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Abstract

Game theory suggests quantum information processing technologies

could provide useful new economic mechanisms. For example, using shared

entangled quantum states can alter incentives so as to reduce the free-rider

problem inherent in economic contexts such as public goods provisioning.

However, game theory assumes players understand fully the consequences

of manipulating quantum states and are rational. Its predictions do not

always describe human behavior accurately. To evaluate the potential

practicality of quantum economic mechanisms, we experimentally tested

how people play the quantum version of the prisoner’s dilemma game in

a laboratory setting using a simulated version of the underlying quan-

tum physics. Even without formal training in quantum mechanics, people

nearly achieve the payoffs theory predicts, but do not use mixed-strategy

Nash equilibria predicted by game theory. Moreover, this correspondence

with game theory for the quantum game is closer than that of the classical

game.
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1 Introduction

Recent developments in quantum computing and demonstrated exchanges of en-
tangled quantum states over distances of tens of kilometers have led to increased
interests in quantum games. Extending classical games into the quantum realm
broadens the range of strategies [20]. Examples of quantum games analyzed
with game theory methods include the prisoner’s dilemma [12, 13, 10, 11] and
the n-player minority game [5]. Of more direct relevance for economics are
games involving correlated choices without communication [18, 22]. This raises
the possibility of creating new economic mechanisms using quantum information
processing technologies.

A quantum mechanism to produce public goods is one such example [8, 27].
Provisioning of public goods is one of the most important economic contexts
giving rise to the free-rider problem. The free-rider problem cannot be solved
with traditional means without either a third party to enforce agreements or
a repeated game scenario in which participants can self-police (e.g., tit-for-tat
behaviors [3]).

While quantum information processing thus offers the possibility of creating
new economics applications, many important questions are still unanswered.
The most significant one is how people would, in fact, play quantum games. To
date, the work on quantum games only involves game theoretic analysis. Can
people learn to play as well as game theory predicts without requiring training
in quantum mechanics? Even for conventional games, the predictions of game
theory do not always match human behavior because the theory often assumes
unrealistic levels of rationality of its players [24, 7]. Furthermore, people are
known not to play mixed strategies even when game theory indicates rational
players would do so. Proposed quantum games often have no single-strategy
Nash equilibrium and multiple mixed-strategy equilibria. In such cases, game
theory does not make unique predictions even for rational players. Furthermore,
quantum games often have probabilistic outcomes, i.e., the payoffs aren’t nec-
essarily the same each time players make the same choices. These properties
make it even more difficult for people to achieve the rational play predicted by
game theory [6].

A second major question is how readily quantum games can be physically
implemented, as they require the creation, transmission, storage and operation
on entangled quantum states. While this issue is beyond the scope of this
paper, it is interesting to note that many quantum games do not require long
sequences of coherent operations and hence are more likely to realize than large-
scale quantum computations such as required to factor numbers large enough to
be of cryptographic relevance. Physical implementation of the game reported
in this paper should be feasible in the near future.

This paper reports a sequence of laboratory experiments to address the
crucial question of whether people can understand and play quantum games
as game theory has predicted. We used a quantum version of the prisoner’s
dilemma for this study. Our major goal is to test whether actual human be-
havior results in the predicted higher levels of cooperation compared to zero
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cooperation in the classical version. The prisoner’s dilemma, of course, is one
of the most studied games in the literature. The rich background of prisoner’s
dilemma research allows us to contrast our results, about behavior of human
subjects playing quantum games, with behavior in the classical version of the
game, which is widely known. Furthermore, the prisoner’s dilemma is also a
simple version of the public goods game, for which a quantum mechanics based
mechanism performs efficiently for large groups [8]. Specifically, for two players
with equal preferences and endowments, the public goods problem reduces to
the prisoner’s dilemma. The prisoner’s dilemma illustrates the free-rider prob-
lem [17] in the simplest context of a two-person game, in which each player
has the choice to “cooperate” or “defect”. Payoffs for both players are higher
when both of them choose to cooperate instead of both defecting. However,
each individual is better off by defecting. The prisoner’s dilemma involves the
possibility of altruistic behaviors in which participants can either select actions
that most benefit themselves or those that benefit the group as a whole but at
some individual loss [2].

Game theory predicts defection independent of the number of players for
the classical n-player prisoner’s dilemma (public goods game). However, the
quantum version, when extended to multiple players, results in higher efficiencies
when the number of players increases. This difference allows us to further test
whether the quantum version can induce behavior substantially different from
the classical version.

Instead of waiting for development of a physical implementation of the quan-
tum game, we simulated all the quantum components since the subjects in a
laboratory setting would not be able to tell the difference. Specifically, instead
of performing operations on physical quantum states, players sent their choices
of quantum operators to a computer server which then performed the operations
on simulated quantum states. Simulation of quantum games [26] is suitable for
laboratory studies which guarantee participants follow the rules of the game
without need for the security properties of a physical implementation or de-
veloping the legal sanctions of real economic contracts. Moreover, the game
involves only a modest number of quantum states, so the exponential increase
in time and memory required for simulation on conventional machines is not
significant. From a research perspective, a simulation of a quantum game has
the additional advantage of allowing a detailed analysis of behavior, since it
gives access to the operators and probabilities of each outcome, not just the
single observed outcome.

