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We present a study of information flow that takes into account the observation that an item
relevant to one person is more likely to be of interest to individuals in the same social circle than
those outside of it. This is due to the fact that the similarity of node attributes in social networks
decreases as a function of the graph distance. An epidemic model on a scale-free network with
this property has a finite threshold, implying that the spread of information is limited. We tested
our predictions by measuring the spread of messages in an organization and also by numerical
experiments that take into consideration the organizational distance among individuals.

The problem of information flows in social organiza-
tions is relevant to issues of productivity, innovation and
the sorting out of useful ideas out of the general chatter
of a community. How information spreads determines
the speed with which individuals can act and plan their
future activities. In particular, email has become the pre-
dominant means of communication in the information so-
ciety. It pervades business, social and scientific exchanges
and as such it is a highly relevant area for research on
communities and social networks. Not surprisingly, email
has been established as an indicator of collaboration and
knowledge exchange [1–6]. Email is also a good medium
for research because it provides plentiful data on personal
communication in an electronic form.

Since individuals tend to organize both formally and
informally into groups based on their common activities
and interests, the way information spreads is affected by
the topology of the interaction network, not unlike the
spread of a disease among individuals. Thus one would
expect that epidemic models on graphs are relevant to
the study of information flow in organizations. In partic-
ular, recent work on epidemic propagation on scale-free
networks found that the threshold for an epidemic is zero,
implying that a finite fraction of the graph becomes in-
fected for arbitrarily low transmission probabilities [7–9].
The presence of additional network structure was found
to further influence the spread of disease on scale-free
graphs [10–12].

There are, however, differences between information
flows and the spread of viruses. While viruses tend to be
indiscriminate, infecting any susceptible individual, in-
formation is selective and passed by its host only to indi-
viduals the host thinks would be interested in it. The in-
formation any individual is interested in depends strongly
on their characteristics. Furthermore, individuals with
similar characteristics tend to associate with one another,
a phenomenon known as homophily [13–15]. Conversely,
individuals many steps removed in a social network on
average tend not to have as much in common, as shown
in a study [16] of a network of Stanford student home-
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FIG. 1: Average textual similarity of Stanford student home-
pages as a function of the number of hyperlinks separating
them. The textual similarity is measured as

∑

x
1/ ln(f(x)),

where x are shared words and phrases such as persons, proper
nouns, places, and organizations, and f(x) is the number of
homepages mentioning x.

pages and illustrated in Figure 1.
We therefore introduce an epidemic model with decay

in the transmission probability of a particular piece of in-
formation as a function of the distance between the orig-
inating source and the current potential target. In the
following analysis, we show that this epidemic model on
a scale-free network has a finite threshold, implying that
the spread of information is limited. We further tested
our predictions by observing the prevalence of messages
in an organization and also by numerical experiments
that take into consideration the organizational distance
among individuals.

Consider the problem of information transmission in a
power-law network whose degree distribution is given by

pk = Ck−αe−k/κ, (1)

where α > 1, there is an exponential cutoff at κ and
C is determined by the normalization condition. A real
world graph will at the very least have cutoff at the max-
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FIG. 2: Tc as a function of α. The three different curves, from
bottom to top are: 1) no decay in transmission probability, no
exponential cutoff in the degree distribution (κ =∞, β = 0).
2) κ = 100, β = 0, 3) κ = 100, β = 1.

imum degree k = N , where N is the number of nodes,
and many networks show a cutoff at values much smaller
than N . For our analysis, we will make use of generat-
ing functions, whose application to graphs with arbitrary
degree distributions is discussed in [17]. The generating
function of the distribution is

G0(x) =

∞
∑

k=1

pkxk =
Liα(xe−k/κ)

Liα(e−1/κ)
. (2)

where Lin(x) is the nth polylogarithm of x.

Following the analysis in [18] for the SIR (susceptible,
infected, removed) model, we now estimate the probabil-

ity p
(1)
l that the first person in the community who has

received a piece of information will transmit it to l of
their neighbors. Using the binomial distribution, we find

p
(1)
l =

∞
∑

k=l

pk

(

k

l

)

T l(1− T )k−l, (3)

where the superscript “(1)” refers to first neighbors, those
who received the information directly from the initial
source. The transmissiblity T is the average total prob-
ability that an infective individual will transmit an item
to a susceptible neighbor and is derived in [18] as a func-
tion of rij , the rate of contacts between two nodes, and
τi, the time a node remains infective. If rij and τi are
iid randomly distributed according to the distributions
P (r) and P (τ), then the item will propagate as if all
transmission probabilities are equal to a constant T .

