
Tycoon: an Implementation of a Distributed, Market-based

Resource Allocation System

Kevin Lai∗ Lars Rasmusson Eytan Adar Li Zhang Bernardo A. Huberman

{klai, lars.rasmusson, eytan.adar, l.zhang, bernardo.huberman}@hp.com

HP Labs Palo Alto

September 1, 2005

Abstract

Distributed clusters like the Grid and PlanetLab enable the same statistical multiplexing efficiency

gains for computing as the Internet provides for networking. One major challenge is allocating resources in

an economically efficient and low-latency way. A common solution is proportional share, where users each

get resources in proportion to their pre-defined weight. However, this does not allow users to differentiate

the value of their jobs. This leads to economic inefficiency. In contrast, systems that require reservations

impose a high latency (typically minutes to hours) to acquire resources.

This paper describes Tycoon, a market based distributed resource allocation system based on pro-

portional share. The key advantages of Tycoon are that it allows users to differentiate the values of

their jobs, its resource acquisition latency is limited only by communication delays, and it imposes no

manual bidding overhead on users. Experimental results using a prototype implementation of the design

are included.

1 Introduction

A key advantage of distributed systems like the Grid [12] and PlanetLab [22] is their ability to pool together

shared computational resources. This allows increased throughput because of statistical multiplexing and

the bursty utilization pattern of typical users. Sharing nodes that are dispersed in the network allows lower

∗Corresponding author.

delay because applications can store data close to users. Finally, sharing allows greater reliability because of

redundancy in hosts and network connections.

The key issue for shared resources is allocation. One solution is to add more capacity. If resources are

already optimally allocated, then this is the only solution, albeit a costly one. In all other cases, alloca-

tion and additional capacity are complementary. In addition, in peer-to-peer systems where organizations

both consume and provide resources (e.g., PlanetLab), careful allocation can effectively increase capacity by

providing assurances to reluctant organizations that contributions will be returned in kind.

However, resource allocation remains a difficult problem. The key challenges for resource allocation in

distributed systems are: strategic users who act in their own interests, a rapidly changing and unpredictable

demand, and hundreds or thousands of unreliable hosts that are physically and administratively distributed.

The approach taken here is to incorporate an economic mechanism [15] (e.g., an auction) into the resource

allocation system. Systems without such mechanisms [29, 5, 34] typically assume that task values (i.e., their

importance) are the same, or are set by an omniscient administrator. However, these assumptions do not hold

in practice. For example, a typical company has web, email, and file servers, databases, business applications,

simulations, etc. Some of these applications are critical to the business and some provide benefit, but are not

critical. As the number and variety of these applications grow, the ability of a non-omniscient administrator to

understand and manage the resource requirements of these applications diminishes. Instead, market-based

resource allocation systems [31, 9, 33, 4] rely on users to set the values of their own jobs and provide a

mechanism to encourage users to truthfully reveal those values.

Despite these advantages, there are few, if any, operational market-based resource allocation systems for

computational resources. One impediment is that previously proposed systems impose a significant burden

on users: frequent interactive bidding, or, conversely, infrequent bidding that increases the latency to acquire

resources. Most users would prefer to run their program as they would without a market-based system and

forget about it until it is done. The latency to acquire resources is important for applications like a web

server that needs to allocate resources quickly in reaction to unexpected events (e.g., breaking news stories

from CNN). In addition, many market-based systems rely on a centralized market that limits reliability and

scalability.

This paper presents the Tycoon distributed, market-based resource allocation system. Each providing

Tycoon host runs an auctioneer process that multiplexes the local physical resources for one or more virtual

hosts (using Linux VServers [1]). As a result, if an auctioneers fails, users can still acquire resources at other

hosts. Clients request resources from auctioneers using continuous bids that can be as infrequent as the user

2

wishes while still allowing immediate acquisition of resources.

The contribution of this paper is the design, implementation, and evaluation of Tycoon. It describes

a prototype implementation of the design running on a 22-host cluster distributed between Palo Alto in

California and Bristol in the United Kingdom. Tycoon can reallocate all of the hosts in this cluster in less

than 30 seconds. It shows that Tycoon encourages efficient usage of resources even when users make no

explicit bids at all. Furthermore, it shows that Tycoon provides these benefits with little overhead. Running

a typical task on a Tycoon host incurs a less than a 5% overhead compared to an identical non-Tycoon host.

Using a modest server infrastructure (450 MHz x86 CPU, 100 MB/s Ethernet), limited tests indicate that

the current design scales to 500 hosts and 24 simultaneous active users (or any other combination with a

product of 12,000). The main limitation of this implementation is that it only manages CPU cycles (not

memory, disk, etc.), but this is a limitation of the virtualization software.

The paper is organized as follows. § 2 gives an overview of the Tycoon design. § 3, describes the Tycoon

architecture in detail. § 4 presents the results of experiments using the Tycoon system. § 5, reviews related

work in resource allocation. Some extensions to the basic design are described in § 6 and § 7 concludes.

2 Design Overview

2.1 Service Model Abstraction

The purpose of Tycoon is to allocate compute resources like CPU cycles, memory, network bandwidth, etc.

to users in an economically efficient way. In other words, the resources are allocated to the users who value

them the most. To give users an incentive to truthfully reveal how much they value resources, users use a

limited budget of credits to bid for resources. The form of a bid is (h, r, b, t), where h is the host to bid on, r

is the resource type, b is the number of credits to bid, and t is the time interval over which to bid. This bid

says, “I’d like as much of r on h as possible for t seconds of usage, for which I’m willing to pay b”. This is a

continuous bid in that it is in effect until cancelled or user runs out of money.

The user submits this bid to the auctioneer that runs on host h. This auctioneer calculates br
i /t

r
i for each

bid i and resource r and allocates its resources in proportion to the bids. This is a “best-effort” allocation in

that the allocation may change as other bids change, applications start and stop, etc. Credits are not spent

at the time of the bid; the user must utilize the resource to burn the credits. To do this, a user uses ssh to

run a program. The t seconds of usage can be used immediately or later and at the same time or in pieces,

as the user wishes.

