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Abstract

Molecular electronics and nanoscale chemical sensors could enable constructing
microscopic sensors capable of detecting patterns of chemicals in a fluid. Informa-
tion from a large number of such devices flowing passively in the bloodstream allows
estimating properties of tiny chemical sources in a macroscopic tissue volume. We
use estimates of plausible device capabilities to evaluate their performance for typ-
ical chemicals released into the blood by tissues in response to localized injury or
infection. We find the devices can readily discriminate a single cell-sized chemical
source from the background chemical concentration, providing high-resolution sens-
ing in both time and space. By contrast, such a chemical source would be difficult to
distinguish from background when diluted throughout the blood volume as obtained
with a blood sample.
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1 Background

Microscopic machines, with sizes comparable to bacteria, and nanoscale-structured mate-
rials inside the body could significantly improve disease diagnosis and treatment [1, 2, 3].
Many of these proposed applications require machines with significant capabilities for
molecular recognition and manipulation, computation, communication and in vivo loco-
motion. They also involve coordinated behaviors among large numbers of devices, which
must therefore be individually cheap to manufacture for practical use. Unfortunately, fab-
ricating such machines is well beyond current manufacturing capabilities.

Instead, identifying applications requiring only minimal device capabilities indicates
early uses for the technology. We thus consider microscopic devices, about one micron in
size, built from components whose fabrication is already demonstrated in laboratory set-
tings, specifically molecular electronics and nanowire chemical sensing [4, 5, 6, 7, 8, 9, 10].
These components will enable microscopic devices to detect chemicals at low concentra-
tions in fluids and provide modest computation. But the devices will lack the locomotion
and communication capabilities required for more advanced applications.

An important question is whether such limited devices would nevertheless provide sig-
nificant benefits for some biomedical applications. In particular, without locomotion the
devices cannot independently move into regions of interest, e.g., by following chemical
gradients. And without transmission, devices could not communicate to compare sensor
readings with those of neighboring devices nor report in vivo observations in real-time to
an experimenter or physician. Instead, such devices would be limited to passively monitor-
ing chemicals presented to them in their microenvironments, performing modest pattern-
recognition computations on their own observations and storing the results in their memo-
ries for later retrieval.

A compelling application for large numbers of such devices is high-resolution detection
of patterns of chemicals released into the bloodstream from cell-sized sources in biological
tissues. The small size of the devices gives them access to individual cells, their large num-
bers allows simultaneous monitoring of many cells, and the speed of molecular electronics
and sensors allows millisecond time resolution. However, without independent locomo-
tion devices must either be directly placed in regions of interest or moved to them via other
means. An example of the former approach is embedding the devices in biofilms to monitor
chemical signals exchanged among the bacteria. In this paper we consider a more ambi-
tious application using the latter approach to placing the devices: high-resolution in vivo
chemical sensing in large multicellular organisms via their circulatory system. Our focus
on collecting information from within small blood vessels throughout a tissue volume com-
plements other applications of nanoscale devices for monitoring chemical behaviors within
individual cells [11].

Microscopic sensors could detect localized high concentrations of chemicals that are
too low to distinguish from background concentrations when diluted in the whole blood
volume as obtained with a sample. Moreover, if the interesting event consists of the joint
expression of several chemicals, each of which also occurs from separate sources, the de-
vice’s pattern recognition capability could identify the spatial locality, which would not be
apparent when the chemicals are mixed throughout the blood volume. The pattern could
consist of chemicals expressed over some spatial extent along a small vessel, which the
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devices could determine by comparing their detections with previous events stored in their
memories. The sensor information would also indicate changes (e.g., response to an exter-
nal stimulus such as introduction of a drug) that would be impractical to obtain from, say,
repeated blood samples.

We describe a specific protocol for using the limited microscopic devices in the next
section. The remainder of the paper evaluates its performance in a challenging diagnostic
scenario to illustrate the capability of these devices.

2 Protocol for High-Resolution Sensing

Micron-scale devices are small enough to move through even tiny blood vessels. Hence,
even without independent locomotion, injecting many devices into the bloodstream would
allow them to pass as close to the cells of a tissue as circulating blood cells, typically within
a few cell diameters of every cell in the tissue. While moving passively with the fluid
flow of the bloodstream, the devices can monitor for preprogrammed patterns of chemicals
released into the fluid. A population of such devices could simultaneously monitor for
chemicals released into the blood by any of a large number of individual cells in a tissue
volume. This application exploits the combination of features these devices provide: small
size, large numbers, chemical sensing even at low concentrations and modest computation.

