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Abstract

Quantum generalizations of conventional games broaden the range of

available strategies, which can help improve outcomes for the participants.

With many players, such quantum games can involve entanglement among

many states which is difficult to implement, especially if the states must

be communicated over some distance. This paper describes a quantum

approach to the economically significant n-player public goods game that

requires only two-particle entanglement and is thus much easier to im-

plement than more general quantum mechanisms. In spite of the large

temptation to free ride on the efforts of others in the original game, two-

particle entanglement is sufficient to give near optimal expected payoff

when players use a simple mixed strategy for which no player can ben-

efit by making different choices. This mechanism can also address some

heterogeneous preferences among the players.
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1 Introduction

Quantum information processing provides a variety of new capabilities with
potentially significant performance improvements over conventional techniques.
One example is quantum computation with its ability to rapidly solve prob-
lems, such as factoring [1], which appear to be otherwise intractable. However,
implementing machines with enough bits and coherence time to solve prob-
lems difficult enough to be of practical interest is a major challenge. Another
application, quantum cryptography, is feasible today for exchanging keys over
distances of tens of kilometers. A third area, which potentially can come into
practical use soon, is quantum economic mechanisms and games. Extending
classical games into the quantum realm broadens the range of strategies [2], and
has been examined in the context of the Prisoner’s dilemma [3, 4, 5, 6] and the
n-player minority game [7]. Quantum games do not require long sequences of
coherent operations and hence are likely to be easier to realize than large-scale
quantum computations.

In this paper, we present a quantum version of an important social dilemma:
public goods. Provisioning for public goods is a well-studied social choice prob-
lem. A typical example is a group deciding whether to provide a common good,
such as a park, in the face of potential free riders. The free rider problem [8]
cannot be solved with traditional means without either a third party to enforce
agreements or a repeated game scenario in which participants can self-police.
Government is one typical solution. While government is a good solution to
public goods involving a large population such as national defense, it is ineffi-
cient for public goods in smaller groups such as neighborhood watch. Provision
of these smaller scale public goods often relies on altruism and other weaker
incentives. Invariably, contributions to these public goods are not at efficient
levels.

Quantum mechanics offers the ability to address the free-rider problem in the
absence of a third party enforcer in a single shot game, i.e., without repetition.
With suitable design, simple mixed strategies almost entirely avoid the free rider
problem in the context of the public goods game and give expected performance
close to the Pareto efficient value when the size of the group is large. In our
case, the power of the quantum mechanism comes from entanglement. Quantum
entanglement allows individuals to pre-commit to agreements where otherwise
it would be individually rational to renege.

Three different quantum mechanisms with different degrees of entanglement
are reported in this paper. These differ in their performance characteristics and
ease of implementation. The results provide information about how one can
best design a quantum mechanism to achieve an efficient outcome in the public
good game.

Beyond their economic properties, an important issue for proposed quantum
mechanisms is whether they can be built. In particular, creating and communi-
cating highly-entangled states among n players poses significant implementation
challenges. We address this issue by restricting attention to quantum systems
that can be practically implemented by technologies likely to soon be available,
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namely those that only require entanglement among pairs of states. Thus an
interesting practical question for applying quantum information processing to
economically-relevant games is whether quantum mechanisms limited to using
two-particle entangled states can significantly improve performance compared
to the original game. For a specific example of the public goods game, we
present a such mechanism and evaluate its performance. This mechanism could
be feasible to implement in the near future even for players at different locations.

The paper is organized as follows. Sec. 2 describes the general approach to
“quantize” a classical game. Sec. 3 discusses the economics of the public goods
game. Sec. 4 describes the quantum version of the public goods game and its
solutions. Sec. 5 concludes with possible extensions to our mechanism.

2 Quantum Games

This section describes one approach to generalize conventional games to make
use of entangled quantum states. We then discuss issues involved in their imple-
mentation, particularly the significant benefit for games restricted to use only
two-particle entanglement.

2.1 Creating Quantum Games

A game consists of a set S of choices available to the players and an associated
payoff to each player based on those choices. With sk ∈ S denoting the choice
made by player k and s = (s1, . . . , sn). A game is defined by the payoffs to the
players depending on these choices, i.e., Pk(s).

One approach [3, 7] for generalizing these games to quantum operators con-
siders superpositions of all possible choices

∑

s ψs|s〉 summing over all choices
in S for each player. The quantum version of the game starts by creating an
initial superposition. Subsequently each player is allowed to operate only on
their corresponding part of the state. In the last stage, the final superposition
is used to produce a definite choice for each player via a further joint operation
followed by a measurement. The initial and final operations, acting on the full
superposition, are fixed and known to the players.

To give a direct generalization of the original game, the player’s operations
should include choices that correspond to the original choices. That is, the
initial and final operations on the state should reproduce the payoff structure
for the original game if all players restrict their individual operations to just
those corresponding to the actions allowed in the original game.

