistent to the total number of ways the nogoods can be selected. For the class of problems we consider

1For the graph coloring problems considered here, the theory predicts the location of the transition point to within 10–20%,
and can be improved further [29].
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below, generally N will grow as O(n2) while m grows as O(n), which gives the asymptotic behavior

ln pj ∼ m ln

(

1−

(

j
2

)

N

)

(2)

Considering a specific ordering on the variables, the expected number of consistent states, or goods, with
assignments to the first j variables is

Gj = Sjpj (3)

where

Sj =

j
∏

i=1

bi (4)

is the total number of possible assignments to the first j variables in the given ordering. In particular,
the expected number of solutions is Nsoln = Gn. When there are few nogoods (small m), the expected
number of solutions grows exponentially with n. Conversely, when there are many nogoods, it decreases
exponentially. Between these extremes is a transition from mostly soluble to mostly insoluble cases whose
location is estimated by the value of m for which Nsoln = 1.
The cost for a simple nonheuristic backtrack search is then estimated as [30]

C1st =
C

max(1, Nsoln)
(5)

where C =
∑

Gj corresponds to the search cost to find all solutions. This is readily understood as follows.
Finding all solutions through a backtracking search starts with the empty assignment, and successively
attempts to assign values to additional variables in the specified ordering as long as the assignment is
consistent with the constraints. When any inconsistency is found, the search procedure backtracks to a
previous decision point and tries another value. In the most direct form of backtracking, this procedure
will consider all consistent states in the process of finding all the solutions, leading to the expression of C.
While more sophisticated search methods can reduce the number of states examined, the relative qualitative
behavior determined from this simple case remains the same. With this estimate for the cost to find all
solutions, we obtain an estimate of the average cost to find the first solution, if any, by assuming the
solutions are randomly located in the search space, giving the expression for C1st.
Qualitatively, C1st increases as nogoods are added, reaches a maximum at the predicted transition from

soluble to insoluble problems, and then decreases. For large n the terms in the sum for C grow rapidly up to
some maximum value then decline. Thus the behavior of C can be approximated by the largest term in the
sum. This cost estimate involves more approximations than used to determine the location of the transition
point, and moreover is associated with a large variance so even accurate knowledge of the mean cost value
of limited use in actual searches.
Having different domain sizes introduces a new complication in the theory, namely in what order one

should consider the variables when forming the product used in Eq. (4). One choice is to consider first the
variables with the smallest value of bi, and then those with successively larger values. This corresponds to
the heuristic used in the experiments reported below, and is a reasonable choice at least in extreme cases.
For instance, if any variable has bi = 0 the problem clearly has no solution and such variables should be
considered first. Then any variable with bi = 1 has its choice forced and should be made immediately to
allow possible pruning of further choices as soon as possible (this amounts in effect to a forward propagation
during the search, a method that can be quite helpful in practice [24]).

2.2 An example

To make this theory more concrete, consider the case in which all variables have either 1, 2 or 3 possible
values. This corresponds, for example, to the case of 3-coloring considered below. Let nr of the n variables

have bi = r, for r = 1, 2, 3. In this case, N = 1
2

(

(
∑

nrr)
2
−
∑

nrr
2
)

. Ordering the variables according to

their value of bi then gives

Sj =

{

1 if j ≤ n1

2j−n1 if n1 < j ≤ n1 + n2

2n23j−n1−n2 if n1 + n2 < j

(6)
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To obtain a simple explicit form for the cost proxy, we can make the additional approximation to Eq. (2):

ln pj ∼ −m
(j2)
N
∼ −mj2

2N
and hence lnGj ∼ lnSj −

mj2

2N
. The main contribution to the overall cost C is

obtained by maximizing2 lnGj . With this approximation, lnNsoln ∼ lnSn −
mn2

2N
which can be combined

with the maximum of lnGj to give an explicit estimate for the cost lnC1st.

3 Improving Heuristics with Global Information

In this section, we describe the general backtrack search method and the decision points at which heuristics
can guide choices. We then discuss how global knowledge of whether problems are soluble and their associated
search cost can be used.