3

Command Action

tycoon create_account host0 10 10 10 Create an account on host0 with a bid of 10 initial credits
for CPU cycles, memory, and disk.

tycoon fund host0 cpu 90 1000 Fund the account on host0 using 90 credits to be spent
over 1000 seconds for CPU cycles.

tycoon set_interval host0 cpu 2000 Change bid interval on the account to 2000 for CPU cycles.
tycoon get_status host0 Get status of account including the current balance, cur-

rent interval, etc. for each of the resources.

Table 1: This table shows the main Tycoon user commands.

Note that the auctioneers are completely independent and do not share information. As a result, if a

user requires resources on two separate hosts, it is his responsibility to send bids to those two markets. Also,

markets for two different resources on the same host are separate.

This service model has two advantages. First, the continuous bid allows user agents to express more

sophisticated preferences because they can place different bids in different markets. Specific auctioneers can

differentiate themselves in a wide variety of ways. For example, an auctioneer could have more of a resource

(e.g. more CPU cycles), better quality-of-service (e.g., a guaranteed minimum number of CPU cycles), a

favorable network location, etc. A user agent can compose bids however it sees fit to satisfy user preferences.

Second, since the auctioneers push responsibility for expressing sophisticated bids onto user agents, the core

infrastructure can remain efficient, scalable, secure, and reliable. The efficiency and scalability are a result

of using only local information to manage local resources and operating over very simple bids. The security

and reliability are a result of independence between different auctioneers.

2.2 Interface

This section describes how a user uses the system. The interface requirments are important because the

bidding requirements of previous economic systems are burdensome for users.

Table 1 lists the main Tycoon user commands. These are currently implemented as a Linux command-line

tool, but they could easily be implemented in a graphical user interface. The first action a user takes is to

create an account on a providing host. This notifies auctioneers that a user intends to bid on that host and

makes an initial bid. The bid interval defaults to 10,000,000 seconds so that the user is unlikely to run out of

credits. Account creation only needs to be done rarely (in most cases once) per user and host. Users usually

perform account creation, like the operations that follow, on many hosts, so the command-line tool allows

the same operation to be performed on multiple hosts in parallel.

At this point, the user can ssh into hosts and run his application. Users are not required to change their

4

bids when they start and stop tasks. They can do so to optimize their resource usage, if they wish. However,

the auctioneers will still deduct credits when he runs. As a result, users who run infrequently will get more

resources than those who run continuously. If the user chooses, he can transfer more money to his account

and/or change the bidding interval. He might have a critical task for which he is willing to spend credits

at a higher rate, or, conversely, he might have a very low priority job, for which he wishes to decrease his

spending rate. The key point is that the users are relieved from any mandatory interaction with the system.

3 Architecture

Tycoon is split into the following components: service location service (SLS), bank, auctioneer, and agent.

The design of the SLS and bank are not novel, but they are described here because they are necessary

components for a working implementation.

Figure 1: This figure gives an overview of how the Tycoon components interact.

3.1 Service Location Service

Auctioneers use the service location service to advertise resources, and agents use it to locate resources (as

shown in steps 1 and 2 in Figure 1). The prototype uses a simple centralized soft-state server, but the other

components would work just as well with more sophisticated and scalable service location systems (e.g.,

Ganglia [18] and SWORD [20]). Auctioneers register their status with the SLS every 30 seconds and the SLS

de-registers any auctioneer that has not contacted it within the past 120 seconds. This status consists of the

total amount bid on the host for each resource, the total amount of each resource type available (e.g., CPU

speed, memory size, disk space), etc. The status is cryptographically signed by the auctioneer and includes

5

the auctioneer’s public key. Clients store this key and use it to authenticate the results of later queries and

also to authenticate direct communications with the auctioneer.

The soft-state design allows the system to be robust against many forms of hardware and software failures.

The querying agents may receive stale information from the SLS, but they will receive updated information

if they elect to contact an auctioneer directly.

3.2 Bank

The bank maintains account balances for all users and providers. Its main task is to transfer funds from a

client’s account to a provider’s account (shown in step 3 in Figure 1).

The assumption is that the bank has a well-known public key and that the bank has the public keys

of all the users. These are the same requirements for any user to securely use a host with or without a

market-based resource allocation system. A further assumption is of roughly synchronized clocks. Alice and

Bob are a fictional example sender and receiver. Alice begins by sending a message to the bank as follows:

Alice,Bob, amount, time,

SignAlice(Alice,Bob, amount, time)

SignAlice is the DSA signature function using Alice’s private key. The bank verifies that the signature is

correct, which implies that the message is from Alice, that the funds are for Bob, and that the amount and

time are as specified. The bank keeps a list of recent messages and verifies that this message is new, thus

guarding against replay attacks. Assuming this is all correct and the funds are available, the bank transfers

amount from Alice to Bob and responds with the following message (the receipt):

Alice,Bob, amount, time,

SignBank(Alice,Bob, amount, time)

The bank sends the same time as in the first message. Alice verifies that the amount, time, and recipient are

the same as the original message and that the signature is correct. Assuming the verification is successful,

Alice forwards this message to Bob as described in § 3.3. Bob keeps a list of recent receipts and verifies that

this receipt is new, thus guarding against replay attacks.

6

The advantages of this scheme are simplicity, efficiency, and prevention of counterfeiting. Micro-currency

systems are generally complex, have high overhead, and only discourage counterfeiting. The disadvantages

of this approach are scalability and vulnerability to compromise of the bank. However, bank operations are

relatively infrequent (see § 3.3.2 for how bids can be changed without involving the bank), so scalability is not

a critical issue for moderate numbers of users and hosts, as shown in § 4.4. The vulnerability to compromise

of the bank could be a problem. Possible solutions are discussed in § 6.

3.3 Auctioneer

Auctioneers serve four main purposes: management of local resources, collection of bids from users, allocation

of resources to users according to their bids, and advertisment of the availability of local resources.

3.3.1 Virtualization

To manage resources, an auctioneer relies on a virtualization system and a local allocation system. The

implementation uses Linux VServer (with modifications from PlanetLab) for virtualization. VServer provides

each user with a separate file system and gives the appearance that he is the sole user of a machine, even if

the physical hardware is being shared. The user accesses this virtual machine by using ssh.