More precisely, the game proceeds as follows:

• Starting with a particular initial superposition v, create the entangled
state Jv, where J is an entanglement operator that commutes with the
classical single-player operators.

• Players select an operation to apply to their part of the superposition,
giving v′ = (U1 ⊗ . . .⊗ Un)Jv where Uk is operator used by player k.
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• Finally undo the initial entanglement, giving ψ = J †v′. For a given game,
i.e., choices for v and J , the final superposition is a function of the players’
choices, i.e., ψ(U1, . . . , Un).

• Measure the state, giving a specific value for each player’s choice. The
probability to produce choices s (i.e., a particular assignment, 0 or 1, to
each bit) is |ψs|2.

The choice of J determines the type and amount of entanglement among
the players. The commutation condition on J ensures that if each player selects
the operator corresponding to one of the choices in the original game, the final
result of the quantum game will, with probability 1, reproduce those choices.

2.2 Implementing Entanglement for Many Players

Ideally, we would like our scheme to rely on the distribution of entangled states
between distant players, implying that the qubits are encoded in the polarization
states of photons transmitted throughout a fiber-optic network. Given a bright
source of polarization-entangled photon pairs [9], these qubits can be delivered
by propagation through optical fibers, and purified using high-quality linear
optical elements [10]. In principle, maximally entangled n-photon states can
be constructed from entangled two-photon states [11, 12], and these states can
be further manipulated using linear optical elements to perform universal gate
operations [13].

However, scaling a fully entangled game from 2 to n players can be nontriv-
ial even when linear optics is used. Suppose a trial between any two players
succeeds with probability β (incorporating the net efficiency with which entan-
glement can be created, distributed, purified, manipulated, and detected), so
the mean number of trials needed to successfully register a mutual choice be-
tween two players is 1/β. Because an accidental (or deliberately disruptive)
measurement of a single qubit in the n-particle maximally entangled state de-
stroys the entire state, we expect the number of trials needed to complete a
maximally-entangled game for n players will scale no better than β−n. Suppose
instead we implement the game by distributing entangled two-particle states be-
tween either all enumerated pairs of players or nearest neighbors, as described
in Sec. 4.3 and Sec. 4.4, respectively. In these cases, we expect that the mean
number of trials needed to complete the game will scale as either n(n − 1)/2β
or n/β, and are therefore relatively easier to implement for games with a large
number of players.

For example, in the simplest near-term implementation, a single game system
can be constructed at a central location, and players can travel to the game
and individually specify the operators to be applied to their qubits. As the
technology evolves, the necessary hardware for specification of qubit operations
can be distributed to distant players, who then can apply their operators to
photonic qubits transported to them over an optical network. In either case,
entangled pairs can be generated and distributed consecutively until all players
have successfully registered a choice for each pair in which they are a member.
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Although great strides continue to be made in multi-particle experiments [11,
12], it is clear that — until β −→ 1 — two-particle games are far more feasible,
and could allow tests of quantum game theory to be performed in the near
future.

Given some single-trial success probability β, the number of trials is limited
by the rate at which two-particle entangled qubits can be provided. A bright
source of entangled photon pairs has been constructed using an argon-ion laser
and parametric down-conversion in BBO crystals, capable of producing 140 de-
tected two-photon coincidences per second per milliwatt of Ar+ pump power [9].
In principle, given an electrically-driven source of single photons [14], entangled
photon pairs also could be generated in a compact all-solid-state system us-
ing down-conversion in periodically-poled lithium niobate waveguides [15, 16].
However, in the future it is possible that up to 109 pairs per second could be
produced using a single quantum dot embedded in a p-i -n junction surrounded
by a microcavity [17].

3 Public Goods Economics

3.1 Overview

A pure market economy fails to provide efficient levels of public goods for two
key reasons. By definition, a public good is non-excludable. Once the good is
provided, there is no means of charging for it or restricting access to it. This
creates the free rider problem in which people are tempted to use the public
good without paying for it. The prisoner’s dilemma is a perfect illustration of
this free-rider problem. In this two-person game, each player has the choice
to “cooperate” and “defect”. Payoffs for both players are higher when both of
them choose to cooperate instead of defect. However, each individual is better
off by defecting.

Furthermore, even if there exists a third party (usually the government) to
enforce contribution to the public goods, individuals have the incentive to hide
their preferences on how much they value the public good. This information
asymmetry makes it difficult to determine the efficiency of public goods distri-
bution.

Some of these issues have been addressed in economics literature. For ex-
ample, if the public good can be provisioned through a government, there exist
mechanisms to reveal preferences of individuals [18]. Also, experimental work
on public goods [19] compares people’s actual behaviors to the predictions of
game theory.