3.1 Backtrack search

There are a large variety of backtrack search methods for CSPs [24]. These are complete, i.e., guaranteed
to correctly determine whether a solution exists and, if so, find a solution. Specifically, the depth-first
chronological backtrack procedure backtrack(state,d) operates on a state consisting of a consistent assignment
to d of the variables (also called a partial solution). The procedure can be described as follows:

if (d equals n) then

return state as a solution
else

pick unassigned variable v in state
for each i that is consistent for v do

s = state with v assigned value i
result = backtrack(s, d+ 1)
if (result is a solution) then

return result as a solution
endif

endfor

return “no solution”
endif

The search begins with a completely unassigned state and with d set to zero.

3.2 Subproblems that arise during search

At each point in the search, the unassigned variables constitute a subproblem remaining to be solved, in
which any values in their domains that are inconsistent with assignments already made are simply excluded
from consideration.
As an example, the subproblem generated by assigning a value α to the first variable, i.e., v1 = α, consists

of

• the n− 1 remaining variables,

• the sets of allowed values for each of these variables that are consistent with the new assignment, i.e.,
any nogood of the form {v1 = α, vi = β} would remove the value β from the set of possibilities for
variable i,

• the set of minimized nogoods that do not involve the assigned variable, and whose assignments are
allowable3

2The maximum can be found explicitly since lnGj is piecewise quadratic, and is thus simpler than the transcendental
equation for the maximum in the original theory [30].

3If the problem has constraints among more than two variables, the minimized nogoods of the subproblem would also include
those involving v1 = α restricted to the remaining variables. E.g., {v1 = α, v2 = β, v3 = γ} would become {v2 = β, v3 = γ}.
This could give rise to a subproblem with nogoods of different sizes. Note also that such nogoods arising from different
constraints could be identical hence requiring a check to avoid multiple counts of the same nogood for the subproblem.
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An example is the CSP of coloring a triangle with 3 colors such that each vertex has a distinct color. Initially
we have the values (i.e., colors) {1, 2, 3} for each of the three variables (i.e., vertices of the triangle), together
with the minimized nogoods preventing any pair from having the same color, i.e., {v1 = c, v2 = c} for c =
1, 2, 3 and similarly for the other pairs of variables. Suppose we make the assignment v1 = 1. The resulting
subproblem has variables {v2, v3}, each with domain {2, 3} and the remaining nogoods {v2 = c, v3 = c} for
c = 2, 3.

3.3 Using heuristics

Backtracking has two natural points for using heuristics. First is selecting the next unassigned variable to
consider. Ideally, if the previously assigned values preclude any solution, one should select next the variable
that most rapidly leads to a conflict thereby minimizing the amount of search required before backtracking.
On the other hand, if this search path does lead to a solution, all variables will need to be considered
eventually anyway so nothing is lost by selecting the variable most likely to give a conflict. A simple, and
often effective, way to do this is to pick next the variable with the fewest remaining available assignments.
The second use for a heuristic is in the order of assigning values to the new variable. Here we would like

to first try values most likely to lead to a solution, if any, consistent with the current partial assignment. If
successful, this eliminates the need to consider additional values for the new variable. Here a useful method
is to select the least constraining values first in the hope that they will leave open many options for the
remaining unassigned variables.
These two decision points complement each other. If value selection is done well and the problem is

soluble, there will be few choices leading to deadends and backtrack. Thus it will be relatively less important
for the overall search cost that the occasional incorrect choices are pruned quickly by good variable ordering.
Conversely, if the value selection has many errors, or the problem is not soluble, then variable ordering will
be particularly important to limit the cost of the many incorrect choices by rapidly uncovering conflicts.
Conceptually, these heuristics could always correctly determine the best possible choice by complete

search, i.e., solving the problem from the current choice point. But this would, of course, require as much
computational effort as doing the search directly. So instead the heuristics are further restricted by the
requirement that they execute rapidly. Thus, in practice, these heuristics evaluate potential choices by the
use of local information only, i.e., how the choices directly affect other variables, but do not consider how
those effects may subsequently affect future search and so will not always give the best possible choice. Hence
it could be useful to supplement the local information used by the heuristic with easily computed estimates
of global properties of the problem.