In our protocol, the devices store their observations and the time they occur based on an
internal clock in their memories. After circulating in the bloodstream for a predetermined
time, the devices are retrieved via a filtration process and their memories read. This read
out process can use optical, acoustic, electrical or other methods in controlled laboratory
settings, allowing easier access to the devices than during their time in vivo.

Finally, a conventional computer uses the data retrieved from all the devices to esti-
mate properties of the chemical sources in the tissue. These properties include the spatial
structure and concentrations of the chemical sources encountered by the devices. Estimat-
ing these values is a computational inference problem whose results will depend on the
sophistication of the inference algorithm and the prior knowledge of likely values.

Inferring properties of the tissue from a collection of observations from microscopic
devices contrasts with the reconstruction problem of computerized tomography [12]. In
tomography, the data consists of integrals of the quantity of interest (e.g., absorption of
x-rays) over a large set of lines with known geometry selected by the experimenter. The
microscopic sensors, on the other hand, can record individual sensor events as they pass
through vessels distributed throughout the tissue, providing more information than just a
single aggregate value such as the total number of sensor events. However, the precise path
of each sensor through the tissue, i.e., which vessel branches it took and the locations of
those vessels, will not be known.

In our protocol, the microscopic sensors do not require in vivo locomotion or communi-
cation, which considerably simplifies their fabrication. On the other hand, the lack of these
capabilities reduces performance compared with more advanced technologies. An impor-
tant question is how well this protocol can perform. For instance, without locomotion, the
devices cannot follow concentration gradients and will spend only a brief time near a small
source emitting chemicals into the bloodstream, which limits the number of molecules
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they can detect to distinguish the source from background concentration. Similarly, with-
out communication, a device will have no explicit ability to correlate its observations with
those of other nearby devices, thereby increasing the difficulty of the subsequent compu-
tational inference on the collected data. To quantitatively address these questions, the next
sections of this paper examine the ability to infer existence of chemical sources from the in-
formation collected from many microscopic sensors moving passively through the vessels
within a macroscopic tissue volume.

3 Methods for Evaluating Device Performance

Because the microscopic sensors can not yet be fabricated, estimates of their performance
use models of both the devices and their task environment. Moreover, quantitative biophys-
ical properties of many microenvironments are not precisely known so models necessarily
use rough estimates of a plausible range of values. Such studies can not yet be validated
with physical experiments. Nevertheless observed behaviors of microorganisms, which
face the same physical constraints as future microscopic sensors, give guidelines for feasi-
ble behaviors.

One modeling approach focuses on collective behaviors in a highly simplified environ-
ment, such as cellular automata. For example, a two-dimensional scenario demonstrates
structure assembly [13] from local rules, but does not include physical behaviors such as
fluid flow. Distributed controls for swarms [14] are well-suited to microscopic devices
with their limited physical and computational capabilities and large numbers. These stud-
ies show how local interactions lead to interesting collective behaviors, though generally
assume the devices can communicate either directly or through changes they make to their
environments [14, 15].

Simulations including some physical properties of microscopic environments give plau-
sible quantitative performance estimates with various assumptions about the task environ-
ment. As one example, a two-dimensional simulation of chemotaxis [16] indicates the
ability to find microscopic chemical sources. A more elaborate simulator [17] includes
three-dimensional motions in viscous fluids, Brownian motion, and numerous cell-sized
objects in the fluid, though without accounting for how these objects change the fluid flow.

Another approach to device behaviors employs a stochastic mathematical framework
for distributed computational systems [18, 19]. This method directly evaluates the av-
erage behaviors of many devices, which would otherwise need numerous repeated runs
of a simulation. This approach is best suited for simple control strategies, with minimal
dependencies on events in individual device histories. Microscopic devices, with limited
computational and communication capabilities, are likely to be used with relatively sim-
ple reactive controls for which this analytic approach is ideally suited. One example is
following chemical gradients in a one-dimensional geometry without fluid flow [20].