The free rider aspect of the problem, however, is more difficult to overcome.
In the absence of a benevolent dictator, self-motivation becomes the dominant
factor. Luckily, two phenomena mitigate the effects of free riding. The first is
the folk theorem [20, 21]. If the game is played repeatedly within a relatively
small group, the folk theorem suggests an efficient outcome may be enforceable
through the strategy of punishing a defector. It is arguable whether this will
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work in practice because game theory rationality places a strong burden on
the individuals to determine the correct strategies. The second phenomenon is
individuals’ motivations may not be completely selfish: experimental evidence
suggests people may be altruistic, at least in relatively small groups [19]. The
same empirical evidence also suggest that although these two phenomena helps
raise the levels of contributions, they are far from optimal.

3.2 A General Framework

For simplicity in discussing the public goods game, we assume there is only
one public good and one private good which players can use to contribute to
producing the public good. It is possible to generalize to multiple goods.

There are n players indexed by k. We make the following definitions:

x amount of public good

yk initial endowment of private good of player k, i.e., player k’s initial wealth

ck contribution of player k

Qk(x, y) utility of player k when consuming x units of public good and y units
of private good. Q is assumed to be continuously differentiable, concave
and non-decreasing in both x and y.

g(C) production function of the public good as a function of total contributions
C =

∑

k ck. g is assumed to be continuously differentiable and strictly
increasing.

If contribution is voluntary and continuous, each individual would want to
choose a contribution to maximize:

max
ck

Qk(g(C), yk − ck) (1)

which leads to
1

dg/dC
=
dQk/dx

dQk/dy
(2)

for all k when evaluated at the maximizing choices with x = g(C) and y =
yk − ck. These give n equations for the n contribution values {ck}.

This condition says each person will contribute up to the point where the
marginal rate of substitution is equal to the marginal benefit of his contribution
in providing the public good.

We use the standard economic efficiency measure of Pareto optimality [22].
That is, there exists no other allocation such that one player is strictly better
off while all others are at least as well off as before. In our context, Pareto
efficiency requires [22]

1

dg/dC
=
∑

k

dQk/dx

dQk/dy
(3)
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This criterion can be generalized to multiple public and private goods [22].
Let C be the Pareto efficient level of total contribution and C ′ be the

equilibrium level of total contribution. The above two conditions mean that
dg(C)
dC

< dg(C′)
dC

.
Therefore, the equilibrium level of total contribution does not always guar-

antee a Pareto efficient outcome. For g with diminishing rate of return, C > C ′.
Thus the equilibrium level of contribution is less than the efficient level. For
other g, there may be multiple equilibria as well as contribution levels at the
efficient levels.

3.3 A Public Goods Game

For simplicity, we consider the special case when g is linear. In this case, both
the efficient allocation and the equilibrium have contributions that are either
all or nothing. This choice illustrates the core issue of the free-rider problem.
Specifically, we take

Qk(x, y) = x+ y (4)

g(C) = aC/n

for all k. Here a is a parameter characterizing the public good production and
C =

∑

k ck is the total contribution level.
A direct comparison of a player’s utility for all and no contribution shows

the unique Nash equilibrium is given as follows:

• If a ≤ 1, C = 0 and this is the Pareto efficient outcome. Note, when a = 1
total contribution is equivalent to no contribution. Thus, either case is
efficient.

• If 1 < a < n, C = 0, but is an inefficient outcome. One efficient outcome
in this case is ck = yk but this is not an equilibrium since each player
increases payoff by defecting, i.e., switching to ck = 0.

• If n ≤ a, ck = yk is the efficient outcome and also the equilibrium. When
n = a, total contribution is a weak equilibrium in which each player is
indifferent between contributing or not.

This analysis can be interpreted as follows. The production function g mul-
tiplies the total contribution by a. The result is then equally divided back to
the players. If a is less than 1, there is no gain to produce the public good and
so the efficient outcome is not to produce any. If a is greater than n, then for
each unit the player receives back more than the contribution, thus it is advan-
tageous to contribute, no matter what other players do, and the equilibrium
will be efficient.

The interesting case, giving a social dilemma, is when a is between 1 and
n. In this case, the public good per person increases with contribution. How-
ever, the marginal benefit of each contribution is still smaller than 1. Thus a
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player receives only a/n in benefit for a unit of additional contribution, which
is a net loss. Therefore, it is rational not to contribute. However, failure to
contribute is an inefficient outcome. Thus we have a social dilemma in that the
group as a whole is better off if all contribute, but each person prefers not to
contribute and hence their rational choices lead to no public good production.
Moreover, this case has multiple Pareto efficient outcomes. For example, both
total contribution and total contribution from all but one person are efficient
outcomes.

3.4 Heterogeneity and Asymmetric Information

When individuals have substantial wealth differences, it is possible for total con-
tribution from all players to make some of them worse off than if there were no
contributions at all. In such a situation, the efficient outcome of total contribu-
tion may not be desirable. More generally, in addition to achieving an efficient
outcome, a mechanism should ideally also satisfy voluntary participation con-
straints (i.e., all players should want to play the game since they recognize the
outcome will be better for them than if they do not play at all).