3.4 Using solubility and cost estimates

The appeal of using universal problem characteristics to determine solubility and search cost of the subprob-
lems is that these global quantities, if estimated well enough, can usefully guide the choices made during
backtrack.
Consider the order in which values should be examined for a newly selected variable v. Let p(v = i) be

the estimated probability that the subproblem remaining after v is given the value i is soluble. A simple
heuristic would then be to consider the values in decreasing order of p(v = i). More sophisticated choices
could also consider the cost estimates: in some cases it may be worthwhile to first try a value with low cost
even if its probability for success is somewhat lower than some other, higher cost, choice.
For variable ordering, we can attempt to select next the variable that will minimize the search cost. This

is most important when the current partial assignment does not lead to a solution. Let C(v = i) denote the
cost estimate for the subproblem that remains after v is given the value i. If there is no solution, the total
cost for selecting variable v next will be C(v) =

∑

i C(v = i). We can then pick the variable that minimizes
this value.
We thus see how cost and solubility information on the subproblems arising during search can be used as

a heuristic. Note this does not require accurate absolute cost values, rather it is sufficient that the estimates
closely preserve the ordering of the costs of different choices, not the actual values. This motivates using the
easily computed cost of a simple search method given in §2 because, as observed in many studies, hard cases
for a variety of search methods tend to be associated with the same values of problem structure parameters.
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Moreover, when the costs are fairly close, even the correct ordering is not that important. Thus we are
mainly interested in estimates of the values that are sufficient to avoid particularly high-cost choices.

3.5 A hardness-based heuristic

There remains the question of how to best add the global information approximately estimated by the theory
to the local information already used by a search heuristic. At one extreme, the theory could be used to order
the choices, using local information only if there are any ties. At the other extreme, the global information
could be used only to break any ties that arise locally. The choice of either of these extremes, or some
intermediate policy, will depend on how accurate the global information is relative to that obtained locally.
Since the theoretical cost estimates have a large variance which results in lower accuracy for individual
instances, a simple policy is as follows.
For ordering the values, we rely only on the solubility estimates provided by the theory. Specifically,

values are assigned4 in order of decreasing magnitude of pn, given by Eq. (2). Any ties are resolved by the
local heuristic.
Variable selection emphasizes choices that lead to early failure, i.e., subproblems with no solutions. In

this case the solubility estimates of the theory are of no use and we must instead rely on the less accurate
cost proxy. In our experiments, we used the cost proxy described in §2.2 only to break ties that arose from
the local heuristic. In these cases we selected next the variable with the lowest estimated cost.

4 Graph Coloring

Our experiments used the graph coloring problem. This consists of a graph, a specified number of colors b,
and the requirement to color each node in the graph so that no pair of adjacent nodes (i.e., nodes linked
by an edge) have the same color. Many important artificial intelligence problems, such as planning and
scheduling [31, 2], can be mapped onto the graph coloring problem. Moreover, as a well-known NP-complete
problem, graph coloring has received considerable attention [19, 15, 27].
We use the Brelaz heuristic [15] which assigns the most constrained nodes first (i.e., those with the most

distinctly colored neighbors), breaking ties by choosing nodes with the most uncolored neighbors (with any
remaining ties broken randomly). The colors are considered in order 1, 2, . . . , b and, for each node, the
smallest color consistent with the previous assignments is chosen first, with successive choices made when
the search is forced to backtrack. As a simple optimization, we never change the colorings for the first
two nodes selected by this heuristic. Any such changes, which could only occur when the backtrack search
has failed to find a solution starting from the initial assignments for the first two nodes, would amount to
unnecessarily repeating the search with a permutation of the colors.
For this problem, the connectivity γ (i.e., the average degree of the graph) distinguishes relatively easy

from harder problems, on average [3]. This is related to the number of edges e and number of nodes n in
the graph by e = 1

2
γn. Fig. 1 shows the peak in the median search cost at γ = 4.6 which is also where the

fraction of graphs with a solution drops from near one to near zero. The peak and transition in solubility
become sharper as larger graphs are considered.