The practical benefit of such quantum mechanisms depends on other issues,
such as computational feasibility of the simulation or security requirements of
the mechanism, rather than the absolute need of a physical implementation.
Simulated quantum mechanics can easily implement any quantum game pro-
vided that the size of the relevant quantum systems are small enough so the ex-
ponential overhead associated with such simulations remains manageable. The
differences in security and communication costs as well as the level of trust as-
sumed for the simulator are important factors determining the value of a true
physical quantum implementation. For instance, the quantum version allows
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“Lo” payoffs “Hi” payoffs
C D C D

C 150; 150 75; 175 180; 180 90; 190
D 175; 75 100; 100 190; 90 100; 100

Table 1: Payoffs for the two prisoner’s dilemma games we investigated. First
player’s choice to cooperate (C) or defect (D) are shown in the rows, and second
player’s choice in the columns. Each entry shows the payoffs to the first and
second players for that combination of choices. For example, in the second set
of payoffs, if the first player cooperates but the second defects, the first player
receives a payoff of 90.

only a single measurement of the outcome. Other properties of the quantum
state are destroyed by this measurement, reducing information available to infer
individual individual operator choices, and hence providing additional privacy.
For example, an auction implemented with a quantum mechanism can guaran-
tee that losing bids will never be revealed. Such privacy can also be achieved
via conventional cryptographic methods but with security based on the compu-
tational difficulty of deciphering encrypted messages rather than guaranteed by
the laws of quantum physics. Moreover, with conventional cryptography, pri-
vate information could later be revealed either deliberately by one of the parties
with the key or via a legal requirement to produce the information.

The paper is organized as follows. Sec. 2 describes the quantum formulation
of the prisoner’s dilemma game. We focus on comparing with the standard clas-
sical prisoner’s dilemma for simplicity, leaving for future work more complicated
comparisons with conventional economic approaches to free riding or allowing
use of classically correlated rather than entangled quantum states to enhance
the game [21]. Sec. 3 discusses the design of the experiment on human sub-
jects playing this game. Sec. 4 describes resulting behaviors we observed and
how they compare to game theory predictions. Sec. 6 concludes with possible
extensions to our experiments.

2 The Quantum Prisoner’s Dilemma

Two sets of payoffs, labelled “Lo” and “Hi” respectively, were used in our pris-
oner’s dilemma experiments, as shown in Table 1. In both cases, defecting is
the dominant strategy but cooperating is more efficient, in a Pareto sense, than
defecting. The two instances differ in the benefit of individual defection (25 and
10, respectively) and the difference in payoffs between both cooperating, i.e.,
the efficient outcome, and both defecting, i.e., the Nash equilibrium (50 and 80,
respectively). Thus compared to the first set of payoffs, the second set, labelled
“Hi”, gives players less temptation to defect and a greater incentive for mutual
cooperation.

We presented the prisoner’s dilemma in our experiments as a contribution
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game in which participants contribute (cooperate) or not (defect) toward the
production of a public good, in the form of additional payoffs received by the
two players. Specifically, in a single instance of the game, each of two players
is given an initial wealth W = 100, and can keep it or contribute all of it to
the group. Let ci denote the amount, 0 or W , player i contributes, so the total
contribution from all players is C =

∑n

j=1 cj , where n is the number of players
(2 in the case of the prisoner’s dilemma). The total contribution is multiplied
by a and distributed equally among the players. This two-player contribution
game is identical to a public goods game where the size of the group is n = 2
and the production function of the payoff from the public good is aC/n where
1 < a < n. Thus the payoff to player i is

W − ci +
a

n
C (1)

Since a < n, each player obtains a higher payoff by not contributing no matter
what choices other players make. If all players make this dominant choice,
each receives a payoff of W . If they all contribute, each payoff would be the
larger value aW . Thus the group is better off if all contribute, but each person
prefers not to contribute and free-ride on the public good produced by others’
contributions.

The two sets of payoffs in Table 1 correspond to a = 1.5 and 1.8, respectively.
Thus the players’ choices are framed in terms of a decision to contribute or not,
which correspond to the cooperate and defect choices of the prisoner’s dilemma.
We chose this framework to place the prisoner’s dilemma in an economically rele-
vant setting, namely a two-player version of the public goods game. This setting
naturally extends to public goods games with larger groups. This mapping to
a public goods game is only relevant in the larger context of using quantum
mechanics to solve economics problems. In this paper, we primarily focus nar-
rowly on behavior observed in the two prisoner’s dilemma games described by
Table 1.

2.1 Playing the Quantum Game

Quantum games [20] can be described in the standard mathematical framework
for quantum mechanics [14], which we briefly describe here in the context of the
quantum version of the prisoner’s dilemma game. Players manipulate physical
systems with two physical states (such as a photon with vertical or horizontal
polarization). In analogy with two-state devices used to implement bits, the
quantum version of such systems are called qubits. A set of n classical bits can
exist in one of 2n different configurations, and various logic operations on these
bits change them from one configuration to another. The quantum system is
more complicated: a superposition of the 2n states. A superposition corresponds
to a complex-valued vector, with one component (called an amplitude) for each
of the 2n configurations. Quantum operations alter the superposition by mul-
tiplying the original vector by a complex-valued matrix. The configuration of
the quantum system can also be observed or measured. Doing so produces a
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Figure 1: Two-player quantum game.

definite state of each bit, i.e., a single configuration. The configurations are
produced probabilistically with probabilities equal to the squared magnitudes
of the amplitudes associated with the configurations in the superposition. The
superposition vector itself is not observable, only its consequence in determining
the probability of observing the various possible configurations of states.

The quantum prisoner’s dilemma is set up as follows: first create an initial
pair of qubits (with 0 and 1 representing cooperate and defect, respectively),
physically transmit one qubit to each player, allow each to operate on their
individual qubit before sending them back to the source, then combine the re-
sult (by undoing the initial entangling pair-creating operation). To preserve the
correspondence with the original game, the game is designed so two particu-
lar quantum operations correspond to the classical choices. This allows the
players, if they wish, to play the original prisoner’s dilemma by restricting their
choices to these particular operations. The final measurement gives a definite
value for each qubit, which then corresponds to the individuals’ choices. Fig. 1
schematically illustrates this game scenario.