To address this issue, we focus our attention on a smaller set of efficient
outcomes that also satisfy the voluntary participation constraints. Thus, in
addition to Pareto efficiency, we also require Qk(g(C), yk − ck) ≥ Qk(g(0), yk)
for all k, i.e., each person is better off in this efficient outcome then they would
be if none contribute. For our example, this implies

a

n

n
∑

j=1

cj ≥ ck (5)

for all k. An outcome that is both Pareto efficient and satisfies Eq. (5) is defined
as an individually rational Pareto efficient outcome.

The following contribution profile is an individually rational Pareto efficient
outcome:

ck =

{

yk if yk < C∗

C∗ if yk ≥ C∗ (6)

where

C∗ =
a

n− an+ am

m
∑

j=1

yj (7)

the yk are taken to be sorted in ascending order and m is the largest integer
less than n for which C∗ ≥ yk holds for all k = 1 . . .m.

Under this additional constraint, if the distribution of wealth is narrow
(specifically, aȳ ≥ yk for all k where ȳ = 1

n

∑

k yk is the mean value of the
private goods), then everyone should contribute everything. If there is a wider
distribution of wealth, then there is a cut-off point C∗. Everyone should con-
tribute everything if their wealth yk ≤ C∗ and contribute only up to C∗ if their
wealth is more than C∗. Thus to maintain voluntary participation the rich
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should contribute more in absolute terms than the poor, but less in percentage
terms.

If wealth is distributed narrowly, (satisfying Eq. (5) if individual contributes
everything) then there is no need for asymmetric contribution. Therefore, it is
sufficient to treat the problem as if wealth is equal.

However, if condition Eq. (5) is not satisfied, a new incentive issue arises. To
be able to solicit the “correct” amount of contribution from every individual,
we not only need to solve the free-rider problem, but also correctly identify the
wealth level of every individual. Furthermore, individuals have incentives to
pretend to be poorer than they are to minimize their contributions.

4 A QuantumMechanism for Public Goods Pro-

visioning

We first characterize equilibria of the quantum game of the homogeneous version
of the public goods game. This allows us to study several configurations, such as
different entanglement and interpretation of the qubits, of the quantum game.
Subsequently, the results in the simple homogeneous case will be extended to
the heterogeneous case.

For the quantum mechanism, each player can choose either to contribute
nothing (ck = 0, “defect”) or everything (ck = y, “cooperate”). We can also
consider an intermediate case in which players can select from a discrete range
of contribution values, 0, y/K, 2y/K, . . . , y for various choices of K, but in our
case allowing such intermediate contributions gives lower average payoffs for the
strategies we present below.

Here is an example of the intermediate case. For n = 3 players and using
3 bits to specify discrete choices: either contribute fully (ck = y, “cooperate”)
or contribute nothing (ck = 0, “defect”), there are 8 states. Suppose we let the
value 0 correspond to “cooperate”. Then the payoffs to the three players are
(using y = 1)

000 a a a
001 2a/3 2a/3 2a/3 + 1
010 2a/3 2a/3 + 1 2a/3
011 a/3 a/3 + 1 a/3 + 1
100 2a/3 + 1 2a/3 2a/3
101 a/3 + 1 a/3 a/3 + 1
110 a/3 + 1 a/3 + 1 a/3
111 1 1 1

(8)

The quantum version of the game is set up as follows: first create entangled
qubits (with 0 and 1 representing cooperate and defect, respectively), allow the
individuals to operate on their individual qubit, then combine the result (by
undoing the initial entangling operation). To preserve the correspondence with
the original game, the entanglement operator should commute with those quan-
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tum operations corresponding to the classical choices. The final measurement
gives a definite value for each qubit, which then corresponds to the individuals’
choices.

In general, players are allowed to apply any operator to their qubit(s). We
consider general single-qubit operators, given by

U(θ, φ, α) =

(

e−iφ cos θ2 eiα sin θ
2

−e−iα sin θ
2 eiφ cos θ2

)

(9)

up to an irrelevant overall phase factor. (A further generalization would allow
measurements on the single qubit. This gives no advantage in at least in some
cases [7].)

For n = 2, this reduces to the Prisoner’s dilemma, which has a nice interpre-
tation in terms of conventional mechanisms. Entangled states allow player 1 to
affect the final outcome produced by the action of player 2 and vice versa. In a
way, it allows for pre-commitment. Consider the following argument. Player 1
would love to tell player 2 that if player 2 commits to cooperate, then he would
also cooperate. However, without playing a repeated version of the game, the
ability to punish the other player or without a 3rd party to enforce the commit-
ment, both players will realize immediately they are better off reneging their
commitments. Entanglement allows the parties to commit without a third party
to enforce the commitments.