VServers virtualize at the system call level, which provides the advantage of low overhead. § 4.3 shows

that the total auctioneer overhead, including VServers, is at most ten percent and usually much less. Systems

that virtualize at the hardware level like VMWare [2] or Disco [6] have significantly more overhead [11].

For local allocation, Tycoon uses the plkmod proportional share scheduler [5], which implements the

standard proportional share scheduling abstraction [28]. The disadvantage of VServers and plkmod is that

they do not completely virtualize system resources. This is why Tycoon currently only manages CPU cycles.

§ 6 describes new virtualization and allocation systems that provide this functionality.

3.3.2 Setting Bids

The second purpose of auctioneers is to collect bids from users. Auctioneers store bids as two parts for each

user: the local account balance, and the bidding interval. The local balance is the amount of money the

user has remaining locally. The bidding interval specifies the number of seconds over which to spend the

local balance. Users have two methods of changing this information: fund and set_interval. fund transfers

money from the user’s bank account to the auctioneer’s bank account, and conveys that fact to the auctioneer.

It has the disadvantage that it requires significant latency (100 ms) and it requires communication with the

7

bank, which may be offline or overloaded. set_interval sets the bidding interval at the auctioneer without

changing the local balance. It only requires direct communication between the client and the auctioneer, so

it provides a low latency method of adjusting the bid until the local balance is exhausted.

Alice and Bob already have each other’s public keys and Alice has the value nonceAlice. A nonce is a

unique token which Bob has never seen from Alice before. In the current implementation it is an increasing

counter. First, Alice gets a bank receipt as described above. She then sends the following message to Bob:

Alice,Bob, nonceAlice, interval, receipt,

SignAlice(Alice,Bob, nonceAlice, interval, receipt)

The nonce allows Bob to detect replay attacks. Bob verifies that he is the recipient of this message, that the

nonce has not been used before, that the receipt specifies that Alice has transferred money into his account,

that the bank has correctly signed the receipt, and that Alice has correctly signed this message. Assuming

this is all correct, Bob increases Alice’s local balance by the amount specified in the receipt and sets Alice’s

bidding interval to interval. set_interval is identical, except that it does not include the bank receipt.

The key advantage of separating fund and set_interval is that it reduces the frequency of bank opera-

tions. Users only have to fund their hosts when they wish to change the set of hosts they are running on or

when they receive income. For most users and applications, this is on the order of days, not seconds. Between

fundings, users can modify their bids by changing the bidding interval, as described in the next section.

3.3.3 Allocating Resources

The third and most important purpose of auctioneers is to use virtualization and the users’ bids to allocate

resources among the users and account for usage. Although the current implementation only allocates CPU

cycles because of virtualization limitations, the following applies to both rate-based (e.g., CPU cycles and

network bandwidth) and space-based (e.g., physical memory and disk space) resources. A proportional share-

based function is described here, but there are other allocation functions with desirable properties (e.g.,

Generalized Vickrey Auctions, described below).

For each user i, the auctioneer knows the local balance bi and the bidding interval ti. The auctioneer

calculates the bid as bi/ti. Consider a resource with total size R (e.g., the number of cycles per second of

the CPU or the total disk space) over some period P . The allocation function for ri, the amount of resource

8

allocated to user i over P , is

ri =
bi

ti
∑n−1

j=0

bj

tj

R. (1)

Let qi be the amount of the resource that i actually consumes during P , then the amount that i pays per

second is

si = min

(

qi

ri
, 1

)

bi

ti
. (2)

This allows users who do not use their full allocation to pay less than their bid, but in no case will a user

pay more than his bid.

There are a variety of implementation details. First, the auctioneer gets the number of cycles used by

each user from the kernel to determine if qi < ri. Second, the implementation sets P = 10s, so the auctioneer

charges users and recomputes their bids every 10 seconds. This value is a compromise between the overhead

of running the auctioneer and the latency in changing the auctioneer’s allocation. With tighter integration

with the kernel and the virtualization system, P could be as small as the scheduling interval (10ms on

most systems). Third, users whose bids are too small relative to the other users are logged off the system.

Users who bid for less than .1% of the resource would run infrequently while still consuming overhead for

context-switching, accounting, etc., so the auctioneer logs them off, starting with the smallest bidder.

The advantages of this allocation function (1) are that it is simple, it can be computed in O(n) time,

where n is the number of bidders, it is fair, and it can be optimized across multiple auctioneers by an agent

(described in § 3.4). It is fair in the sense that all users who use their entire allocation pay the same per unit

of the resource.

The disadvantage is that it is not strategyproof. In the simple case of one user running on a host, that user’s

best (or dominant) strategy is to make the smallest possible bid, which would still provide the entire host’s

resources. If there are multiple users, then the user’s dominant strategy is to bid his valuation. Since, the

user’s dominant strategy depends on the actions of others, this mechanism is not strategyproof. One possible

strategyproof mechanism is a Generalized Vickrey Auction (GVA) [30]. However, this requires O(n2) time,

it is not fair in the sense described above, and it is not clear how to optimize bidding across multiple GVA

auctioneers.

3.3.4 Advertising Availability

The auctioneer must advertise the availability of local resources so that user agents can decide whether to

place bids. For each resource available on the local host, the auctioneer advertises the total amount available,

9

and the total amount spent at the last allocation. In other words, the auctioneer reports

n−1
∑

j=0

si. (3)

This may be less than the sum of the bids because some tasks did not use their entire allocation. This

is reported instead of the sum of the bids because it allows the agent to more accurately predict the cost

of resources (as required the algorithm described in § 3.4.1). Note that this information allows agents to

make appropriate bids without revealing the exact amounts of other users’ individual bids. Revealing that

information would allow users to know each other’s valuations, which would allow gaming the auctions.

3.4 Agent

The role of a tycoon agent is to interpret a user’s preferences, examine the state of the system, make bids

appropriately, and verify that the resources were provided. The agent is involved in steps 2, 3, 4, and 6 of

Figure 1. Given the diversity of possible preferences, Tycoon separates agents from the infrastructure to allow

agents to evolve independently. This is a similar approach to the end-to-end principle used in the design of

the Internet [7, 10, 24], where application-specific functionality is contained in the end-points instead of in the

infrastructure. This allows the infrastructure to be efficient, while supporting a wide variety of applications.