This game involves two qubits, one for each player, so the quantum system
is described by a vector of 22 = 4 amplitudes, with one amplitude for each
possible combination of values for the two bits, i.e., |00〉, |01〉, |10〉 and |11〉.
Initially, each of the two bits is set to 0, i.e., they are in the configuration |00〉,
corresponding to the initial vector v = (1, 0, 0, 0). After completing the steps of
the game, the final vector for the pair is

ψ = J†(UA ⊗ UB)Jv (2)

where J is the entanglement operator acting on the two bits, J†, its adjoint, is
the disentanglement operator, and UA, UB are the single-bit operators selected
by the two players. Aside from the players’ choices of UA, UB the rest of the
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game is fixed and public knowledge. Specifically, J is the 4 × 4 matrix

J =
1√
2
(I + iσx ⊗ σx) =

1√
2







1 0 0 i
0 1 i 0
0 i 1 0
i 0 0 1






(3)

where σx is the 2 × 2 Pauli matrix

(

0 1
1 0

)

. The players choose from among

the general single-qubit operators, given by

U(θ, φ, α) =

(

e−iφ cos θ
2 eiα sin θ

2

−e−iα sin θ
2 eiφ cos θ

2

)

(4)

up to an irrelevant overall phase factor. That is, each player is given physical
possession of one of the qubits, and can operate on that bit with any quantum
operator. Hence the players’ choices correspond to the general single-qubit
operators. By contrast, the initialization operator J operates on both qubits
together to produce a superposition of the two configurations |00〉 and |11〉,
described by the vector (1/

√
2, 0, 0, i/

√
2). The inverse operator J†, applied

after the players make their choices, also operates on both qubits.
Given the choices θA, φA, αA and θB, φB , αB of the players, matrix multi-

plication gives the resulting probabilities for the four outcomes, |00〉, |01〉, |10〉
and |11〉 as [8]
(

cos

(

θA

2

)

cos

(

θB

2

)

cos(φA + φB) − sin

(

θA

2

)

sin

(

θB

2

)

sin(αA + αB)

)2

(

sin

(

θA

2

)

cos

(

θB

2

)

cos(αA − φB) − cos

(

θA

2

)

sin

(

θB

2

)

sin(φA − αB)

)2

(

sin

(

θA

2

)

cos

(

θB

2

)

sin(αA − φB) + cos

(

θA

2

)

sin

(

θB

2

)

cos(φA − αB)

)2

(

cos

(

θA

2

)

cos

(

θB

2

)

sin(φA + φB) + sin

(

θA

2

)

sin

(

θB

2

)

cos(αA + αB)

)2

respectively. These expressions capture the full behavior of this 2-player quan-
tum game, and hence allow implementing the game via simulation with minimal
computational cost.

This quantum game contains the classical prisoner’s dilemma. Specifically
the operators U(0, 0, 0) = I and U(π, 0, π/2) correspond to cooperate and defect,
respectively. That is, if both players restrict their choices to these two operators,
the outcomes are always the same as that of the classical game. For example, if
both players pick U(0, 0, 0), then the outcome |00〉 (i.e., both players cooperate)
has probability one.

2.2 Nash Equilibria for the Quantum Game

In the classical game, defect is the dominant strategy. By contrast, in the
quantum game, no such dominant strategy exists. Specifically, for given choices
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θA, φA, αA made by Alice, Bob can always arrange for the outcome in which
Alice cooperates but Bob does not, i.e., the highest possible payoff for Bob, by
selecting

θB = θA + π (5)

φB = αA

αB = φA − π/2

Hence the game strategy space is analogous to the game stone, paper, scis-
sors rather than conventional prisoner’s dilemma (where a single choice, i.e.,
defect, is always the best response). Thus there is no single strategy equilib-
rium. Mixed strategies provide a Nash equilibrium but there are many such
equilibria, all with the same expected payoff. We use the Bayesian Nash equi-
librium as the rational solution concept for the quantum game. Each individual
will play a strategy (pure or mixed) such that they are mutually maximizing
their expected payoff. None have an incentive to make a unilateral change to
their strategy. Rational players could pick among these equilibria arbitrarily, or
mix among them.

As an example of a mixed strategy, suppose Alice is considering the choice
θA, φA, αA. If she always makes this choice, Bob could respond with Eq. (5),
forcing Alice to cooperate while Bob does not. Realizing this response on the
part of Bob, Eq. (5) gives Alice an alternate set of values θA′ , φA′ , αA′ equal
to θ′A = θA, φ′

A = φA − π/2, α′
A = αA − π/2, that will instead force Bob

to cooperate while Alice does not. In response to these, Bob has the choices
θ′B = θA + π, φ′

B = αA − π/2, α′
B = φA − π, and finally Alice’s original values

are a best response to these. Thus if Alice picks randomly among θA, φA, αA

and θA′ , φA′ , αA′ while Bob picks randomly among θB , φB , αB and θB′ , φB′ , αB′ ,
then half the time Alice will have a best response against Bob, receiving payoff
W (1 + a/2). But the other half, roles will be reversed, giving Alice a payoff
of Wa/2, and hence an overall expected payoff of W (1 + a)/2. Note that such
a mixed strategy will be apparent in the outcome probabilities: half the time
giving probability 1 of outcome 01, and the other half a probability 1 of outcome
10. Averaging over many runs of such choices, we would see outcomes 01 and
10 have average probabilities 1/2.

Since there is such a mixed strategy equilibrium for any choice of θA, φA, αA,
the extreme case is a uniform mix of these possible strategies, amounting to
random selection of the angles. If players use a random selection strategy, the
expected values of the probabilities for each outcome are 1/4, again leading each
player to cooperate half the time, but with different average probabilities than
the case with a best response mixed strategy.

For any of these equilibria, we expect cooperation with probability 1/2. Thus
it is more efficient than the classical prisoner’s dilemma where game theory
predicts no cooperation although it does not achieve the full efficient outcome.