The expected payoffs can be viewed as functions of the players’ choices and
game definition: Pk(U1, . . . , Un; J, a) (where we take y = 1 without loss of gen-
erality since it just rescales the payoffs).

4.1 Equilibria for the Quantum Public Goods Game

In this section, we characterize equilibria for three schemes of entanglement of
the public goods quantum mechanism. If players are allowed to use any single
qubit operators given by Eq. (9), there is no single pure strategy equilibrium.
However, we found mixed strategy equilibria, with expected payoffs depending
on the degree of entanglement provided in the initial state. In each case, we find
multiple equilibria. These payoffs are superior to that produced by the classical
game in which all players defect so no public good is produced.

We assume all individuals are risk-neutral expected utility maximizers. Player
k’s expected payoff function is given by Pk(ψ) =

∑

s Pk(s)|ψ(s)|2 where Pk(s)
is the payoff for player k given the choices specified by state s.

We use the Bayesian Nash equilibrium as the solution concept for the quan-
tum game. Each individual will play a strategy (pure or mixed) such that they
are mutually maximizing their expected payoff. None has the incentive to make
a unilateral change to their strategy.

A single-player operator û forms a symmetric Nash equilibrium if for any
other choice u 6= û

Pk(ψ(û, . . . , û)) ≥ Pk(ψ(û, . . . , û, u, û, . . . , û)) (10)
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entanglement expected performance
full (1 + a)/2
all pairs a− 2−(n−1)(a− 1)
neighbor pairs (1 + 3a)/4

Table 1: Expected payoffs of mixed strategy equilibrium for various arrange-
ments of entanglement and using the all-or-none contribution rule. For compar-
ison, the original game, corresponding to no use of entanglement, has payoff 1
at the equilibrium. In all cases, the efficient outcome has payoff a > 1, which is
larger than the expected payoff of all these cases.

for all players k, with u substituted for the kth player’s choice on the right-
hand side. For homogeneous preferences, it is sufficient that this hold for just
one player. More generally, asymmetric equilibria involve possibly different
operations for each player.

Whether such an equilibrium exists, and if so whether it is unique and gives
the optimum payoffs for the players, depends on the set of allowed operations,
the amount and type of entanglement (specified by the choice of J) and the
nature of the payoffs.

Our analysis includes mixed strategy equilibria since in many cases, partic-
ularly with respect to the quantum version of the public goods game, there is
no pure strategy equilibria. The strategic space for quantum games are infinite.
We limit our attention to finite mixed strategies. That is, we only allow indi-
viduals to randomly (with any probabilities assignment) choose within a finite
set of operators. We also make the standard assumption that individuals have
access to a perfect randomization process.

In the next three subsections, we report three different schemes of entan-
glement and their corresponding mixed-strategy Nash equilibrium. Table 1
summaries the resulting performances.

4.2 Full Entanglement

A conceptually simple approach allows arbitrary entanglement among the play-
ers’ qubits. As one example, consider fully entangled states. The initial entan-
gled state is (|00...0〉+ i|11...1〉)/

√
2, using the 2n × 2n entanglement matrix

Jn =
1√
2
(I + iσx ⊗ . . .⊗ σx) (11)

where the product in the second term consists of n factors of σx, the 2×2 Pauli

matrix

(

0 1
1 0

)

.

Allowing general single-bit operators of Eq. (9), we find no pure strategy
Nash equilibrium for the players. However, there are a variety of mixed strategy
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Figure 1: Six qubits giving two-particle entanglement among three players. The
first player operates on bits 1 and 3, which are entangled with bits 2 and 4,
respectively owned by the second and third players.

equilibria. As one example, let

u(0) ≡ U(0, 0, 0) =

(

1 0
0 1

)

(12)

u(1) ≡ U(0, π/2, 0) =

(

i 0
0 −i

)

Note u(0) corresponds to the classical “cooperate” option. A mixed strategy
consisting of each player randomly selecting u(0) or u(1), each with probability
1/2, gives expected payoff of (1+a)/2. This is an equilibrium: if any one player
switches to using a different operator, or different mixture of operators, the
expected payoff for that player remains equal to (1 + a)/2. While this payoff
is less than the efficient outcome, it is substantially better than the classical
outcome with payoff of 1 since all choose to defect.

Although this scheme is not practical with respect to implementation due
to its use of highly entangled states, we include it as a comparison to other
schemes.

4.3 Two-particle Entanglement

Full entanglement is difficult to implement as n increases, particularly for qubits
communicated over long distances. Thus we consider restricting entanglement
to only pairs of qubits. In this case, we suppose each pair of players has a
maximally entangled pair, so each player has n− 1 qubits.

The entanglement matrix for a case consisting of N =
(

n
2

)

pairs is

Jpair(N) = J2 ⊗ . . .⊗ J2 (13)

with the product consisting ofN factors of the entanglement operator of Eq. (11)
for the case of n = 2, i.e., full entanglement among two qubits.