Cellular automata, swarms, physically-based simulations and stochastic analysis are
useful tools for evaluating the behaviors of microscopic devices. In particular, minimally-
capable devices which simply record events they encounter while passively moving with
the fluid do not require elaborate control programs. Thus we can estimate the device be-
havior with these various approaches within a given model of the task environment. In our
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case, the variation in task environment properties, such as fluid flow speeds and chemical
concentrations, affects performance more significantly than details of the device models.
To examine likely performance of our protocol for limited-capability microscopic devices
we employ plausible estimates of device behaviors and task environment properties in a
model of behavior simple enough to solve directly without extensive simulations. This
approach is adequate to estimate the ability to detect small chemical sources and the cor-
responding false positive detections, while requiring only a simple inference algorithm on
the data collected from the devices.

3.1 Device Properties

For microscopic devices in small vessels, viscosity dominates the fluid motion, with differ-
ent physical behaviors than seen with larger organisms and robots [21, 22, 23, 24]. In the
approximate treatment considered here, we suppose the devices in the small vessels move
with the average fluid velocity, denoted asvavg.

Nanoscale chemical sensors involve the selective binding of molecules to receptors
which alters the electrical characteristics of nanoscale wires. Such sensors can detect fem-
tomolar concentrations [8, 9], with performance primarily limited by the time required for
molecules to reach the sensor. Thus for sensing chemicals at low concentrations, statistical
fluctuations in the number of molecules encountered is a dominant source of sensor noise.
This noise must be considered in the choice of inference algorithm for the collected data.

Microscopic sensors and bacteria face similar physical constraints in detecting chemi-
cals [25]. The diffusive capture rateγ for a sphere of radiusa in a region with concentration
C is [26]

γ = 4πDaC (1)

Even when sensors cover only a relatively small fraction of the device surface, the capture
rate is almost this large due to the relatively long time a diffusing molecule remains near the
surface once it gets close to it [26]. Devices with nonspherical shapes have similar capture
rates. Thus Eq. (1) is a reasonable approximation for a variety of designs of micron-scale
devices.

With the relevant fluid speeds, chemical concentrations, and source sizes for the task
environment described below, the sensors will pass through high concentrations near the
sources on millisecond time scales. Checking for patterns of detected chemicals requires
on-board computation. In our protocol, most of the computation to interpret sensor results
occurs in conventional computers after the devices are retrieved. The computation required
in the devices themselves is modest. Recognizing and storing a chemical detection involves
at least a few arithmetic operations to compare sensor counts to threshold values stored in
memory. An estimate on the required computational capability is about 100 elementary
logic operations and memory accesses within a10ms measurement time, i.e., about104

logic operations per second. This rate is well within the capabilities of molecular electron-
ics [10], and much slower than the speed of conventional computers.

Operating the devices requires a power source. Specifically, each logic operation in
current electronic circuits use104− 105 times the thermal noise levelkBT = 4× 10−21J at
the fluid temperature of Table 1, wherekB is the Boltzmann constant. Near term molecular
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electronics could reduce this to≈ 103kBT , in which case104 operations per second uses a
bit less than0.1pW.

For tasks of limited duration, the devices could use an on-board fuel source. Otherwise,
the devices could use energy available in their environment such as converting vibrations
to electrical energy [27] or using chemical reactions. For instance, typical concentrations
of glucose and oxygen in the bloodstream could generate≈ 1000pW continuously, limited
primarily by the diffusion rate of these molecules to the device [1].

3.2 Task Environment Properties

Tissue microenvironments vary considerably in many properties relevant to the perfor-
mance of our sensing protocol. These include the nature of the significant chemical sources,
the density and geometry of vessels passing through the tissue and fluid flow rates. As a
specific example illustrating the capabilities of passive motion by microscopic sensors, we
consider a task environment consisting of a macroscopic volume of tissue containing a few
microscopic sources producing a particular chemical (or combination of chemicals) while
the rest of the tissue does not produce this chemical, or only produces it at much lower
background concentrations. For simplicity, we treat the chemical sources as spheres of the
same size and uniformly distributed throughout the tissue volume, with parameters given
in Table 1.

parameter value
vessels and tissue
vessel radius R = 5µm
vessel length L = 1000µm
number density of vessels in tissue ρvessel = 500/mm3

tissue volume V = 1cm3

fluid
average fluid velocity vavg = 1000µm/s
fluid temperature T = 310K
sensors
sensor radius a = 1µm
number density of sensors in vesselsρsensor = 200/mm3

Table 1: Parameters for the sensing task.