Thus, game theory provides only weak predictions of the strategies rational
players will pick. However, it supplies a strong prediction on the average rate of
co-operation independent of which mixed strategy equilibrium the players will
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play. Notice that game theory is predicting that the quantum version of the
prisoner’s dilemma will result in substantially more (50% vs 0%) cooperation
than the classical version. This potential differentiation, even when altruism is
a significant factor, allows us to measure experimentally whether people behave
differently in the quantum and classical versions of the prisoner’s dilemma.

3 Experimental Design

The primary goal of the experiments is to determine whether the quantum
version of the prisoner’s dilemma is more efficient than the classical version.
Both versions were implemented in the HP Experimental Economics software
platform [9]. A second goal is to ascertain how well subjects play quantum
games without specific training in quantum mechanics. While difficult to obtain
a precise answer to this question even in an experimental setting, we approach
it in two ways: quantitatively by comparing how close people come to the game
theory predicted outcome, and qualitatively by asking participants to describe
their strategy in a written paragraph after completing the experiment.

Before the experiments, subjects were directed to a web site1 where the
instructions were posted. They had to pass a web-based quiz correctly before
they were allowed to participate.

3.1 Experimental Procedure

Each experiment consisted of a series of periods, during which each person
played a single instance of the game. To induce behavior corresponding to
randomly-matched game situations, players were randomly paired at the begin-
ning of each period. This randomization is designed to reduce repeated game
effects in which players can encourage cooperation through the expectation of
future rewards or punishment, e.g., as results in the tit-for-tat behavior seen in
the repeated version of the classical prisoner’s dilemma [3].

The classical version of the game is easily implemented: each player makes
a binary decision of whether to cooperate or not.

In the quantum game [8], players manipulate a shared entangled state. For
the quantum game, except when the choices of both players give probability one
to a single outcome, the payoffs of the quantum game aren’t necessarily the same
each time players make the same choices due to the probabilistic selection of
outcomes. This property makes it difficult for people to achieve the rational play
predicted by game theory because of uncertain feedback even if players want to
co-ordinate equilibrium play. To facilitate co-ordination between players, in each
period we allowed subjects two rounds of communication before they played the
game for real. Here is a chronological order of the events in a period:

1. The computer randomly grouped the players into groups of two. (The
experiments were conducted with even number of players.) Players were

1http://www.hpl.hp.com/econexperiment/Quantum Public Goods/instructions overview.htm
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not told who their opponents were.

2. Each player had two chances to send a message to his opponent in the
group. The message consisted only of a set of three numbers, in the range
0 to 12.

3. They played the game by each entering three numbers.

4. The outcome was revealed.

All quantum interactions were handled through software simulation. No real
quantum device was used. That is, between steps 3 and 4 the simulation used the
numbers from each player to specify single-bit quantum operators, performed
the operations and produced the outcome corresponding to observing the final
state of the system. From the perspective of the users, this simulation provided
the same behavior as would an actual physical implementation. In particular,
the participants learned the outcome but not the actual choices made by their
opponent.

We used the two sets of payoffs shown in Table 1. Nash equilibrium analysis
indicates that both sets should give the same rates of cooperation in either the
quantum or the classical version of the game. Previous work in the classical
prisoner’s dilemma has shown that even in randomly-matched games, people
cooperated to some extent, usually explained by non-Nash behavioral effects
such as altruism [19]. Thus we varied the payoffs to see if the quantum games
shows similar behavior effects. As an additional comparison, we also ran a
“repeated game” version of the experiment in which players were randomly
grouped into pairs just once, at the start of the experiment, and played repeated
with the same opponent for all periods.

3.2 Interface and Training

In the quantum version of the game, each player picks three numbers, repre-
senting the angles of corresponding quantum operators. We chose to specify
angles as numbers between 0 and 12, telling participants that the numbers cor-
responded to hours on a clock so 12 was equivalent to 0. Since it is not practical
to teach subjects quantum mechanics or game theory, we developed tools to
present the game without requiring such training. Specifically, we developed
“what-if” scenario tools to show the players consequences of possible choices.
Quantum mechanics was not mentioned to the subjects. All the quantum pro-
cesses were described as black boxes and the “what-if” tools allowed the players
to learn the behavior of these processes.

Two “what-if” tools were provided. The first one allows a subject to input
6 numbers; three for his own choices and three as guesses to his opponent’s
input. Using these six numbers, the tool shows the probability of the four pos-
sible outcomes (cooperate/cooperate, cooperate/defect, defect/cooperate, de-
fect/defect).

For this particular quantum game, for any quantum operator one person
chooses, there is a corresponding operator the other can choose to force the
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total other 

contribution

payoff if I 

contribute

payoff if I 

don't

0 75 100 alpha beta gamma

100 150 175 If I choose: 5 0 8

This is Period 1 and they pick: 0 0 0

Number of Players 2

Last Period's Payoff 0

Current Period Wealth 100 Y N

Contribution Format All or None Them Y 6.70% 69.98%

N 23.33% 0.00%

Alpha 6 Given their

Beta 0 choice above,

Gamma 9 to maximize

this outcome: alpha beta gamma

Me: Y, Them: Y 0 0 9

Me: Y, Them: N 6 3 0

Me: N, Them: Y 6 0 9

Me: N, Them: N 0 3 0
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Decision SupportDECISION AREA

These are the 

token chances:

Me

Figure 2: The part of the experiment user interface used to enter a player’s
choices. The users specify their three choices in the Decision Area on the left,
as values between 0 and 12, called “alpha”, “beta” and “gamma”, which are
converted in the simulator to the corresponding angles θ, φ, α (each in the range
0 to 2π). The middle section shows the payoff table for that player, depending
on whether each player contributes. In this case, the screen shows the “Lo”
payoffs of Table 1. The right section shows the “what-if” decision support
tools. At the top, the player enters hypothetical choices for the two players in
the game. Based on these choices, the probabilities of the four outcomes are
shown in the middle. The bottom shows alternate choices for the player that
will produce each of the four outcomes with probability one, provided the other
player makes the hypothetical choices entered at the top. Other screens show
the payoff history, and allow communication with the other player in the game.
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number of
number of periods

experiment multiplier participants classical quantum
Lo-pilot a = 1.5 6 – 21
Lo-1 a = 1.5 10 20 30
Hi-1 a = 1.8 12 30 30
Hi-2 a = 1.8 10 30 30
Repeated a = 1.5 10 30 32

Table 2: Summary of the experiments, giving the multiplier a, number of par-
ticipants and number of periods for each game. Except for the pilot experiment,
each experiment involved both the classical and quantum versions of the games
with the same group of people during a single afternoon.

probability of any outcome to one. The second “what-if” tool allows a subject
to input three numbers as guesses of what his opponent might do. It then shows
the corresponding operators (3 numbers representing each operator) that will
result in certainty for each of the four possible outcomes.

Fig. 2 shows a portion of the user interface for the experiments. In the
Decision Support section, the player examines the consequence of the choices
5, 0, 8 (i.e., θ, φ, α equal to 5π/6, 0, 4π/3, respectively) when the other player
makes choices 0, 0, 0. For instance, with these choices, with probability of about
70%, the player will not contribute while the opponent does, a situation giving
the player a payoff of 175, as seen in the payoff table in the middle section of
the interface. The lower portion of the Decision Support shows the player could
obtain this outcome with 100% probability using the choices 6, 0, 9 (again under
the assumption that the opponent chooses 0, 0, 0).

4 Results

Table 2 summarizes our experiments. In the Repeated experiment, players were
randomly paired just once, at the start of the experiment, while in the others
players were randomly paired at the start of each period. We used two sets
of payoffs, labelled as “Lo” and “Hi”, giving lower and higher incentives for
cooperation, respectively, as indicated in Table 1.

We used bootstrapping methods [23] for many statistical tests reported in
this paper. Many comparisons, of cooperation rates and other measurements,
were evaluated with permutation tests. Furthermore, all calculations were per-
formed using the standard bootstrapping library of S-plus.

4.1 Cooperation Rates: Quantum vs. Classical

In all experiments, the levels of cooperation in the quantum games exceeded
those of the corresponding classical games, as shown in Table 3 and as pre-
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cooperation rate
experiment classical quantum p-value
Lo-pilot – – 41% 52/126 –
Lo-1 16% 32/200 52% 155/300 0.002
Hi-1 50% 179/360 57% 205/360 0.08
Hi-2 25% 76/300 46% 137/300 0.002
ALL-single 33% 287/860 51% 549/1086 0.002

Repeated 66% 236/360 86% 330/384 0.002

Table 3: Average cooperation frequencies in the classical and quantum games
for each experiment. In addition to the percentage of cooperation outcomes, we
also show, as a fraction, the number of times a player cooperated and the total
number of opportunities for cooperation (i.e., twice the number of games played
during the experiment, which equals the product of the numbers of players and
periods). The p-values give the probability cooperation rates would be at least
as different as we observed by chance, assuming there was no difference between
the classical and quantum games.

dicted by game theory [8]. This is strong evidence that the quantum game
outperformed its classical counterpart even in an environment where full ratio-
nality seemed unlikely. One interpretation of this result is that while players did
not solve complicated quantum physics mathematics, they found the solution
through a learning process. It is analogous to any child catching a ball without
consciously solving the complex equations governing the motion of the ball.

Two-population permutation tests were used to determine whether the co-
operation rate averaged over the classical games was different from that of the
quantum games. The typical number of re-samples is 1000. While we expect
some variations in the p-values that we reported, because of bootstrapping, we
do not expect it will affect our conclusions. Furthermore, the cooperation rates
in the quantum games were similar for the two different sets of payoffs of Table 1.
This indicates that our results are robust with variations in the payoffs.

The cooperation rates for the classical game are nonzero, even for the randomly-
matched games, indicating a degree of altruistic behavior or influence of the
possibility of some repeated play due to the small group size. On the other
hand, the cooperation rates for the randomly-matched quantum experiments
in Table 3 are consistent with the game theory prediction of 50%, as indicated
in Table 4. Specifically, the table also reports the two-sided binomial test of
whether the cooperation rates are significantly different from what would be
expected if the players have 50% probability to cooperate each time. As one
can see, we cannot reject the hypothesis of a 50% cooperation rate in all but
one of the quantum games (at 5% significance). Furthermore, the null hypoth-
esis could not be rejected when the test was performed on the pooled data of
all quantum experiments. Thus, we concluded that the aggregate behavior is
consistent with that predicted for the mixed strategy Nash equilibria in the case
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experiment p-value
Lo-pilot 0.06
Lo-1 0.60
Hi-1 0.01
Hi-2 0.15
ALL-single 0.73

Repeated 0.00

Table 4: Binomial test for significant difference from 50% cooperation for each
quantum experiment individually as well as all randomly-matched experiments
combined. The p-values are the probabilities to find cooperation rates at least
as different from 50% as we observed if each case independently had 50% prob-
ability to cooperate.

p-value
experiment classical quantum
Lo-pilot – 0.068
Lo-1 0.004 0.146
Hi-1 0.002 0.616
Hi-2 0.216 0.788
ALL-single 0.002 0.138

Repeated 0.060 0.176

Table 5: Binomial test for significant difference in cooperation between the
first and second halves of the periods in each experiment. The p-values are the
probabilities the difference in cooperation rates between the two halves would be
at least as large as we observed if games in both halves had the same cooperation
rate.

of the quantum game.