There are a wide variety of preferences that a user can specify to his agent. Tycoon provides for both

high-level preferences that an agent interprets and low-level preferences that users must specify in detail.

Examples of high level preferences are wanting to maximize the expected number of CPU cycles or to seek

machines with a minimum amount of memory, or some combination of those preferences. Tycoon allows

uncertainty in the exact amount of resource received because other applications on the same host may not

use their allocation and/or other users may change their bids.

3.4.1 Best Response Algorithm

In a system with many machines, it is very difficult for users to bid on individual machines to maximize

their utilization of the system. Tycoon allows the user to only specify the total bids, or the budget, he is

willing to spend and let the agent compute the bids on the machines to maximize the user’s utility. In order

to compute the optimum bids, the agent must first know the user’s utility as a function of the fraction of

the machines assigned to the user. Since it is difficult, if not impossible, to figure out the exact formulation

of the utility function, this model assumes a linear utility function for each user. That is, each user specifies

10

a non-negative weight for each machine to express his preference of the machine. Such a weight is chosen

by the user and determined mainly by two factors: the system configuration and the user’s need. They may

vary from user to user. For example, one user may have higher weight on machine A because it has more

memory, and another user may have higher weight on B because it has a faster CPU. The weights are kept

private to the users.

Now, suppose that there are n machines, and a user has weight wi on machine i for 1 ≤ i ≤ n. If the user

gets fraction ri from machine i, then his utility is

U =

n
∑

i=1

wiri . (4)

The agent’s goal is to maximize the user’s utility under a given budget, say X, and the others’ aggregated

bids on the machines. Suppose that yi is the total bid by other users on machine i. The user’s share on i is

then xi

xi+yi
if he bids xi on machine i. Therefore, the agent needs to solve the following optimization problem:

maximize

n
∑

i=1

wi
xi

xi + yi
, s.t. (5)

xi ≥ 0 , for 1 ≤ i ≤ n, and (6)

n
∑

i=1

xi = X . (7)

This optimization problem can be solved by using the following algorithm.

1. sort wi

yi
in decreasing order, and suppose that

w1

y1

≥ w2

y2

≥ · · · ≥ wn

yn
. (8)

2. compute the largest k such that

√
wkyk

∑k
j=1

√
wjyj

(X +
k
∑

j=1

yj) − yk ≥ 0 . (9)

11

3. set xi = 0 for i > k, and for 1 ≤ i ≤ k, set

xi =

√
wiyi

∑k
j=1

√
wjyj

(X +
k
∑

j=1

yj) − yi . (10)

The above algorithm takes O(n log n) time as sorting is the most expensive step. It is derived by using

Lagrangian multiplier method. Intuitively, the optimum is achieved by the bids where the bid on each machine

has the same marginal value. The challenge is to select the machines to bid on. Roughly speaking, one should

prefer to bid on a machine if it has high weight on the machine and if other’s bids on that machine is low.

That is the intuition behind the first sorting step.

One problem with the above algorithm is that it spends the entire budget. In the situation when there

are already heavy bids on the machines, it might be wise to save the money for later use. To deal with the

problem, a variation is to also prescribe a threshold λ to the agent and require that the margin on each

machine is not lower than λ, in addition to the budget constraint. Such problem can be solved by an easy

adaptation of the algorithm.

3.4.2 Predictability

Instead of maximizing its expected value, some applications may prefer to maintain a minimum amount of

a resource. An example of this is memory, where an application will swap pages to disk if it has less physical

memory than some minimum, but few applications benefit significantly from having more than that. Tycoon

allows agents to express this preference by putting larger bids on fewer machines. Let R be the total resource

size on a host and B be the sum of the users’ bids for the resource, excluding user i. From (1), the user i’s

agent can compute that to get ri of a resource, it should bid

bi =
riB

R − ri
. (11)

However, this only provides an expected amount of ri. To provide higher assurances of having this amount,

the agent bids more than bi. To determine how much more, the agent maintains a history of the bids at

that host to determine the likelihood that a particular bid will result in obtaining the required amount of a

resource. Assuming that the application only uses ri of the resource, the user will pay more per unit of the

resource than if his agent had just bid bi (see § 3.3.3), but that is the price of having more predictability.

12

3.4.3 Scalability

Since the computational overhead of the agent is low, the main scalability concern is communications over-

head. When making bids, a user agent may have to contact a large number of auctioneers, possibly resulting

in a large queueing delay. For example, to use 100 hosts, the agent must send 100 messages. Although the

delay to do this is proportional to the amount of resources the user is using, for very large numbers of hosts

and a slow and/or poorly connected agent host, the delay may be excessive. In this case, the agent can use

an application-layer multicast service (e.g., Bullet [16]) to reduce the delay. Since changing a bid consists of

simply setting an interval, the user agent can use a multicast service to send out the same interval to multiple

auctioneers. This would essentially make the communication delays logarithmic with respect to number of

hosts.

3.4.4 Verification

One potential problem with all auction-based systems is that auctioneers may cheat by charging more

for resources than the rules of the auction dictate. However, one advantage of Tycoon is that it is market-

based so users will eventually find more cost-effective auctioneers. Cost-effectiveness is an application-specific

metric. For example, an application may prefer a slow host because it has a favorable network location.

Users who are interested in CPU cycles would view that as a host with poor cost-effectiveness. However, in

many applications, the agent can measure cost-effectiveness fairly accurately. As an example, the rendering

application described in § 4 uses frames rendered per second as its utility metric. As a result, the cost-

effectiveness is frames rendered per second per credit spent for each host.

The measured cost-effectiveness is then used as the host weight for the best-response algorithm. This

algorithm will automatically drop a host from bidding when it sees that it is significantly less cost-effective

than the others. Effectively, Tycoon treats a cheating host as a host with poor cost-effectiveness. Therefore,

sophisticated techniques to detect or prevent cheating are not necessary. If no agent wants to spend credits

at a cheating auctioneer, the monetary incentive to cheat is greatly reduced.