T = 〈Tij〉 = 1−

∫

∞

0

drdτP (r)P (τ)e−rτ (4)

The generating function for p
(1)
l is given by

G(1)(x) =
∞
∑

l=0

∞
∑

k=l

pk

(

k

l

)

T l(1− T )k−lxl (5)

= G0(1 + (x− 1)T ) = G0(x;T ). (6)

Suppose the transmissibility decays as a power of the
distance from the initial source. We choose this weakest
form of decay as the results that are obtained from it
will also be valid for stronger functional forms. Then
the probability that an mth neighbor will transmit the
information to a person with whom he has contact is
given by

T (m) = (m + 1)−βT, (7)

where β > 0 is the decay constant. T (m) = T at the
originating node (m = 0) and decays to zero as m →∞.

The generating function for the transmission probabil-
ity to 2nd neighbors can be written as

G(2)(x) =
∑

k

p
(1)
k [G

(1)
1 (x)]k = G(1)(G

(1)
1 (x)), (8)

where

G
(1)
1 (x) = G1(x; 2−βT ) = G1(1 + (x− 1)2−βT ) (9)

and

G1(x) =

∑

k kpkxk

x
∑

k kpk
=

G′

0(x)

G′

0(1)
(10)

is the generating function of the degree distribution of
a vertex reached by following a randomly chosen edge,
not counting the edge itself [17]. Similarly, if we define
G(m)(x) to be the the generating function for the number
of mth neighbors affected, then we have

G(m+1)(x) = G(m)(G
(m)
1 (x)) for m ≥ 1, (11)

where

G
(m)
1 (x) = G1(x; (m+1)−βT ) = G1(1+(x−1)(m+1)−βT ).

(12)
Or, more explicitly,

G(m+1)(x) = G(1)(G
(1)
1 (G

(2)
1 (· · ·G

(m)
1 (x)))). (13)

The average number zm+1 of (m + 1)th neighbors is

zm+1 = G(m+1)′(1) = G
(m)
1

′

(1)G(m)′(1) = G
(m)
1

′

(1)zm.

(14)
So the condition that the size of the outbreak (the num-
ber of affected individuals) remains finite is given by

zm+1

zm
= G

(m)
1

′

(1) < 1, (15)

or

(m + 1)−βTG′

1(1) < 1. (16)
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FIG. 3: Outdegree distribution for all senders (224,514 in
total) sending email to or from the HP Labs email server over
the course of 3 months. The outdegree of a node is the number
of correspondents the node sent email to.

Note that G′

1(1) does not diverge when α < 3 due to
the presence of a cutoff at κ. For any given T , the left
hand side of the inequality above goes to zero when m →
∞, so the condition is eventually satisfied for large m.
Therefore the average total size

〈s〉 =

∞
∑

m=1

zm (17)

is always finite if the transmissibility decays with dis-
tance.

To compare this result with previous results on disease
spread on scale-free networks, we take as an example a
network made up of 106 vertices. We can define an epi-
demic to be an outbreak affecting more than 1% or 104

vertices. Thus for fixed α, κ and β, we can define Tc as
the transmissibility above which 〈s〉 would be made to
exceed 104.

Figure 2 shows the numerical results of the variation
of Tc as a function of α. When β = 0 (there is no decay
in transmission probability), κ = ∞, and α < 3, Tc is
zero and epidemics encompassing more than 104 vertices
occur for arbitrarily small T , as was found in [8]. Keeping
β at zero and adding a cutoff at κ = 100 produces a
non-zero critical transmissibility Tc, as was found in [18].
For α = 2, a typical value for real-world networks, Tc is
still very near zero, meaning that for most values of T ,
epidemics do occur. However, when we impose a decay in
transmissibility by setting β to 1, Tc rises substantially.
For example, Tc jumps to 0.54 at α = 2 and rises rapidly
to 1 as α increases further, implying that the information
may not spread over the network.