5 Experiments

The heuristics described in §3.5 were implemented for graph coloring using the Brelaz method as the local
search heuristic. We measure the search cost by the number of states examined until the first solution is
found, if any, or until no further possibilities remain. As an implementation note, each search step gives only
one additional assigned variable. Thus the quantities needed to estimate the solubility and cost proxy do not
change much from step. This observation allows creating an optimized version of the heuristics that cache
the required information on the subproblems. In particular, for graphs with fixed connectivity there are, on
average, only a constant number of neighbors for each node. Thus making an assignment to a particular
node will, on average, only affect the number of allowable assignments associated with a small number of

4Additional experiments based on a decreasing ordering of Nsoln gave similar, but slightly worse, results compared to using
pn.
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Figure 1: Behavior for 3-coloring of random graphs with 100 nodes as a function of connectivity γ in steps of 0.1,
with 50,000 samples at each point. The solid curve shows the median search cost, and the dashed one is the fraction
of graphs with a solution (ranging from one on the left to zero on the right).

neighbors, hence allowing rapid updates. Thus the overhead associated with this method can be made a
small constant factor as larger graphs are considered. While some caching was done in the experiments
reported below (based on the information already retained for the Brelaz heuristic), additional caching of
information specific to the theory was not included, resulting in considerably more overhead than necessary.
Running on a Sun SPARC 10, for 100-node graphs with γ between 3.5 and 4.5, the program ran about 20,000
Brelaz steps per second and 5000 steps per second when using the hardness-based value ordering.

5.1 Soluble cases

A comparison of the hardness-based value ordering heuristic with the standard Brelaz method for 3-coloring
random graphs that have solutions is shown in Fig. 2 and 3. In all cases, variable ordering was that of the
Brelaz heuristic. The figures show the cost distribution, i.e., the fraction of samples with cost below the
indicated values. This gives a better comparison than simple aggregate measures, such as means or medians,
due to the high variance in the costs. Note that in comparing distributions from two methods, the lower
curve indicates better performance in that there are fewer high cost instances. For soluble problems, the
minimum possible cost value is n, obtained if all value choices led to soluble subproblems so no backtrack
is required. In particular, the figures show that the hardness-based heuristic produces a lower curve and
increases the likelihood of backtrack-free search. Quantitatively, the χ2 test determines the likelihood the
two samples could have come from the same distribution [22]. Small values indicate the two methods are
unlikely to give the same performance distribution. For γ = 3.5 this shows a definite improvement. Near
the transition, at γ = 4.5 the distributions do not differ significantly.
A further example, for γ = 5.5, is shown in Fig. 4. With this many edges, most random graphs do

not have solutions. So instead, these graphs were created with a prespecified solution (i.e., the nodes were
divided into three sets, as close as possible to equal sizes, and no edge was permitted between nodes within
the same set). This results in somewhat easier graphs, but exhibits the same transition phenomenon and at
approximately the same location as random graphs [30].
To demonstrate the robustness of these results, we examined a number of other cases. These include more

sophisticated searches, different problem sizes and alternate problem ensembles. For instance, Fig. 5 repeats
Fig. 2 but using a sophisticated backtracking method called backjumping [7, 24]. Backjumping improves on
simple backtracking by keeping track of which previous variable assignments are actually relevant for causing
a conflict. Then, instead of backtracking to the most recently assigned variable (which, if not relevant for
causing the conflict, simply means the search that identified the conflict will be repeated), it backtracks to
the most recent relevant assignment. In the specific version used here, the search maintains a list of relevant
prior assignments, which is initially empty. Then, whenever the search is forced to backtrack because there
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Figure 2: Distribution of search costs for random graphs that have a solution, n = 100 and γ = 3.5. These used
the hardness-based value ordering heuristic (solid curve) and the standard Brelaz heuristic (dashed), based on 106