With multiple bits per player, we also need to specify how the final mea-
sured state is to be interpreted. One approach is to allow various amounts of
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contribution rather than all or none. That is, if z of the n − 1 bits for player
k are 0, player k’s contribution is ck = yz/(n − 1), ranging from 0 to y. So
instead of two choices, the player has a range of possible contributions. This
choice gives the same result as the fully entangled case: the mixed strategies
have expected payoff of (1 + a)/2 and remain weak equilibria.

For example, n = 3 uses six qubits corresponding to the pairs of players
(1, 2), (1, 3) and (2, 3), as shown in Fig. 1. Thus, for example, the first player
operates on the first and third qubit in this ordering of the bits. The state
|0, 0, 0, 1, 1, 1〉 has 0, 0 for the first and third qubit, so the first player has z = 2
and contributes y. The second player, using the second and fifth bits, has 0, 1
with z = 1 and contributes y/2.

An alternate interpretation of the bits provides higher payoffs while main-
taining the same mixed strategy equilibria. Specifically, we again suppose con-
tributions are all or nothing but now consider the player to contribute if any
of the n − 1 bits equals 0. This simple change in the construction of the game
gives expected payoff equal to

a− 2−(n−1)(a− 1) (14)

which, since 1 < a < n, is only slightly less than the highest possible payoff, a.
As examples, the expected payoffs for n = 3 and 4 are, respectively, (1 + 3a)/4
and (1 + 7a)/8. As n increases, the expected payoff approaches the optimal
value.

We could also consider other interpretations, e.g., full contribution if a ma-
jority of the bits are 0, and otherwise no contribution.

Significantly, the mixed strategy remains an equilibrium even if a player
applies different operators to each of the n− 1 bits.

4.4 Two-particle Entanglement with Neighbors

Two-particle entanglement among all possible pairs of players requires n(n−1)/2
entangled pairs. While significantly easier to implement than entanglement
among n-players, we can also consider behavior with even less entanglement.
Specifically, consider the players in some arbitrary order and only provide an
entangled pair between successive players in that order (with an additional pair
between the first and last). This entanglement requires only 2n qubits.

This case maintains the same equilibrium mixed strategies. If we interpret
the two bits of each player as allowing partial contributions, the expected payoff
remains (1 + a)/2. Using the all-or-none method, where a player contributes
everything if at least one of the two bits equals 0, the payoff is (1+3a)/4 for all
n. Note this is the same as the payoff of the full two-particle case, Eq. (14), for
n = 3 (as expected: for n = 3 the neighbor pairs are the same as a two-particle
entanglement between all pairs of players).

Again, the payoff is superior to the classical game Nash equilibrium. Unlike
entanglement among all pairs, the payoff does not improve with larger n. Thus
this result illustrates a tradeoff: lower performance when using fewer pairs.
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Based on the two cases of all pairs and just neighbors, one would expect
intermediate numbers of pairs to give intermediate performance. A full inves-
tigation of this tradeoff remains for future work. In particular, to the extent
that producing, storing and manipulating entangled states is costly, a key eco-
nomic issue is how the benefit of higher expected payoff from using additional
entanglement compares with its implementation cost.

4.5 Robustness of the Results

All our results are based on very strict assumptions on initial wealth levels (yk),
the public goods production function (g), and individuals’ utility function (Qk).
A natural question is how far these results can be generalized with respect of
these three assumptions.

As discussed in Sec. 3.4, when the distribution of wealth is narrow, efficient
contribution levels requires no or total contributions. The incentive tradeoff
also remains the same since the different levels of wealth only offset individuals’
utility by constant amounts. Thus the quantum solution still applies.

However, the results are more sensitive to the assumptions on the public
goods production function (g) and individuals’ utility function (Qk). In partic-
ular, the quantum mixed strategy equilibrium depends on a fine balance of the
probabilities of the possible outcomes so that individuals will weakly preferred
(or indifferent to) staying with the equilibrium strategy. This balance will be
destroyed if either g or Qk is changed. However, intuitively we expect similar
quantum equilibria to exist that will be superior (in the Pareto sense) to equi-
libria of the classical game. Since the outcome space is probabilistic and hence
continuous, a small change in either g or Qk may induce equilibria that are close
to the solution we reported here. This issue is one of the directions of our future
work.

5 Conclusion

Quantum mechanics can be used to develop new formulations of classical eco-
nomics games which give arise to new solutions. In this paper, we have shown
how a quantum mechanism can be constructed to address the free-rider aspect
of the public goods problem, without the need of third party enforcement nor
repeated play. Implementation issues are also explored and addressed.

Most of the power of this new mechanism comes from entangled states,
which in theory allow individuals to co-ordinate and commit in environments
when classical means do not. Incidentally, entanglement is also the major issue
determining whether a quantum mechanism is practical or not.