3.5 Funding Policy

Funding policy determines how users obtain funds. Two possibilities are open loop and closed loop funding

policies. In an open loop funding policy, users are funded at some regular rate. The system administrators set

their income rate based on exogenously determined priorities. Providers accumulate funds and return them to

13

Processor Variety CPU Memory Disk # nodes Location

Pentium III 1 GHz 2 GB 32 GB SCSI 4 US

Mobile Pentium III 900 MHz 512 MB 40 GB IDE 8 UK

Pentium III 550 MHz 256 MB 10 GB IDE 2 US

Pentium II 450 MHz 128 MB 10 GB IDE 6 UK

Table 2: Specifications of the four types of computers used in the test cluster.

the system administrators. In a closed loop (or peer-to-peer) funding policy, users themselves bring resources

to the system when they join. They receive an initial allotment of funds, but they do not receive funding

grants after joining. Instead, they must earn funds by enticing other users to pay for their resources. A closed

loop funding policy is preferable because it encourages service providers to provide desirable resources and

therefore should result in higher economic efficiency.

4 Experiments

4.1 Experimental Setup

The experiments in this section were run the on the hosts shown in Table 2. All were running Linux with

the PlanetLab 2.4.22 kernel, which includes VServer and plkmod.

4.2 Agility

This section describes the results of experiments to test agility, the ability to adapt to changes in demand.

The workload is using the Maya 6.0 image rendering software to render frames in a movie scene. The jobs

were dispatched using the Muster job queue, an off-the-shelf product that manages distributed rendering

jobs. During the experiment two users were rendering concurrently on each node.

The first experiment examines the time for a user to acquire more resources to finish his rendering job

sooner. In Figure 2, a user has initialized his nodes with $10 to be spent over 30,000 seconds. He submits

a 200 frame rendering job to the Tycoon cluster. Someone else is already running on the cluster. Using the

bids of both users, auctioneers allocate the new user about twenty percent of each node. After running for

three minutes, the user notices that the job is not likely to finish early enough, so he changes the spending

interval to 300 seconds on all nodes. This will leave him with fewer credits at the end of the run than if he

left the interval at 30,000, but it is worth it to him. The time at when he changes the interval is marked by

the left vertical line. About twenty seconds later, the right vertical line marks the time at which the user is

14

 0

 50

 100

 150

 200

 0 50 100 150 200 250 300 350

fi

ni
sh

ed
 jo

bs

time

Figure 2: This figure shows a user increasing his share at 190 seconds by decreasing the bidding interval. As a result,
the throughput increases by 210 seconds.

able to detect an increased rate of rendering. Afterward, the frames finish at an increased speed, and the job

finishes on time.

This demonstrates the system’s ability to quickly reallocate resources. As in this case, this could be

because a user cannot accurately estimate the resource requirements of his application. Other possible causes

are that hosts have failed, the load has increased, the user’s deadline has changed, etc. The agility of the

system allows users to compensate for uncertainty.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 200 400 600 800 1000

fr
am

es
/s

time

low priority
high priority

Figure 3: This figure shows a low priority job with a small share getting lower throughput when a high priority job
arrives.

The second experiment examines the system’s ability to change allocations when a high priority job is

started. In this scenario, two users are rendering on the cluster. One user performs a low priority render, and

he funds his nodes with $10 for 100,000 seconds.

15

Figure 3 shows the average rate at which frames are finished for the two jobs. First the low priority

job runs alone, at an average rate of 1.1 frames per second. When second users submits the high priority

job, (marked with a vertical line in the figure), the throughput of the low priority job decreases almost

immediately to 0.2 frames per second, and the high priority job starts to render at 0.9 frames per second.

As soon as the high priority job finishes, the low priority job starts to utilize the CPUs again, and gets an

increased throughput.

When high priority job first starts, it has lower throughput because it is waiting for disk I/O. During that

time, the low priority job is able to continue to utilize the CPU. As soon as the high priority job is ready to

run, it produces frames at almost full speed. Based on the bids, its share is 90%. The actual throughput is on

average 0.9/1.1, which is slightly lower. This is also because of disk I/O delays. The throughput penalty from

I/O is higher for the high priority task than for the low priority task because it issues more I/O operations.

This is an artifact of this version of VServer being unable to regulate disk I/O bandwidth. If the virtualization

layer had that capability would yield an actual throughput closer to the ideal of 90%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ra
te

 (
fr

am
es

/s
)

or
 s

ha
re

 (
fr

ac
tio

n)

time

continuous job’s rate
bursty job’s rate

continuous job’s share

Figure 4: This figure shows how a user that runs infrequently can receive more resources when he does run in
comparison to a user that runs continuously.

The third experiment shows how the system treats a user who runs infrequently in comparison to one that

runs continously. Both users initialize their nodes with $10 for 300 seconds. One user starts a long continuous

job on the cluster. While the user is running alone, his share decreases in proportion to (1−P/ti)
τ/P where τ

is the time since the start of the experiment, ti = 300 is the funding interval, and P = 10 is the auctioneers’

update interval. Since the infrequent user is not running, the continuous job initially gets to use the whole

cluster, as shown in Figure 4.

After 400 seconds, the infrequent user starts running. Since it has not spent any money, it’s share is

16

 0

 50000

 100000

 150000

 200000

 250000

 300000

 1 2 3 4 5 6 7 8

A
gg

re
ga

te
 c

al
ls

 p
er

 s
ec

on
d

Concurrent processes

root
tycoon

Figure 5: System Call Performance

75 percent, and the job that has been running has a 25 percent share. Since both jobs continue to pay in

proportion to their balance, their shares remain at 75 and 25 percent, respectively, until the infrequnt users

stops running. The infrequent user returns at 1300 seconds and again he gets most of the resources. In this

case, he gets most of the resources because the continuous user’s share has dropped considerably.

The key point about this result is that the system encourages efficient usage of resources even when

users do not make explicit bids. In this experiment, the users bids were identical, which could have been

set when their accounts were created. Despite this, the infrequent user is rewarded for being judicious in

his resource consumption, while the continuous user is penalized for running all the time. In comparison, a

proportional share system would allocate 50% of the resources to each user when both are running. This gives

no disincentive for the continuous user to stop running. The performance improvement for the infrequent

user is (.75− .50)/.50 = 50% for one continuous user. For n continuous users, the performance improvement

is (.75 − (1/n))/(1/n), which goes to infinity as n goes to infinity.