The density of sensor devices in Table 1 corresponds tonsensor = 109 devices in the
entire5-liter blood volume of a typical adult. This many devices occupy only about10−6

of the vessel volume and have a total mass of about4mg. By comparison, blood cells
occupy20% − 40% of the blood volume. Thus in operation, the typical spacing between
devices will be many times their own size so their primary hydrodynamic interactions will
be with the blood cells and vessel walls rather than with other devices.

We consider a scenario in which sensors can be coarsely localized to a macroscopic
volumeV of interest, of about1cm in size. This coarse localization could be due to a dis-
tinctive chemical environment (e.g., high oxygen concentrations in the lungs), an externally

6



supplied signal (e.g., ultrasound) detectable by devices passing through vessels within the
volume, or a combination of both methods. In the first case, devices would have sensors not
only for the specific chemicals of interest, but also for whatever marker chemicals distin-
guish the desired operation tissue from others in the body. If normally occurring chemicals
are not sufficiently discriminating, specific marker chemicals could be injected into the
tissue of interest. This method could mark fairly small volumes, depending on the size
of the injection needle and rate at which the marker chemical degrades as it moves away
from the injection site. The second approach to coarse localization, via external signals,
requires devices able to detect the signals, thereby somewhat increasing their fabrication
complexity. Nevertheless, inbound communicationto the devices of just a few bits (in this
case, whether or not to be active) is much simpler than having the devices able to transmit
information or receive instructions at high bit rates.

With the coarse localization, the devices could be designed to be active only when they
detect they are in the specified region. Outside the tissue volume, the devices passively
circulate without recording chemical events. Such behavior illustrates an advantage of de-
vices with computational capability: simple changes in the control program installed in the
devices could alter the conditions under which they become active rather than requiring
different hardware. While not necessary for operation, coarse localization reduces false
positive detections when the diagnostic of interest is known to be in such a region. Alter-
natively, the devices could always be active and record the coarse localization information
in their memories as they encounter it. In either case, the coarse spatial localization could
aid subsequent interpretation of chemical source detections.

We focus on chemical detection in the small blood vessels, i.e., those small enough to
allow chemicals from the sources in the tissue to diffuse into, and with flow slow enough
to give reasonable detection probability before a sensor moves far past the source. A rough
model of the geometry is each of the small vessels has lengthL and is randomly placed
in the tissue. Letρvessel be the number density of such vessels in the tissue volume. The
ρvesselV small vessels in the tissue volume occupy about a fractionρvesselπR2L ≈ 4% of
the volume with the parameters of Table 1.

To evaluate high-resolution sensing, we suppose the chemical sources are small, with
sizeRsource as small as individual cells, i.e., about10µm. The rate sensors enter small
vessels within the tissue volume (via the branching from larger vessels) is

ωsensor = ρsensorρvesselV πR2vavg ≈ 8× 103/s (2)

whereρsensor is the number density of sensor devices within the vessel volume, and the
numerical value uses the parameters of Table 1. This is also the rate sensors leave the small
vessels as they merge to form larger vessels.

3.3 Chemical Properties

Many chemicals of interest will have sufficiently low concentrations that the devices are
likely to only encounter a few molecules while passing near the source. For example, one
scenario for microscopic sensors is detecting small regions of infection or injury before
they become serious. In this case, the chemicals at the source arise from the initial im-
munological response, whereby the injured area produces chemicals which enter nearby
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parameter value
diffusion coefficient D = 100µm2/s
concentration near source Csource = 2 molecule/µm3

background concentrationCbackground = 6× 10−3 molecule/µm3

chemical production flux F = 20 molecule/s/µm2

chemical source radius Rsource = 10µm

Table 2: Parameters for chemicals and a source. The diffusion coefficient and chemical
concentrations correspond to a typical 10 kilodalton chemokine molecule, with mass con-
centrations near the source and background (i.e., far from the source) equal to3×10−8g/ml
and10−10g/ml, respectively. The chemical production flux at the surface of the source is
chosen to give the measured steady-state concentration at the surface of the source, taken
to be a sphere with radiusRsource.

small blood vessels to recruit white blood cells [28]. Table 2 gives typical properties of
such chemicals, with concentrations well above the demonstrated sensitivity of nanoscale
chemical sensors [8, 9].

With these parameters, Eq. (1) gives the capture ratesγ ≈ 8/s at the background con-
centration and≈ 2300/s near the source. Detection over a time interval∆t is a Poisson
process with mean number of detectionsγ∆t.