In order to validate empirically that the spread of infor-
mation within a network of people is limited, and hence
distinct from the spread of a virus, we gathered a sam-

10
0

10
1

10
0

10
1

10
2

10
3

10
4

number of recipients

nu
m

be
r 

of
 it

em
s 

w
ith

 s
o 

m
an

y 
re

ci
pi

en
ts

email attachments
x−4.1

URLs
x−3.6

FIG. 4: Number of people receiving URLs and attachments

ple from the mail clients of 40 individuals (30 within HP
Labs, and 10 from other areas of HP, other research labs,
and universities). Each volunteer executed a program
that identified URLs and attachments in the messages
in their mailboxes, as well as the time the messages were
received. This data was cryptographically hashed to pro-
tect the privacy of the users. By analyzing the message
content and headers, we restricted our data to include
only messages which had been forwarded at least one
time, thereby eliminating most postings to mailing lists
and more closely approximating true inter-personal in-
formation spreading behavior. The median number of
messages in a mailbox in our sample is 2200, indicating
that many users keep a substantial portion of their email
correspondence. Although some messages may have been
lost when users deleted them, we assume that a major-
ity of messages containing useful information had been
retained.

Figure 4 shows a histogram of how many users had
received each of the 3401 attachments and 6370 URLs.
The distribution shows that only a small fraction (5% of
attachments and 10% of URLs) reached more than 1 re-
cipient. Very few (41 URLs and 6 attachments) reached
more than 5 individuals, a number which, in a sample of
40, starts to resemble an outbreak. In follow-up discus-
sions with our study subjects, we were able to identify
the content and significance of most of these messages.
14 of the URLs were advertisements attached to the bot-
tom of an email by free email services such as Yahoo and
MSN. These are in a sense viral, because the sender is
sending them involuntarily. It is this viral strategy that
was responsible for the rapid buildup of the Hotmail free
email service user base. 10 URLs pointed to internal HP
project or personal pages, 3 URLs were for external com-
mercial or personal sites, and the remaining 14 could not
be identified.

In our sample, one group is overrepresented, allowing
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FIG. 5: Average outbreak and epidemic size as a function of
the transmission probability p. The total number of potential
recipients is 7119.

us to observe both the spread of information within a
close group, and the lack of information spread across
groups. A number of attachments reaching four or more
people were resumes circulated within one group. A few
attachments were announcements passed down by higher
level management. This kind of top down transmission
within an organization is another path through which
information can be efficiently disseminated.

Next we simulated the effect of decay in the transmis-
sion probability on the email graph at HP Labs in Palo
Alto, CA. The graph was constructed from recorded logs
of all incoming and outgoing messages over a period of
3 months. The graph has a nearly power-law out degree
distribution, shown in Figure 3, including both internal
and external nodes. Because all of the outgoing and in-
coming contacts were recorded for internal nodes, their in
and out degrees were higher than for the external nodes
for which we could only record the email they sent to
and received from HP Labs. We however considered a
graph with the internal and external nodes mixed (as in
[1]) to specifically demonstrate the effect of a decay on
the spread of email in a power-law graph.

We simulated the spread of an epidemic by selecting
a random initial sender to infect and following the email

log containing 120,000 entries involving over 7,000 recip-
ients in the course of a week. Every time an infective
individual was recorded as sending an email to someone
else, they had a constant probability p of infecting the
recipient. Hence individuals who email more often have
a higher probability of infecting. We also assume that an
individual remains infective (willing to transmit a partic-
ular piece of information) for a period of τ = 24 hours.

Next we introduced a decay in the one-time transmis-
sion probability pij as p∗d−1.75

ij , where dij is the distance
in the organizational hierarchy between individuals i and
j. This exponent roughly corresponds to the decay in
similarity between homepages shown in Figure 1. Here
rij = pij ∗ fij , where fij is the frequency of communi-
cation between the two individuals, obtained from the
email logs. The decay in transmission probability rep-
resents the fact that individuals closer together in the
organizational hierarchy share more common interests.
Individuals have a distance of one to their immediate su-
periors and subordinates and to those they share a supe-
rior with. The distance between someone within HP labs
and someone outside of HP labs was set to the maximum
hierarchical distance of 8.

In figure 5 we show the average outbreak size, and
the average epidemic size (chosen to be any outbreak
affecting more than 30 individuals) as a function of the
one time transmission probability p. Without decay, the
epidemic threshold falls below p = 0.01. With decay,
the threshold is set back to p = 0.20 and the outbreak
epidemic size is limited to about 50 individuals, even for
p = 1.

As these results show, the decay of similarity among
members of a social group has strong implications for the
propagation of information among them. In particular,
the number of individuals that a given email message
reaches is very small, in contrast to what one would ex-
pect on the basis of a virus epidemic model on a scale free
graph. The implication of this finding is that merely dis-
covering hubs in a community network is not enough to
ensure that information originating at a particular node
will reach a large fraction of the community. We expect
that these findings are also valid with other means of so-
cial communication, such as verbal exchanges, telephony
and instant messenger systems.
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