Three different schemes of entanglement are explored. We found that two-
particle entanglement, which is feasible for the near future, can address the free-
rider problem and achieve nearly efficient outcomes. Furthermore, we have also
argued that the mechanism is robust with respect to a limited amount of hetero-
geneity in the system if there is no adverse selection. If the distribution of wealth
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is narrow (as defined in Sec. 3.4), an efficient quantum solution that assumes
homogeneous wealth will also satisfy the voluntary participation/individually
rational constraints making heterogeneity a non-issue.

Furthermore, if the issue of adverse selection (incentive to hide information)
is addressed by some other method, then the quantum mechanism can be used
in tandem to address the general case. Specifically, in the case of heterogenous
wealth, if every individual’s wealth is revealed to the mechanism, then the mech-
anism can be modified slightly to yield the desirable outcome as follows. First
calculate the optimal contribution for every individual based on the revealed
wealth levels as described in Sec. 3.4. Then the players play the quantum game
with the knowledge that the final qubits are interpreted as follows: an individ-
ual contributes the optimal amount, not his total wealth, if one or more of his
qubits are zero. Essentially, all the contribution levels are pre-determined and
the issues reduce to just the free-rider problem.

The particular form of the equilibria we found depends on the simple func-
tional forms for utilities and production functions of Eq. (4). Thus an interesting
direction for further investigation is the effect of other economically-reasonable
functional forms. Since we found a variety of weak equilibria, with identical ex-
pected payoffs, some changes in the utilities may shift these equilibria differently
thereby distinguishing their payoffs.

Our quantum mechanism generalizes the conventional public goods game by
providing additional options for the players. As such, it can also be simulated
classically by allowing each player to send a choice of operator (i.e., the three
parameters of Eq. (9)) to a central location. This observation, which also applies
to other studies of quantum games [23], means the practical benefit of such
quantum mechanisms depends on the context of the game, e.g., the differences
in security and communication costs as well as the level of trust assumed for
the central institution. For instance, the quantum version allows only a single
measurement of the outcome rather than revealing individual operator choices,
and hence can provide additional privacy. Such privacy can also be achieved via
conventional cryptographic methods but with security based on the apparent
difficulty of solving certain problems, e.g., factoring, rather than inherent in
quantum physics.

Game theoretic solutions (such as the Bayesian Nash equilibrium we discuss
in this paper) are at best approximations of real human behavior. In this case,
rationality dictates that each individual has a full understanding of the quan-
tum mechanical implications of his choices. How well this describes the actual
behavior of people involved in quantum games is an interesting direction for
future work with laborabory experiments involving human subjects.

There are many natural extensions of this research. First, people may use
criteria other than expected payoff, e.g., to minimize variance in payoff if they
are risk adverse. Second, the case of heterogeneous players and adverse selec-
tion requires further analysis. This work also suggests experimental research,
exploring the issues of practicality of implementation and human behavior with
respect to manipulating quantum states.
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A Derivation of Mixed Strategy Payoff

This appendix derives Eq. (14) and shows the mixed strategy is indeed an
equilibrium: no single player can benefit from deviating from the mixture. A
similar derivation applies to the other cases with different entanglement (i.e.,
full or two-particle only among neighbors) and interpreting multiple bits per
player as indicating partial contributions. For simplicity, we take the private
good value to be y = 1.

Suppose player 1 selects operators u(2), . . . , u(n) while all others select either
u(0) or u(1) of Eq. (12) with equal probability for all their bits. The initial state
Jpair(N)(1, 0, . . . , 0) is

⊗ 1√
2
(1, 0, 0, i)

with one factor for each pair. Subsequent operations on each pair are inde-
pendent. Consider the pair between players j, k, who use operators A and B
respectively, so the final state of their pair is

ψpair(A,B) = J†2(A⊗B)
1√
2
(1, 0, 0, i) (15)

Players other than the first use either u(0) or u(1). Evaluating Eq. (15) for
these cases gives

ψpair(u(0), u(0)) = (1, 0, 0, 0) (16)

ψpair(u(0), u(1)) = (0, 0, 0, 1)

ψpair(u(1), u(0)) = (0, 0, 0, 1)

ψpair(u(1), u(1)) = (−1, 0, 0, 0)

so players making the same choice produce a pair equal to ±|00〉 (i.e., both
cooperate), while those making opposite choices give |11〉 (i.e., both defect).