4.2 Time Dependence

Another measurement of rationality is in the time dependency of cooperation
rates. Game theory predicts the cooperation rates to be zero in prisoner’s
dilemma experiments, whether the games are finitely repeated or matched with
a random opponent every period. Similarly, game theory predicts that the
quantum version will result in 50% cooperation rate independent of whether
the games are repeated with the same opponent or not. However, it is a com-
monly observed phenomenon in classical prisoner’s dilemma experiments that
cooperation rates were more than zero and tended to decrease over time. It is
interesting to see if the the quantum version will have the same result.

No significant time dependence was observed in the randomly-matched quan-
tum games. Two-population permutation tests of cooperation rates in the first
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and second halves of all experiments reveal no statistical differences, as shown
in Table 5.

On the other hand, cooperation rates in the randomly matched classical
games tend to decrease toward the end, perhaps indicating our randomly-
matched setup is not viewed completely as a randomly-matched game by partic-
ipants. Since the focus of this research is to determine whether people can play
quantum games effectively, we were less concerned about strictly eliminating
the end-game effect. Methods such as using a larger group of subjects who only
play single games or using a random stopping time were procedurally inefficient
and were not employed.

Our results on cooperation rates and time dependence illustrate an interest-
ing paradox. While game theory requirement of rationality is more stringent in
the case of the quantum game than the classical version, we observe aggregate
behavior in the quantum game closer to the game theory predictions!

4.3 Individual Strategy

The results described above indicate game theory is a good predictor of aggre-
gate behavior of the quantum mechanism. Not only does the quantum game
give cooperation rates close to the 50% value of the mixed-strategy Nash equi-
libria, no time dependency of the cooperation rate was observed, which is also
consistent with game theory. This contrasts with the case of the classical game
in which a significant amount of cooperation is seen in spite of the dominant
strategy for the randomly-matched game being complete defection.

Beyond these aggregate predictions, game theory also indicates rational play-
ers of the quantum game will adopt a mixed-strategy equilibrium (but does not
specify which of the many equilibria will be selected since they all have the
same expected payoff). However, the surveys conducted after each experiment
indicate that subjects were often trying to guess what the other player would
do, and then select a best response based on that guess using the provided
what-if decision support tools. This suggests players were not deliberately play-
ing a mixed strategy, contrary to the prediction of game theory. For example,
one subject wrote, “I tried to anticipate what the other player was going to
enter in, and I would choose a set of numbers that would result in the other
player investing and me not investing”. While this is anecdotal evidence that
players understood the game and tried to optimize their payoffs, they were not
consciously considering mixed-strategy Nash equilibria.

To examine the question of strategy choice quantitatively, we examine more
detailed game theory predictions than just the overall cooperation rate. A par-
ticular complication of the quantum prisoner’s dilemma is that random choices
of the angles in Eq. (4) is one of the mixed-strategy equilibria. Thus if players
chose angles randomly we could not distinguish between a sophisticated choice
on their part to play a Nash equilibrium or simply uninformed random guesses
as to a suitable set of angles.

The Kolmogorov-Smirnov test was used to determine whether participants
were making random choices. The null hypothesis is that participants chose
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θ, φ, α randomly with a uniform distribution. Each game gives 6 observations,
3 per participant, of these choices. The number of observations for each experi-
ment is then six time the number of periods. The number of observations ranged
from 378 to 1152. In all quantum experiments, the hypothesis of independent
random choices is rejected with p-values of zero, or too small to be precisely cal-
culated by the statistical package that we used. This is overwhelming evidence,
consistent with our survey results, that participants did not play randomly.

Furthermore, because the average outcome probabilities are close to 1/4, we
can also exclude the possibility players are using a simple best-response Nash
equilibrium mixed-strategy based on each player using a pair of best response
choices to those of the other [8]. Such choices would result in half the time one
player cooperating while the other defects, and vice versa the other half of the
time, i.e., average outcome probabilities of 0.5 for |01〉 and |10〉 , and zero for
|00〉 and |11〉 . These values do not match the observed values close to 1/4.

In summary, both the players’ descriptions of their strategies and the ob-
served outcome probabilities indicate players are not using the mixed-strategy
Nash equilibria predicted by game theory. This observation is analogous to
human players of the stone-paper-scissors game trying to outguess each other
rather than generate random choices.

The observed outcome probabilities give a further consistency check on our
data, the probability for outcomes |01〉 and |10〉 should be the same, because
in each game the choice of who is considered to be the first player and who
is the second is made randomly by the system. This choice is irrelevant for
the strategic properties of the game, and does not appear in the user interface.
Instead, results from the “what-if” tools are always presented in terms of “my”
and “other’s” choices. Confirming this expectation, a two-sided test of the
observed outcome probabilities gave a 99.6% probability our observations could
have arisen from equal values when averaged over games.

4.4 Repeated Game

The experiment with the repeated version of the quantum prisoner’s dilemma
provides additional evidence of the player’s understanding of the quantum game.

The analysis of repeated games is difficult for game theory since the folk
theorem [1] shows that, with a suitable punishment strategy, any outcome can
be a Nash equilibrium given that the game is repeated infinitely and the dis-
count rate is high enough. While this theorem does not strictly apply to our
experiments, due to the finite number of repetitions during an afternoon, it
does indicate how repeated play can lead to different equilibria than single-shot
games. In particular, it makes mutual cooperation a possible equilibrium in the
classical prisoner’s dilemma, e.g., using a punishment strategy such as tit-for-
tat [3]. In practice, people do cooperate more if they are playing with the same
opponent.

Our experiment also showed increased cooperation in repeated games. Co-
operation rates in Table 3 show the repeated games, both classical and quantum,
give higher cooperation rates than the corresponding randomly-matched games
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(with p-value of 0.002). Moreover, subjects cooperated at a higher rate in the
quantum version of the game than in the classical one (with p-value 0.002). This
is in spite of the fact that the quantum version offers a less effective punishment
strategy because a player cannot guarantee his or her defection 100% of the
time.