4.3 Host Overhead

This set of experiments measures the overhead incurred by using Tycoon rather than using the same Linux

computer without Tycoon. This overhead includes VServer, plkmod, and the auctioneer overhead. Figures 5,

6, 7 and 8 illustrate the overhead for system calls, CPU-bound computation, and disk reading and writing,

respectively. In these experiments, from one to eight programs designed to test a particular type of operation

are invoked simultaneously by ssh. For the Tycoon experiments, each program is started as a distinct user.

In the root scenario, the programs are all run as root. The sum of the scores of all of the concurrent processes

17

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1 2 3 4 5 6 7 8

L
oo

ps
 p

er
 s

ec
on

d

Concurrent processes

root
tycoon

Figure 6: CPU-bound Task Performance

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 1.5 2 2.5 3 3.5 4

A
gg

re
ga

te
 K

B
 p

er
 s

ec
on

d

Concurrent processes

root
tycoon

Figure 7: Disk Read Performance

 0

 20000

 40000

 60000

 80000

 100000

 120000

 1 1.5 2 2.5 3 3.5 4

A
gg

re
ga

te
 K

B
 p

er
 s

ec
on

d

Concurrent processes

root
tycoon

Figure 8: Disk Write Performance

18

Operation SLS Bank Auc. Agent

Registration (per min.) 260 9634

SLS query (20 hosts) 89K 311

Bank transfer 1198 610

Account creation 5901 3592

Spending rate change 793 719

Table 3: Bytes sent from the specified entity while conducting the specified operation.

is plotted as a function of the number of concurrent processes.

For CPU-bound processes and for a few I/O-bound processes, Tycoon has less than five percent overhead.

The bulk of cluster applications are similar to these micro-benchmarks. For processes that involve many

system calls, the overhead is capped at ten percent, but few Tycoon processes will be system call-heavy. The

overhead for Tycoon is most significant for many disk reading processes. This may be due to the additional

memory overhead of VServers reducing the size of the buffer cache, but this is still being investigated.

4.4 Network Overhead

The primary bottlenecks that prevent the unfettered scaling of a Tycoon cluster are the two centralized

servers, the service location server (SLS) and the bank. Table 3 quantifies the costs of performing the most

common operations on a Tycoon cluster.

The most frequent process is the maintenance of soft-state between the auctioneers and the SLS. Assuming

that the SLS is allowed to use 100Mb/s network bandwidth (e.g., it is on a 1Gb/s network), it can manage

up to 75,000 Tycoon hosts. If clients use the best response agent to operate on the Tycoon cluster, they must

issue repeated host-list queries to the SLS to compute their optimal bidding strategy. If the agent updates

its strategy once a minute, it costs roughly 4KB/minute per agent per host. Again assuming this task is

allocated 100Mb/s of bandwidth, the product of the number of agents and number of hosts must not exceed

187M. Hence assuming that there are 75K hosts in the cluster, there may be up to 2500 agents running

concurrently. Similarly if there are only 2500 hosts, there may be up to 75K agents.

A less frequent operation is bank transfers from users to hosts. This task depends less on bandwidth and

more on the speed of the bank system in performing large integer arithmetic for authentication. On a 450

MHz Pentium III, this operation requires an average of 100ms. Assuming user perform bank operations every

twenty minutes per user per host, this bank supports an active user-host product of 12,000, which would

allow 24 simultaneous active users on a 500 host cluster. As a result, for the immediate future, a centralized

bank is not a significant problem. One reason is that much faster hardware is available. A 3 GHz bank

19

should support 6.7 times the number of users or hosts or combination thereof. Another reason is that the

current protocol performs only one credit transfer per connection. It could be optimized to perform multiple

transfers per connection which would amortize the authentication and communication costs. Finally, twenty

minutes is a very conservative estimate of bank operations. A more likely frequency is once a day. This would

allow even the current slow hardware and unoptimized protocol to support a user-host product of 864000.

A centralized bank is not likely to limit scalability in practice.

5 Related Work

This section describes related work in resource allocation. There are two main groups: those that incorporate

an economic mechanism1, and those that do not.

One of the key non-economic abstractions for resource allocation is a computer science context is Propor-

tional Share (PS), originally documented by Tijdeman [28]. Each PS process i has a weight wi. The share of

a resource that process i receives over some interval t where n processes are running is

wi

n−1
∑

j=0

wj

. (12)

PS maximizes utilization because it always provides resources to needy processes. One problem is that PS

is usually applied by giving each user a weight and directly transferring that weight to the user’s processes.

However, a user may not weigh all of his processes equally and PS does not give an incentive for users to

differentiate his processes. As a result, as a system becomes more loaded, the low value processes consume

more resources, until the high value processes cannot make useful progress (as shown by Lai, et al. [17]).

One common method for dealing with this problem is to rely on social mechanisms to set the PS weights

appropriately. A system administrator could set them based on input from users or users could “horse trade”

high weights amongst themselves. Although these mechanisms work well for small groups of people that trust

each other, they do not scale to larger groups and they have a high overhead in user time.

Most recent work by Waldspurger and Weihl [32], Stoica, et al. [25], and Nieh, et al. [19] on PS has focused

on computationally efficient and fair implementations. Lottery scheduling [32] is a PS-based abstraction that

is similar to the economic approach in that processes are issued tickets that represent their allocations.

1Here mechanism means the system that provides an incentive for users to reveal the truth (e.g., an auction)

20

Sullivan and Seltzer [27] extend this to allow processes to barter these tickets. Although this work provides

the software infrastructure for an economic mechanism it does not provide the mechanism itself.

Similarly, SHARP (described by Fu, et al. [13]) provides the distributed infrastructure to manage tickets,

but not the mechanism or agent strategies. In addition, SHARP and work by Urgaonkar, et al. [29] use an

overbooking resource abstraction instead of PS. An overbooking system promises probabilistic resources to

applications. Tycoon uses a similar abstraction for applications that require a minimum amount of a resource.

Another class of non-economic algorithms examine resource allocation from a scheduling (surveyed by

Pindedo [23]) perspective using combinatorial optimization (described by Papadimitriou and Steiglitz [21]) or

by examining the resource consumption of tasks (a recent example is work by Wierman and Harchol-Balter

[34]). However, these assume that the values and resource consumption of tasks are reported accurately.