For a given instance of this mixed strategy, let tk ∈ {0, 1} indicate the
operator choice of player k = 2, . . . , n: u(tk). Then the final state for the pair
j, k is ψpair(u(tj), u(tk)). Thus the portion of the final state corresponding to
pairs not involving player 1 is

ψother =
⊗

j,k

ψpair(u(tj), u(tk))

with the tensor product over all pairs 2 ≤ j < k ≤ n. The nonzero compo-
nents of this vector are all ±1, which have unit magnitude so do not affect the
probabilities of the final measurement.
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The pair involving players 1 and k gives v(k)(tk) = ψpair(u
(k), u(tk)). For

any choice of operator u(k), evaluating Eq. (15) using Eq. (12) gives

v
(k)
0,0 (1) = −v(k)

1,1 (0) (17)

v
(k)
0,1 (1) = v

(k)
1,0 (0)

v
(k)
1,0 (1) = −v(k)

0,1 (0)

v
(k)
1,1 (1) = v

(k)
0,0 (0)

so, apart from some sign changes, player k switching from u(0) to u(1) simply
reverses the result of the two-particle interaction between players 1 and k.

The overall final state vector is the product of these results for the indi-
vidual pairs. The values for the bits involving player 1 determine its nonzero
components. That is, the final state has the form

n
⊗

k=2

(

∑

xk,yk

v(k)
xk,yk

(tk)|xk, yk〉
)

⊗ ψother

with the xk, yk each summed over 0 and 1.
Measuring this final state produces definite values for the xk, yk, with prob-

ability Pr(x, y, t) =
∏n
k=2 |v

(k)
xk,yk

(tk)|2. For this state, we determine the payoff
to player 1 as follows.

First, the all-or-none interpretation of the bits means player 1 contributes 1
if any of the xk = 0. Defining the indicator function χ(p) to equal 1 when the
proposition p is true and 0 otherwise, this contribution is 1−

∏

k χ(xk = 1).
The contribution for player k > 1 is 1 if it has a 0 bit in its pair with player

1 (i.e., yk = 0) or at least one player (other than players 1 or k) makes the same
choice of operator as player k (since then Eq. (16) shows that pair of players
will have value |0, 0〉 so, in particular, player k will have at least one of its bits
equal to zero). Let nb be the number of players 2, . . . , n that select operator
u(b), for b = 0, 1. Note nb is the number of values in t2, . . . , tn equal to b,
and n0 + n1 = n − 1. With these definitions, the contribution of player k is
χ(yk = 0 ∧ ntk = 1) + χ(ntk > 1).

Combining the contributions from all players, the payoff P1(x, y, t) to player
1 for this measured state has the form a

n
(1 +A) + (1− a

n
)B with

A =
∑

k

(χ(yk = 0 ∧ ntk = 1) + χ(ntk > 1))

B =
∏

k

χ(xk = 1)

In this expression,
∑

k χ(ntk > 1) can be written as
∑

t ntχ(nt > 1).
The expected payoff for player 1 for the choices of the other players (specified

by the tk values) is
∑

x,y Pr(x, y, t)P1(x, y, t).

Finally, the mixed strategy used by the other players means each of the 2n−1

choices for the values of the tk is equally likely, and must be summed over to
get the expected payoff of player 1: 〈P1〉 = 2−(n−1)

∑

x,y,t Pr(x, y, t)P1(x, y, t).
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In the sum over x, y, only the factor |v(k)
xk,yk

(tk)|2 in Pr(x, y, t) depends on
xk, yk. Thus for terms involving player k, the remaining factors in Pr(x, y, t)
sum to 1 since the v(k)(tk) are normalized vectors.

Thus 〈P1〉 is a sum of three terms. The first is

2−(n−1) a

n

∑

t

(1 + n0χ(n0 > 1) + n1χ(n1 > 1))

or
a

n
(1 + (n− 1)(1− 22−n))

The second term is

2−(n−1) a

n

∑

k,t,xk,yk

|v(k)
xk,yk

(tk)|2χ(yk = 0 ∧ ntk = 1)

For ntk = 1, the only terms contributing to the sum over t are those for which
tj 6= tk, for all j 6= k, i.e., there are just two cases: tk = 0 and the rest are 1,
and vice versa. So this term becomes

2−(n−1) a

n

∑

k

1
∑

t=0

∑

xk

|v(k)
xk,0

(t)|2

The inner two sums give |v(k)
0,0 (0)|2 + |v(k)

1,0 (0)|2 + |v(k)
0,0 (1)|2 + |v(k)

1,0 (1)|2 which,

from Eq. (17), equals
∑

x,y |v
(k)
x,y(0)|2 = 1 since the v(k) vectors are normalized.

Thus this term is 2−(n−1) a
n
(n− 1).

Similarly, Eq. (17) gives the third term equal to 2−(n−1)
(

1− a
n

)

.

Combining these results, 〈P1〉 is a−2−(n−1)(a−1). This result is independent
of the operators selected by player 1, i.e., the values of the v(k).

Other choices for the mixed strategy operators u(0), u(1) are possible as
well. They need only satisfy Eq. (16) (up to an overall phase factor) and also
compensate for any choices made by the first player via Eq. (17), again up to
overall phase factors.
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