We consider static chemical concentration from the source(s). The concentration satis-
fies the time-independent diffusion equation. Taking the source to be a sphere, the concen-
tration depends only on the distancer from the center of the sphere withr ≥ Rsource:

DrC ′′(r) + 2DC ′(r) = rαC(r) (3)

whereD is the diffusion coefficient for the chemical,C(r) is the concentration at distancer
from the source andα is the rate at which the chemical is removed from the tissue volume.
Removal mechanisms include degradation of the chemical in the tissue as well as physical
removal of the chemical entering the vessels via fluid flow. For instance, the characteristic
time to flow through the small vessel to reach a larger merging branch and then move out
of the tissue volume is≈ L/vavg, i.e., about a second. With the parameters of Table 1,
such vessels occupy a few percent of the tissue volume, giving an effective removal rate
of α ≈ 10−2/s. Aside from this removal term, the diffusion equation ignores changes in
concentration within the vessels due to fluid flow. That is, we model the concentration in the
tissue and assume the small fraction of tissue occupied by the vessels does not substantially
alter the concentration profile near the source.

With a spherical source producing the chemical with a fluxF , the solution to Eq. (3) is

C(r) =
FR2

source

Dr(1 + Rsource/η)
exp

(
−r −Rsource

η

)
(4)

for r ≥ Rsource with η =
√

D/α characterizing the range from the source beyond which
the concentration decreases exponentially with distance. With our parameters,η is 100µm.
With multiple sources, the total concentration is the sum of that from each of the sources.
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With the choices of Table 2, the fluxF corresponds to a total production4πR2
sourceF =

2 × 104molecule/s andC(Rsource) matches the valueCsource in the table. As a point of
comparison for this flux applied to a single cell, a eucaryotic cell has∼ 107 ribosomes
and production of a protein molecule takes about a minute, allowing production of about
105 protein molecules per second. While not all these molecules will be signal proteins
released through the cell membrane, we see the flux used here is within the range possible
for a single eucaryotic cell. Bacteria, of size only about1µm, will have lower maximum
steady-state production rates, so the flux used here corresponds to the combined production
rate of a small group of bacteria. This estimate of production rate based on the number of
ribosomes gives an upper bound on the long-term average production rate. In addition, the
signal proteins could be gradually accumulated and released in bursts, giving much higher
local concentrations for short times. If the burst times are relatively short, e.g., less than a
minute, the temporal resolution of passing sensors would be particularly useful since there
would be some probability of a sensor passing during the high concentration produced by a
burst. By contrast, attempting detection via a blood sample would give a temporal average
of the release, which would be much lower than the high concentration during a burst.

4 Results for a Sensing Task Scenario

L

Rsource

δ

vessel

source

Figure 1: A vessel passing at distanceδ from a source. A sensor, passing through the
vessel at average speedvavg, encounters changing concentration based on its distance from
the source.

A sensor moving in a small vessel past the source has the highest detection rate when
closest to the source. To estimate the expected number of detections, consider a small
vessel segment, of lengthL, passing a minimum distanceδ ≥ Rsource from the source as
shown in Fig. 1. SinceL is large compared toη, most counts will occur over a distance
of aboutη, i.e., during a time interval of aboutη/vavg = 100ms. Counts significantly
above background occur only whenδ is comparable to or smaller than the concentration
decay rangeη and in the portion of the vessel within aboutη of the closest approach to the
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source. The expected number of counts is estimated by integratingC(r), with the detection
rate Eq. (1), for a sensor moving with speedvavg through the vessel. Because most counts
occur near the source andL À η, we can extend the integration range to infinity without
significantly changing the result. Thus the expected number of counts from the source for
a sensor in a vessel passing at distanceδ ≥ Rsource from the source is

E(δ) ≈
∫ ∞

−∞
4πDaC

(√
δ2 + (vavgt)2

)
dt (5)

= 8πa
FR2

source eRsource/η

vavg(1 + Rsource/η)
K0(δ/η)

taking t = 0 to be the time of closest approach and whereK0 is the modified Bessel
function of the second kind and order zero.K0(δ/η) decreases exponentially forδ À η,
giving little chance of detection in vessels passing far from the source.

A device passing through a vessel near the source has aboutη/vavg = 100ms with
high concentration. Thus a simple criterion for detecting a source is to pick a thresholdK
and consider a source is found if a sensor detects at leastK molecules in a100ms interval.
With diffusive motion of the molecules, the actual number of counts is a Poisson distributed
random process with mean value given by Eq. (5). The detection probability, i.e., having at
leastK events when the expected number isµ, is

Pr(µ,K) = 1− e−µ
K−1∑

n=0

µn

n!