This assumption does not apply in the presense of strategic users. Scheduling and resource allocation are

two separate functions. Resource allocation divides a resource among different users while scheduling takes

a given allocation and orders a user’s jobs.

Examples the economic approach are Spawn (by Waldspurger, et al. [31]), work by Stoica, et al. [26]., the

Millennium resource allocator (by Chun, et al. [9]), work by Wellman, et al. [33], and Bellagio (by AuYoung,

et al. [4]).

Spawn and the work by Wellman, et al. uses a reservation abstraction similar to the way airline seats

are allocated. Although reservations allow low risk, the utilization is also low because some tasks do not

use their entire reservations. Service applications (e.g., web serving, database serving, and overlay network

routing) result in particularly low utilization because they typically have bursty and unpredictable loads.

Another problem with reservations is that they can significantly increase the latency to acquire resources. A

reservation by one user prevents another user from using the resources for the duration of the reservation,

even if the new user is willing to pay much more for the resources than the first user. Reservations are

typically on the order of minutes or hours (Spawn used 15 minutes), which is too much delay for a highly

bursty and unpredictable application like web serving.

The proportional share abstraction used in the Millennium resource allocator comes the closest to that

used in Tycoon. Tycoon extends that abstraction with continuous bids, the best-response agent algorithm,

and secure protocols for bidding.

Bellagio uses a centralized allocator called SHARE developed by Chun, et al. [8]. SHARE takes the

combinatorial auction approach to resource allocation. This allows users to express preferences with com-

plementarities like wanting host A and host B, but not wanting host A without B or B without A. The

21

combinatorial auction approach relies on a centralized auctioneer to guarantee that the user either gets both

A and B or else nothing. Economic theory predicts that solving this NP-complete problem provides an al-

location with optimal economic efficiency. Tycoon addresses the combinatorial problem in a possibly less

economically efficient, but more scalable way. In Tycoon, credits are only spent when the user actually con-

sumes resources, so the user’s agent can see that it only has A before his application runs and thereby prevent

wasting credits on an unvalued resource. The disadvantages of the combinatorial auction approach are the

centralized auctioneer and the difficulty of the combinatorial auction problem. The centralized auctioneer

is vulnerable to compromise and limits the scalability of the system, especially since it must be involved in

all allocations. Moreover, even computationally efficient heuristic algorithms operate on the order of min-

utes, while Tycoon reallocates in less than ten seconds. Recent work by Hajiaghayi [14] on online resource

allocation may be able to reduce the delay of the combinatorial approach.

6 Future Work

One area of future work is more complete virtualization. The prototype implementation uses early versions

of VServer and plkmod which only support virtualization of CPU cycles. Later versions of VServer, Xen [11],

and the Class-based Kernel Resource Management (CKRM) [3] support more complete virtualization and

should be relatively straight-forward to integrate with Tycoon.

Another area of future work is to develop a scalable banking infrastructure. One possibility is to physically

distribute the bank without administratively distributing it. The bank would consist of several servers with

independent account databases. A user has accounts on some subset of the servers. A user’s balance is split

into separate balances on each server. To make a transfer, users find a server where both the payer and

payee have an account and that contains enough funds. The transfer proceeds as with a centralized bank.

Users should periodically redistribute their funds among the servers to ensure that one server failure will not

prevent all payment.

7 Summary

An economic mechanism is vital for large-scale resource allocation. This paper proposes a distributed market

where auctioneers only manage local resources. A user’s agent sends separate bids to these auctioneers, where

each bid is for a single type of resource at that host. The bids are continuous bids in that they stay in effect

22

until the user’s local balance is depeleted. Resources are allocated to users in proportion to their bids using

a best-effort model. Agents are responsible for optimizing their users’ utility.

Experiments with a prototype implementation show that: 1) continuous bids reduce the burden on users

by allowing them to run without frequent interactive bidding while still making an efficient and low-latency

allocation; 2) distributed auctioneers result in very low overhead for allocation; and 3) the best-response

algorithm can optimize across multiple markets.

8 Acknowledgements

Several people provided key contributions without which this research would not have been possible. David

Connell assembled, installed, and administered the Tycoon cluster. Peter Toft provided the machines in

Bristol and John Henriksson maintained them. John Janakiraman provided several machines in Palo Alto.

The economic mechanisms described here benefited from several discussions with Leslie Fine. Stephen Sorkin

ran the Vserver overhead experiments. Josh Tyler designed the user interfaces.

References

[1] http://www.linux-vserver.org/.

[2] http://www.vmware.com/.

[3] 2004. http://ckrm.sourceforge.net/.

[4] AuYoung, A., Chun, B. N., Snoeren, A. C., and Vahdat, A. Resource Allocation in Federated Distributed

Computing Infrastructures. In Proceedings of the 1st Workshop on Operating System and Architectural Support

for the On-demand IT InfraStructure (2004).

[5] Bavier, A., Bowman, M., Chun, B., Culler, D., Karlin, S., Muir, S., Peterson, L., Roscoe, T.,

Spalink, T., and Wawrzoniak, M. Operating System Support for Planetary-Scale Network Services. In

Symposium on Networked Systems Design and Implementation (2004).

[6] Bugnion, E., Devine, S., Govil, K., and Rosenblum, M. Disco: Running Commodity Operating Systems

on Scalable Multiprocessors. ACM Transactions on Computer Systems 15, 4 (1997), 412–447.

[7] Cerf, V., and Kahn, R. A Protocol for Packet Network Intercommunication. IEEE Transactions on Computers

22, 5 (May 1974), 637–648.

[8] Chun, B., Ng, C., Albrecht, J., Parkes, D. C., and Vahdat, A. Computational Resource Exchanges for

Distributed Resource Allocation. 2004.

23

[9] Chun, B. N., and Culler, D. E. Market-based Proportional Resource Sharing for Clusters. Technical Report

CSD-1092, University of California at Berkeley, Computer Science Division, January 2000.

[10] Clark, D. D. The Design Philosophy of the DARPA Internet Protocols. In ACM SIGCOMM (1988), pp. 106–

114.

[11] Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Pratt, I., Warfield, A., Barham, P., and

Neugebauer, R. Xen and the Art of Virtualization. In Proceedings of the ACM Symposium on Operating

Systems Principles (2003).