Furthermore, this behavior is strong evidence that when the subjects wanted
to, they could co-ordinate effectively at the both-cooperate outcome, indicating
subjects developed a good understanding of the quantum game.

4.5 Variation Among Individuals

We also examined individual cooperation rates. In every experiment where we
ran both classical and quantum versions (i.e., all except the pilot), the standard
deviation of cooperation rates amongst individuals was substantially higher in
the classical game than in the quantum version of the prisoner’s dilemma. A
paired two-population t-test of standard deviations of individual cooperation
rates gives a p-value of 0.0042, rejecting the hypothesis that the two versions
have the same variation. This is strong evidence of less variation among indi-
viduals in the quantum game. In classical game, a few individuals cooperate
significantly more than others. This suggests the quantum game is not only
more efficient in aggregate, but also has an equalizing effect on cooperation
rates. The quantum mechanism can be construed as a more “fair” system than
the classical game since people cooperate at more similar rates.

5 Multiple-Player Prisoner’s Dilemma

In theory, the quantum mechanism described above can be extended to address
the public goods game among groups of n players [8], with payoffs given by
Eq. (1). Game theory predicts that cooperation rates will go up when the
size of the group increases when playing under this quantum mechanism, with
the expected payoff to each player of W (a − (a − 1)2−(n−1)). This is better
than the classical game’s equilibrium payoff W , and only slightly below the
efficient outcome, aW , for large n. This increasing efficiency contrasts with the
conventional observation that, in practice, free riding becomes more likely as
group size increases due to the increased difficulty of monitoring behavior of
group members [15]. Our experimental setup allows examining these assertions
empirically.

In the game we study [8], for n players, a source creates n(n−1)/2 entangled
pairs of qubits and sends them to the players so that each pair of players in the
group shares an entangled pair of qubits. The game consists of simultaneously
played “mini-games” between each pair of players, using their shared entangled
qubits. Thus each player participates simultaneously in n− 1 mini-games, each
of which is identical to the 2-player quantum game described in Sec. 2. For
simplicity, players are constrained to make the same choices for all of their mini-
games. In the case of homogeneous preferences and randomly selected groups
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that we study, relaxing this constraint does not change the strategic aspects of
the game [27]. With multiple bits for each player, we also need a rule relating
final observed bit values to the player’s contribution. In our case [8], for each
player, if any of their n − 1 bits is observed to be a 1, they contribute to the
public good, i.e., in effect they preauthorize a charge to their account based on
this outcome.

Game theory indicates the value of a (between 1 and n) has no effect on
equilibrium contributions in either the quantum or the classical version of the
game. However, a higher a means subjects gain more if they cooperate and could
affect actual behavior. To address this possibility, we examined two cases. First,
we used a = 0.75n, so the difference in payoff to each person when everyone
contributes and when no one does, (a − 1)W , grows with n. Thus as group
size increases, people have more to gain by finding a way to create the public
good rather than not producing any. However, the temptation to defect remains
constant: no matter what contributions others make, an individual gains (1 −
a/n)W = 0.25W by not contributing. This choice of payoffs corresponds to a
public goods scenario, such as building a local park, in which the quality of the
good increases with the size of the group involved. This situation provides a
stringent test for whether the quantum game can outperform the classical one,
especially in the small groups feasible to test in the laboratory, because some
altruistic behavior is often observed. Thus the increasing benefit of the public
good with group size may lead the classical game to have significant contribution
rather than the game theory prediction of none.

The second choice for a was the fixed value a = 1.5, independent of group
size. In this case, the difference in payoffs between everyone contributing and
nobody contributing is independent of n while the temptation to defect, (1 −
a/n)W , increases with n. With relatively less to gain from the efficient outcome
of all contributing, and less influence on that gain as the group size increases,
we expect the classical game contribution to be smaller than when a increases
with group size. Thus this scenario provides a difficult case for public goods
provisioning. In this case, our main interest is not just whether the quantum
version is more efficient than the classical one, but rather whether the quantum
version can provide a significant level of contribution at all.

For n = 2, both choices for a give the same value, i.e., a = 1.5, corresponding
to the “Lo”-payoff experiments listed in Table 2.

Table 6 summarizes the experiments with larger groups.
In all experiments, the levels of contributions in the quantum games ex-

ceeded those of the corresponding classical games, as shown in Table 3 and as
predicted [8]. Fig. 3 shows the effect of group size on contributions. Moreover,
contribution rates in the quantum games showed no significant dependence on
time (i.e., number of periods).

The contribution rates for the quantum games in Table 7 are consistent with
the game theory prediction of 1− 2−(n−1), as indicated in Table 8, which shows
the two-sided binomial test of whether the contribution rates are significantly
different from what would be expected if the players have 1−2−(n−1) probability
to contribute each time.
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number of
number of periods

experiment multiplier group size participants classical quantum
E3a a = 2.25 3 12 29 12
E3b a = 2.25 3 12 28 23
E4a a = 3 4 16 15 13
E4Low a = 1.5 4 16 31 29

Table 6: Summary of the experiments, giving the multiplier a, number of par-
ticipants and number of periods for each game.
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Figure 3: Contribution rates for classical (box) and quantum (black triangle)
games as a function of group size n. Error bars show the 95% confidence inter-
vals for the contribution rates based on the sample size. The curve shows the
contribution rates for the quantum game predicted by game theory, 1−2−(n−1).
The open box is classical contribution rate for experiment E4Low. The two ex-
periments with each of n = 3 and 4 have indistinguishable contribution rates
for the quantum games.
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contribution
experiment classical quantum
E3a 41% 142/348 74% 107/144
E3b 33% 110/336 75% 206/276
E4a 48% 116/240 88% 182/208
E4Low 7% 37/496 88% 408/464