With a random distribution of vessels in the tissue volume, the number of vessels within
a distanceδ of the source is proportional to the volume, i.e., proportional toδ3. That is,
there are many more vessels far from the source than close to it, with the number at distance
δ then proportional to the rate of volume increase, i.e.,δ2. In our case,δ extends to the limit
of the tissue volume, given by(4/3)πδ3

max = V , i.e., δmax ≈ 6mm, although the precise
upper limit is not important since the concentration is too low to give any significant chance
for detections whenδ is large compared toη. Combining these observations with the rate
ωsensor at which sensors enter the tissue volume, the rate sensors detect the source using a
thresholdK is

ωsource = ωsensor

∫ δmax

Rsource

δ2

∆
Pr(E(δ), K) dδ (6)

where∆ =
∫

δ2 dδ over the same limits forδ normalizes the distribution of vessel distances
from the source, andωsensor is given by Eq. (2).

A sensor can also give a false positive, i.e., receiving enough counts to reach the thresh-
old in 100ms from just the background concentration. Although the expected number
of such detections in a given100ms interval is small, the background concentration ex-
tends throughout the vessels in the tissue volume giving many opportunities for false pos-
itives. With the parameters of Table 2, the expected count from background in100ms is
Ebackground = 0.8. Since a sensor spends≈ L/vavg = 1s in a small vessel in the tissue
volume, the sensor has about 10 independent100ms opportunities to accumulate counts
toward the detection thresholdK. The rate of false positive detections is then

ωbackground ≈ 10 ωsensor Pr(Ebackground, K) (7)
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For a diagnostic task, we pick a detection thresholdK and a timet for sensors to
accumulate counts. The expected number of sensors reporting detections from the source
and from the background are thenωsourcet andωbackgroundt, respectively. The actual number
is also a Poisson process, so another decision criterion for declaring a source detected is
the minimum number of sensorsn reporting a detection. Since expected count rate near
the source is significantly larger than the background rate, the contributions to the counts
from the source and background are nearly independent, so the probability forn sensors to
reach the threshold number of counts to indicate a source is

Pr ((ωsource + ωbackground)t, n)

and similarly for the false positives with counts based only onωbackground.
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Figure 2: Probabilities of at least one sensor detecting a single source (true positive) and
mistaking background concentration for a source (false positive) after sampling fort = 1,
10 and 60 seconds (dashed, gray and solid curves, respectively). Each curve corresponds
to a range of values for the minimum count threshold,K, in a100ms interval that is taken
to indicate detecting a source.

As an example of detection options, Fig. 2 shows the performance trade-off between
true and false positive detections of a single source in the tissue volume after various sam-
pling times withn = 1. The curves range from the lower-left corner (low detection rates)
with a high threshold (K = 100) to the upper-right corner (high detection and high false
positive rate) with a low threshold (K = 1). Sampling for only a minute gives excellent dis-
crimination, e.g.,K = 15 corresponds to the upper-left corner where sources are detected
with over99% probability with the probability of a false positive only about10−7.

For comparison, instead of using microscopic sensors, one could test for the chemical in
a blood sample. This allows using chemical sensors outside the body, giving simpler fabri-
cation and use. However, such a sample dilutes the chemical throughout the blood volume,
resulting in considerably smaller concentrations than are available to microscopic sensors
passing close to the source. As an example, suppose a single source described above pro-
duces the chemical for one day and all this production is delivered to the blood without any
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degrading before a sample is taken. The source producing∼ 2× 104molecule/s then gives
a concentration in the 5 liter blood volume of about3 × 1011molecule/m3, which is less
than10−4 of the background concentration. In this case, the additional chemical released
by the source would be undetectable against the variations in background concentration.

5 Extensions

The scenario described above illustrates behavior for one set of biologically relevant pa-
rameters. We can similarly consider other scenarios. For instance, with a smaller number
of sensors, detection times would be correspondingly longer, or the sensors would only
detect a larger number of sources. Thus, with106 sensors, a factor of 1000 fewer than in
Table 1, achieving the discrimination shown in Fig. 2 would require about 1000 minutes,
i.e., a day. Alternatively, for106 sensors with 1000 sources distributed randomly in the tis-
sue volumeV instead of just one source, performance would be similar to that shown in the
figure. Note that 1000 sources would occupy only a few millionths of the tissue volume.