and 107 samples respectively. The hardness and Brelaz heuristics respectively completed 84.7% and 75.4% of the
searches without backtracking (i.e., using 100 steps). The χ2 test gives the probability of these coming from the same
distribution as negligibly small, around 10−4800.
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Figure 3: Distribution of search costs for random graphs that have a solution, n = 100 and γ = 4.5. These used
the hardness-based value ordering heuristic (solid curve) and the standard Brelaz heuristic (dashed), based on 10,000
and 50,000 samples respectively. The hardness and Brelaz heuristics respectively completed 12.1% and 7.5% of the
searches without backtracking (i.e., using 100 steps). The χ2 test gives the probability of these coming from the same
distribution as 40%.

are no consistent values for variable v, we add to the list any currently assigned neighbors of v (since these
are the values that together cause the conflict), remove v itself from the list and then backtrack to the most
recently assigned variable in the list.
Comparing the two figures shows that backjumping itself significantly improves the search, but the

hardness heuristic gives an additional improvement. In fact, unlike Fig. 2, in this case the hardness heuristic
also appears to increase the scaling power by which the distribution decreases for high cost cases. E.g., a
fit to the distribution over the range of costs from 300 to 3000 gives a slope of −1.85 for hardness with
backjumping compared to −1.45 for backjumping alone. For Fig. 2, the corresponding slopes are −0.71 and
−0.70 respectively, showing no significant difference. The hardness heuristic also shows an improvement for
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Figure 4: Distribution of search cost for graphs with a prespecified solution, n = 150 and γ = 5.5. These used the
hardness-based value ordering heuristic (solid curve) and the standard Brelaz heuristic (dashed), based on 106 samples
in each case. The hardness and Brelaz heuristics respectively completed 79.8% and 50.3% of the searches without
backtracking (i.e., using 150 steps). The χ2 test gives the probability of these coming from the same distribution as
negligibly small, around 10−45000.

the overconstrained cases with γ = 5.5. However, for γ = 4.5, the backjumping itself makes little change in
performance.
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Figure 5: Distribution of search costs for random graphs that have a solution, n = 100 and γ = 3.5. These
used the hardness-based value ordering heuristic (solid curve) and the standard Brelaz heuristic (dashed), both
with backjumping method, based on 106 samples. The hardness and Brelaz heuristics respectively completed 84.6%
and 75.5% of the searches without backtracking (i.e., using 100 steps). The backjumping cases finishes without
backtracking about as often as regular case; as expected since backjumping only has a chance to operate when there
is backtracking.

The behavior shown in the figures also applies to graphs with 50 nodes, indicating that the difference
does not appear to depend greatly on the size of problems considered. The improvement is also seen in
other cases including larger domain sizes (e.g., 5-coloring), using reduction operators [3] to eliminate trivial
subgraphs before searching, and using the somewhat harder graphs in which each node is constrained to
have at least b neighbors. These additional experiments suggest that the improvement is robust with respect
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to different ways of generating the graphs. This is particularly noteworthy in that the theory used to derive
Eq. (2) assumed simple random problems. Other studies using heuristics based on estimates of problem
hardness have also found robust results when applied to a variety of search problems [9].
In summary, the value-ordering hardness-based heuristic clearly helps for under- or overconstrained ex-

amples, but is less helpful for the transition cases. To investigate this point further, we examined the pairwise
difference in the two search methods at γ = 4.5, further reducing the variance between them by having both
methods use the same variable ordering choices when more than one variable was rated equally good by
the Brelaz heuristic. Specifically, 10,000 graphs were generated, and the cost of both search methods was
recorded for each graph. This provides a much more sensitive discrimination between the two methods than
just the distributions shown in Fig. 3 which include variation in individual problems as well as between the
two methods. Quantitatively, the paired t-test [22] on this data gives a probability of 10−7 that the two
methods produce the same mean search cost. Combined with the slightly lowered mean cost when using the
hardness based heuristic (299 steps instead of 326 for the Brelaz heuristic), this shows that the improvement,
while smaller than for γ = 3.5 or γ = 5.5, is still statistically significant.