Table 7: Average contribution frequencies in the classical and quantum games
shown as a percentage and as a fraction of the number of times a player con-
tributed and the total number of opportunities for contribution (i.e., the product
of the numbers of players and periods). In all experiments with both classical
and quantum games, the p-value for the probability contribution rates would be
at least as different as we observed by chance, assuming there was no difference
between the classical and quantum games, was less than 0.002.

experiment p-value
E3a 0.85
E3b 0.89
E4a 1
E4Low 0.83

Table 8: Binomial test for significant difference from the game theory predicted
1 − 2−(n−1) contribution rates. The p-values are the probabilities to find con-
tribution rates at least as different from predicted values as we observed if each
case independently had the predicted probability to contribute.
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6 Conclusion

We reported the first experimental evidence that people, without training in
quantum physics, can play a simple quantum game effectively. Furthermore,
our observations are consistent with the game theory predictions that the quan-
tum version of the prisoner’s dilemma is more efficient, in a Pareto sense, than
the classical version. In addition, we found that although the aggregate pre-
dictions (e.g., about cooperation rate) of game theory were accurate, there was
substantially deviation when individual strategies were analyzed.

Statistical tests with significance based on a p-value of less than 5% of the
difference arising from chance leads to the following conclusions. The quantum
game gives higher cooperation than classical. Changing the temptation to defect
and the benefit of mutual cooperation did not affect cooperation rates for the
quantum game (as predicted by game theory). The quantum randomly-matched
game gives less cooperation than repeated classical play. Hence the quantum
mechanism, while improving over the randomly-matched classical game, is not
as effective as reputation effects from repeated play. The quantum game with
repeated play gives more cooperation than repeated classical play. There is no
time-dependence in the randomly-matched quantum games, but classical games
do show time dependence.

When extended to larger groups, the level of cooperation in the quantum
game increased as predicted. This is strong evidence that subjects were re-
sponding to the strategic considerations of the quantum game.

In addition, we found significantly larger variation in cooperation rates
among individuals in the classical games than in the quantum games. In this
sense, the quantum games are more “fair” to participants, in spite of the quan-
tum game being significantly more complicated to analyze.

As for the strategies players used to determine their choices, we found they
did not simply make random choices, nor use a best-response mixed-strategy
among two choices. Either of these are Nash equilibria. We found players often
selected multiples of π/2, which arise in the best-response values displayed by
our “what-if” tools under the assumption that the other player uses 0, 0, 0 or
best-response iterates of that choice. But even in these cases, they did not select
randomly among these iterates of best responses.

There are many future directions for this line of experimental research.
While the quantum mechanism solved the free-rider problem in the experiments,
it is not yet practical as an economic mechanism in the real world. Two issues
need to be addressed: application to more complex economic situations and
comparison with conventional economic methods.

For the first issue, the game we considered used the same set of payoffs for
every player. In more realistic scenarios, players could have different preferences
which further complicate the mechanism design. For example, some players may
get such a low benefit from cooperating that the efficient outcome is for them
to defect. In this case the mechanism should give an outcome in which the
low-benefit players do not contribute, while ensuring those with high benefits
contribute (e.g., by not having incentives to pretend to have low benefits). It
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would therefore be interesting to experiment with heterogeneous preferences
among the players.

The second issue is that there are plenty of classical economic mechanisms
that solve the free-rider problem in different environments. For example, taxa-
tion is a common method, with thousands of years of history, to provide public
goods for a community. The dominant issue in such a scenario is to determine
preferences, which can be heterogenous, in the community so the taxing au-
thority can determine the optimal amount of public goods to procure and hence
set the corresponding taxation rate. A seminal classical solution is the Groves-
Ledyard mechanism [16, 4], which can solicit truthful revelation of preferences
in a incentive compatible manner. Another example is the provision point mech-
anism, which is popular amongst charities. In the provision point mechanism,
contributions are gathered and if the total passes a certain threshold, the public
goods will be produced. If not, the contributions will be refunded by a trusted
third party. While these approaches can be effective, they have limitations,
e.g., in requiring a third party enforcer who may not be able to elicit truthful
preferences, or destroying some contributions to maintain correct incentives, or
provide no incentives to participate. Moreover, if the players expect to repeat
the game in the future, reputation-based mechanisms can help encourage contri-
bution. Thus there is a need to experimentally evaluate the trade-off between
quantum and classical mechanisms to identify situations where the quantum
mechanism may be superior in practice. The quantum mechanism will only be
worthwhile to implement, given the high costs of developing new hardware, if
we can find significant benefits over existing classical solutions.

Game theory suggests an efficiency gain with multiple players even if some
pairs of qubits are not in fact implemented correctly [27] (e.g., due to noise
when creating the pairs, or deliberate choice by the provider of pairs). This
gain occurs even if the fraction of incorrect pairs is public knowledge provided
participants do not know which particular pairs these are. Since people may not
treat risks and probabilities in a rational manner [25], it would be interesting
to evaluate how such noise affects behavior. In particular, whether the game
theory prediction that efficiency decreases smoothly with noise is consistent with
human behavior.

This research establishes potential benefits of quantum economics from the
perspective of behaviorial issues. The fact that participants untrained in quan-
tum mechanics were able to achieve higher performance with the quantum game
suggests that future efforts on physical implementation will have the benefits
predicted by game theory, as well as the security and trust guarantees provided
by a physical implementation. Prior to our study, it was not clear whether
the substantial effort required for physical implementation would achieve the
economic payoffs predicted by game theory. This also opens possibilities of
quantum economics applications in various economic areas that involve some
need for coordination, including public goods, correlated-value auctions, co-
ordination games and digital rights management. Many research institutions,
including HP Labs, are in the process of physically implementing the quantum
devices required for these mechanisms. In the foreseeable future, the benefits
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seen in these experiments could be realized as feasible quantum economic mech-
anisms.
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