Tissues vary in their density of small vessels and flow speed varies among these vessels.
Uniform changes in these parameters alters both true and false positive detections similarly,
so such changes mainly affect the required measurement time, as with changing the number
of sensors. For example, Eq. (5) shows the counts from the source increase as fluid veloc-
ity decreases, due to the additional time a sensor spends near the source. Similarly, false
positive detections also increase. Thus, tissue containing vessels with a different value of
vavg gives the same good performance by corresponding changes in the detection threshold
K. A more challenging situation is if the changes are not uniform within the tissue volume.
As an extreme case, suppose the few vessels passing near the source have fluid speedvavg

as given in Table 1 but the vast majority of vessels in the tissue volume have speeds only
1/100 as fast, i.e.,10µm/s. Due to the high discrimination seen in Fig. 2, the increase by
a factor of 100 in the false positive rate still gives good performance: over99% probability
to detect the source, using thresholdK = 15, with the probability of a false positive rising
to only about10−5 compared with10−7 in the original scenario. This example also illus-
trates how the sensor data indicates properties of the source neighborhood. In this case, a
detection withK = 15 would likely have only a few counts more than this threshold. On
the other hand, if the source were in a region of vessels with lower velocities, the observed
counts would tend to be significantly higher than this threshold value. Thus analysis of the
sensor data beyond simply whether the counts reach a threshold provides information on
the source microenvironments.

The chemical properties of Table 2 are one example for a diagnostic application. Ex-
amining lower concentrations indicates the range of usefulness of these passive sensors.
As the source concentrationCsource decreases, suitable threshold choices giving good dis-
crimination between true and false positives require increased observation time. Fig. 3
illustrates this behavior by showing the measurement times required for various choices of
source and background concentrations. The figure shows measurement times ranging from
10 to105 seconds (i.e., about one day). As the source concentration decreases toward that
of the background, the required measurement time grows very rapidly, so this diagnostic
approach is no longer feasible. Instead, one would need to reduce the effective background
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Figure 3: Combinations of source and background concentrations, on logarithmic scales,
allowing good discrimination over differing measurement times,t. The curves correspond
to t = 10, 102, 103, 104 and105 seconds, from top to bottom. For these curves, good
discrimination consists of choosing the count thresholdK in a 100ms interval giving99%
probability for true positive detection and at most1% probability for a false positive. Since
the thresholdK is an integer, for most background concentrations, the smallestK with
false positive probability at most1% in fact gives a substantially smaller probability. Con-
centrations are measured in molecule/µm3 with the gray point corresponding to parameters
used in Table 2.

concentration or increase the time sensors spend near the source. For instance, better coarse
localization could help, e.g., reducing the size from1cm to1mm would reduce false posi-
tive rate by a factor of 1000. Alternatively, testing for combinations of chemicals released
by the source could also reduce the effective background rate. Finally, fabricating devices
able to alter their surface to reversibly stick to vessel walls would allow time to collect more
counts once they pass a threshold, thereby better distinguishing a source from background.

6 Discussion

This paper described how passively moving microscopic chemical sensors could give high
resolution estimates of chemically distinctive regions in vivo. The performance estimates
show devices with limited capabilities – specifically, without locomotion or communication
with other devices – can nevertheless perform well for rapidly detecting chemical sources
as small as a single cell. The devices use their small size and large numbers to allow at
least a few to get close to the source, where concentration is much higher than background.

The inference procedure could account for sensor failures, e.g., requiring detection by
several sensors as independent confirmation of at least one source. Occasional spurious
extra counts by the sensors amount to an increase in the effective background concentration.
As long as these extra counts are infrequent, and not significantly clustered in time, such
errors will not significantly affect the overall accuracy of the results.
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The model examined here treats the small vessels and the chemical sources as randomly
distributed in the tissue volume. Systematic variation in the density and organization of the
vessels will increase the variation in detected values. For instance, the tissue could have
correlations between vessel density and the chemical sources (e.g., if those chemicals en-
hance or inhibit growth of new vessels). More accurate inferences require better models
of how the chemicals move through the tissue to nearby blood vessels where they can
then reach the sensors. Such movement of the chemicals could be anisotropic and include
advection due to microfluidic flows in addition to diffusion. When several chemicals are
involved, they could react, e.g., to form dimers, changing the concentrations with distance
from the source. Furthermore, sensors will not move past sources at uniform speeds, as
assumed with Eq. (5), but instead will change speed depending on their location within the
vessel and interaction with cells in the fluid, giving further variation in the count rate. Nev-
ertheless, the simple model discussed here indicates the devices could have high discrim-
ination for sources as small as single cells. Some unmodeled sources of variability could
be addressed by extending the sensing time or using more sophisticated inference methods.
Moreover, with coarse localization during operation, the devices themselves could estimate
some of this variation (e.g., changes in density of vessels in different tissue regions), and
these estimates could be used to improve the inference instead of relying on average or
estimated values for the tissue structure.