5.2 Insoluble cases

For insoluble cases, value ordering is not useful: all values will need to be examined during the search. We
thus consider the use of the cost proxy for variable ordering, specifically to break any ties in the variable
ordering suggested by the Brelaz heuristic. Comparing the distributions for 50 and 100-node graphs with no
solutions shows no statistically significant difference for γ equal to 3.5, 4.5 and 5.5. Nevertheless, comparing
the two search methods on the same set of 100-node graphs for γ of 4.5 and 5.5 shows that use of the
cost proxy to order the variables results in about a 5% reduction in the mean search cost compared to the
Brelaz heuristic alone. Although this improvement is relatively small, it is statistically significant in that
the paired t-test rejects the hypothesis that the two search methods are the same at a significance level of
about 10−20. For γ = 3.5 almost all graphs are soluble resulting in too few insoluble samples to make a
statistically significant comparison.
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Figure 6: Actual values of ln(C1st) vs. the estimate from the proxy described in §2.2 for the 6380 subproblems
obtained during 100 searches of 200-node random graphs with γ = 5.0. The actual search cost generally increases as
the proxy does, but with considerable variance.

One possible reason for the limited improvement is the relatively conservative use of the cost information,
i.e., it is only used when the Brelaz heuristic rates more than one variable as equally good next choices.
This results in relatively few opportunities to actually use the cost proxy, specifically in about 4% of the
variable choices for the 100–node graph searches. Nevertheless, limited experiments with exhaustive search
to determine the actual best variable choice shows that there is indeed room for considerable reduction in
search cost from simply making better choices in the few cases where the Brelaz heuristic results in ties.
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Using the cost proxy achieves only a small portion of this potential. This is due to the large variance in the
actual costs compared to the proxy value, as shown in Fig. 6.
In a final set of experiments, we examined a less conservative use of the cost proxy to order the variable

choices. Specifically, instead of just breaking any ties among the top rated nodes of the Brelaz heuristic, we
considered all nodes with the fewest remaining available colors and used the cost proxy to select the next
one to try. This expands the set of nodes considered with the cost proxy (to about 8% of the variable choices
for 100-node graphs) since the Brelaz heuristic selects, from among those nodes with the fewest remaining
choices, those with the most uncolored neighbors. For 100-node insoluble graphs with γ equal to 4.5 and
5.5, this gave slightly worse average performance than the standard Brelaz method. The paired t-test in
these cases showed that this decrease in performance was statistically significant with a probability of less
than 10−14 that the search methods have the same average behavior. This further supports the observation
that the cost proxy is not sufficiently precise to discriminate well among variable choices. Instead, local
information should be used as much as possible, and the global cost proxy used only when local information
results in tied choices.

6 Discussion

In summary, solubility estimates improve the value ordering choices, although most usefully for problems
away from the transition region. By contrast, the cost proxy estimate is not sufficiently precise to more than
slightly improve the variable ordering choices. This suggests that additional parameters for the problem
structure, such as the amount of constraint clustering [13], are required to reduce the variance in the cost es-
timates. Interestingly, this variance, particularly large near the transition region for these problems, provides
a computational consequence of the large fluctuations often associated with physical phase transitions.
A number of more general questions remain. First, since the theory readily applies to any CSP, it is of

interest to evaluate its usefulness for other CSPs such as satisfiability (SAT) or random binary CSPs whose
transition behaviors have been extensively studied. Second is the question of whether this behavior can be
exploited with more complex backtrack methods [6, 10, 24], beyond the addition of backjumping, or problem
decomposition [8], perhaps especially to reduce difficulties that these methods can introduce [1, 23]. Finally,
this work provides an example of how the underlying nature of problems can be used to devise better search
methods. This thus complements other studies using the degree of constraint as a heuristic [9] or exploiting
transition behaviors in genetic algorithms [4], optimization problems [21] and machine vision [11].
More generally, this body of work suggests a broad new application for simple “mean-field” theories in

computation. That is, even though the particular subproblems encountered during search depend specifically
on the previous choices made, treating these problems as if they are independently and randomly generated
is accurate enough to give observable improvements in performance.
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