[12] Foster, I., and Kesselman, C. Globus: A Metacomputing Infrastructure Toolkit. The International Journal

of Supercomputer Applications and High Performance Computing 11, 2 (Summer 1997), 115–128.

[13] Fu, Y., Chase, J., Chun, B., Schwab, S., and Vahdat, A. SHARP: An Architecture for Secure Resource

Peering. In ACM Symposium on Operating Systems Principles (SOSP) (October 2003).

[14] Hajiaghayi, M. T., Kleinberg, R., and Parkes, D. C. Adaptive Limited-Supply Online Auctions. In Proc.

ACM Conf. on Electronic Commerce (2004), pp. 71–80.

[15] Hurwicz, L. The Design of Mechanisms for Resource Allocation. American Economic Review Papers and

Proceedings 63 (1973), 1–30.

[16] Kostic, D., Rodriguez, A., Albrecht, J., and Vahdat, A. Bullet: High Bandwidth Data Dissemination

Using an Overlay Mesh. In Proceedings of the 19th ACM Symposium on Operating System Principles (2003).

[17] Lai, K., Huberman, B. A., and Fine, L. Tycoon: A Distributed Market-based Resource Allocation System.

Tech. rep., arXiv, 2004. http://arxiv.org/abs/cs.DC/0404013.

[18] Massie, M. L., Chun, B. N., and Culler, D. E. The Ganglia Distributed Monitoring System: Design,

Implementation, and Experience. Parallel Computing 30, 7 (July 2004).

[19] Nieh, J., Vaill, C., and Zhong, H. Virtual-Time Round-Robin: An O(1) Proportional Share Scheduler. In

Proceedings of the USENIX Annual Technical Conference (2001).

[20] Oppenheimer, D., Albrecht, J., Patterson, D., and Vahdat, A. Scalable Wide-Area Resource Discovery.

Tech. rep., U.C. Berkeley, July 2004.

[21] Papadimitriou, C. H., and Steiglitz, K. Combinatorial Optimization. Dover Publications, Inc., 1982.

[22] Peterson, L., Anderson, T., Culler, D., , and Roscoe, T. Blueprint for Introducing Disruptive Technology

into the Internet. In First Workshop on Hot Topics in Networking (2002).

[23] Pinedo, M. Scheduling. Prentice Hall, 2002.

[24] Saltzer, J. H., Reed, D. P., and Clark, D. D. End-To-End Arguments in System Design. ACM Transactions

on Computer Systems 2, 4 (1984), 277–288.

24

[25] Stoica, I., Abdel-Wahab, H., Jeffay, K., Baruah, S., Gehrke, J., and Plaxton, G. C. A Propor-

tional Share Resource Allocation Algorithm for Real-Time, Time-Shared Systems. In IEEE Real-Time Systems

Symposium (December 1996).

[26] Stoica, I., Abdel-Wahab, H., and Pothen, A. A Microeconomic Scheduler for Parallel Computers. In

Proceedings of the Workshop on Job Scheduling Strategies for Parallel Processing (April 1995), pp. 122–135.

[27] Sullivan, D. G., and Seltzer, M. I. Isolation with Flexibility: a Resource Management Framework for Central

Servers. In Proceedings of the USENIX Annual Technical Conference (2000), pp. 337–350.

[28] Tijdeman, R. The Chairman Assignment Problem. Discrete Mathematica 32 (1980).

[29] Urgaonkar, B., Shenoy, P., and Roscoe, T. Resource Overbooking and Application Profiling in Shared

Hosting Platforms. In Proceedings of Operating Systems Design and Implementation (December 2002).

[30] Varian, H. R. Economic Mechanism Design for Computerized Agents. In Proc. of Usenix Workshop on

Electronic Commerce (July 1995).

[31] Waldspurger, C. A., Hogg, T., Huberman, B. A., Kephart, J. O., and Stornetta, W. S. Spawn: A

Distributed Computational Economy. Software Engineering 18, 2 (1992), 103–117.

[32] Waldspurger, C. A., and Weihl, W. E. Lottery Scheduling: Flexible Proportional-Share Resource Manage-

ment. In Operating Systems Design and Implementation (1994), pp. 1–11.

[33] Wellman, M. P., Walsh, W. E., Wurman, P. R., and MacKie-Mason, J. K. Auction Protocols for

Decentralized Scheduling. Games and Economic Behavior 35 (2001), 271–303.

[34] Wierman, A., and Harchol-Balter, M. Classifying Scheduling Policies with respect to Unfairness in an

M/GI/1. In Proceedings of the ACM SIGMETRICS 2003 Conference on Measurement and Modeling of Computer

Systems (2003).

9 Author Bios

Kevin Lai is a member of the Information Dynamics Lab at HP Labs. He received his Ph.D. in Computer Science from

Stanford University. Previously, he was a post-doctoral scholar in the School of Information Management and Systems

(SIMS) and EECS Department at U.C. Berkeley. His interests include operating systems, networking, distributed

systems, and economic approaches to computer science.

Lars Rasmusson is a member of the Information Dynamics Lab at HP Labs, and currently on leave from the Swedish

Institute of Computer Science. He received his Ph.D. in Computer Science from KTH, Stockholm, and currently works

on market-based mechanisms for distributed resource control, and on ways of applying financial market theory to the

control of distributed computer systems.

25

Eytan Adar is a member of the Information Dynamics Lab at HP Labs. He received his Masters from MIT and

currently works on peer-to-peer systems, social networks, visualization, and privacy.

Li Zhang is a member of the Information Dynamics Lab at HP Labs. He received his Ph.D. in Computer Science

from Stanford University, and worked at Compaq (previously DEC) Systems Research Center before joining HP. He

recent work includes game theoretical analysis of resource allocation, routing and information aggregation in wireless

networks, computational geometry, fault tolerant systems, and cryptography.

Bernardo Huberman is a Senior Fellow and Director of the Information Dynamics Laboratory at HP Labs. He

received his Ph. D in Physics from the University of Pennsylvania. Previously he was a Fellow at Xerox Parc and

visiting professor at the Universities of Paris, France and the Niels Bohr Institute in Copenhagen, Denmark. He is

interested in the dynamics of information, the behavior of social and computational systems, and mechanism design.

26