The high-resolution sensing scenario described in this paper is only one possible appli-
cation of the devices. Other applications are of two types. First, we can use more sophis-
ticated inference from the data after the devices are retrieved to estimate further properties
of the chemical sources and their environments. Second, additional hardware capabilities
could allow collecting more information, communicating some information to external ob-
servers during operation, or taking actions based on sensor observations.

For example, correlations in the measurements could distinguish a strong source from
many weak sources spread throughout the tissue volume producing the chemical at the
same total rate. Specifically, the strong source would give high count rates for a few sensors
(those moving through vessels that pass near the source). On the other hand, multiple weak
sources would have some detection in a larger fraction of the sensors, since more sensors
would pass close enough to some source to reach the threshold of detection. More specific
discrimination of these cases would be evident from the temporal distribution of counts.

Including nanoscale sensors for fluid motion [29] on the devices would allow mapping
the in vivo microfluidic behavior in small vessels. Such fluid flow sensors would allow
correlating chemical detections with properties of the flow and the vessel geometry (e.g.,
branching and changes in vessel size or permeability to fluids). Detailed information on
fluid behavior would also give design constraints on more elaborate devices with locomo-
tion capability.

This paper considered homogeneous devices with the same control program and ca-
pabilities. More generally, devices could have various capabilities. For instance, some
devices could have multiple specialized sensors for specific, rare chemicals, while others
have more computational capability to evaluate spatial or temporal patterns of chemical
activity. Initially homogeneous devices could also develop temporary or permanent differ-
ences based on their history, e.g., the level of their energy reserves or remaining amount of
free memory influencing their behavior. Heterogeneity involving devices of different sizes
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can also be useful when the diagnostic task involves chemical sources on several biological
scales from individual cells to tissues [30, 31].

As an example of an application for taking action based on sensor readings, the devices
could carry specific drugs to release only near cells matching a prespecified chemical pro-
file [1, 32] as an extension of a recent in vitro demonstration of this capability using DNA
computers [33]. Devices determining when to take such actions could combine chemical
information with other sensing modalities, such as optical scattering in cells, as has been
demonstrated to distinguish some cancer from normal cells in vitro [34].

Safety is an important design criterion for medical applications of microscopic sen-
sors, both in terms of the devices themselves and subsequent actions based on diagnostic
results. Thus, evaluation of the protocol should consider its accuracy allowing for sensor
errors, failures of individual devices or variations in environmental parameters. For the
distributed sensing discussed in this paper, aggregation of many devices’ measurements
provides robustness against these variations, e.g., as illustrated using DNA computing to
respond to chemical patterns [33]. Physically, the devices must be compatible with their
biological environment [35, 36], for at least enough time to complete their task. Appropri-
ately engineered surfaces [35] should prevent unwanted inflammation or immune system
reactions during their operation. However, even if individual devices are inert, too large
a number in the circulation would be harmful. From Table 1, sensors occupy a fraction
(4/3)πa3ρsensor ≈ 10−6 of the volume inside the vessels. This value is well below the
fraction, about10−3, of micron-size particles experimentally demonstrated to be safely tol-
erated in the circulatory system of at least some mammals [35]. Thus the number of sensors
used in the protocol of this paper is unlikely to be a safety issue.

The estimates obtained in this paper with plausible biophysical parameters show rel-
atively modest molecular hardware capabilities could provide useful in vivo sensing ca-
pabilities. The usefulness of such capability depends on the types of chemical events of
interest, and particularly the extent to which local spatial or temporal variations in the
chemicals give information beyond single measurements, e.g., to reduce background de-
tections, thereby benefiting from the computational capabilities of the devices. Using these
sensors in research studies of tissue microenvironments will enable better inferences from
their data, and quantify the further benefits possible with more capable devices.
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