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Quantum Solution of Coordination Problems
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We present a quantum solution to coordination problems that can be implemented
with existing technologies. Using the properties of entangled states, this quantum
mechanism allows participants to rapidly find suitable correlated choices as an
alternative to conventional approaches relying on explicit communication, prior
commitment or trusted third parties. Unlike prior proposals for quantum games
our approach retains the same choices as in the classical game and instead uti-
lizes quantum entanglement as an extra resource to aid the participants in their
choices.
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1. COORDINATION GAMES

The existence of multiple equilibria in economic systems can lead to coor-
dination failures and consequently to inefficient outcomes. Examples that
have been extensively studied include firms deciding whether or not to
enter a competitive market and how to position their offerings, and the
coordinated resolution of social dilemmas involved in the provision of
public goods.

Coordination problems have long been studied in the context of game
theory,(5,9,19) where the coordination game is specified by a payoff matrix
which yields several Nash equilibria. These equilibria can at times give
the same payoff to all players, in which case the problem is for them to
agree on which one to use, or different payoffs, leading to a competitive
coordination game in which players prefer different equilibria. More gen-
erally these examples of games with multiple equilibria may require players
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to coordinate their choices to achieve a particular equilibrium.(2) Without
such coordination the players can spend inordinate amounts of time try-
ing to settle on an equilibrium, with consequent loss of the opportunity
for high-payoff from coordinated choices.

1.1. Examples of Coordination Games

A simple example of a cooperative coordination game is that of two
people having to choose whether to drive on the left or the right side of
the road. Table 1 shows a payoff matrix for this game: a benefit if play-
ers make the same choices and a large penalty for different choices. Thus,
this game has two Nash equilibria, with equal payoffs, corresponding to
both drivers choosing the same side of the road. The coordination prob-
lem consists in both drivers finding a way to agree on which side of the
road to drive.

Another cooperative coordination problem arises when using asyn-
chronous exchanges, such as email, to coordinate a meeting location when
one is not sure that recipients have read their emails and acknowledge-
ments before the start of the meeting.(4,17) This illustrates how coordina-
tion games involve the issue of achieving common knowledge,(9) i.e., all
parties know a particular choice to make and that the other participants
also know this choice. For example, suppose two groups may be arrang-
ing separate meetings in one of two locations (of different desirability), but
they do not know if the two meetings will be scheduled at the same time.
If they are, as the first few people from each group show up at the more
desirable location, they wish to flip a coin, as a fair way to decide which
group gets the better location, and then make sure others in their group
achieve common knowledge of the meeting location while limited to asyn-
chronous communication. An interesting variation of this game is when
only some members of each group may be interested in any particular
meeting, and these members are not mutually known to each other prior
to the time they actually appear at the meeting.

Table 1. Payoff Structure for Two Driving
Choices: Left (L), Right (R). Each Row and
Column Corresponds to Choices Made by
the First and Second Players, Respectively,
and their Corresponding Payoffs

Choice L R

L 1,1 −3,−3
R −3,−3 1,1
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Interesting competitive coordination games arise, for example, in the
case of two players trying to coordinate on a mixed strategy against a
third one without resorting to previous agreement or communication, as
in the case of a coordinated attack on a rival or enemy. For instance, con-
sider two military allies, on opposite sides of a field, who want to get a
target held by an adversary on either the left or right sides of the field.
The first of the allies can create a distraction. The other has the personnel
and equipment needed to find the target provided they can do so undis-
turbed. The allies need to decide whether to send their forces to the left
or right sides of the field. For any chance of success, the distraction from
ally 1 must be on the opposite side of the field from where ally 2 goes. The
payoff to the allies are shown in Table 2 (with the payoff to the adversary
equal to 1 minus that of the allies). These payoffs express the fact that ally
2 must choose the same place as where the adversary hid the target (which
will happen 1/2 the time in case the adversary uses a mixed strategy of
each choice randomly selected with equal probability), but also be sure to
do the opposite of ally 1. As a further aspect of this game, the allies wish
to avoid communication and want to delay their decision as long as possi-
ble since the adversary could move the target if he knows which choice the
allies make well in advance of their action, for example by spies or eaves-
dropping. This game has a mixed strategy equilibrium and the require-
ment for anti-correlation among the allies. Specifically, the adversary could
select each choice with probability 1/2. If the allies similarly make random
choices without coordination, their expected payoff is only 1/4. If instead
they always coordinate their choices, i.e., never have both picking left or
both picking right, their expected payoff increases to 1/2.

Table 2. Payoff Structure for the Two
Allies and their Adversary Based on their
Choices. For Example, the Entry of the
Third Column, Second Row Corresponds to
the First Ally going to the left, the second
ally going to the right and the adversary
hiding the target on the Left. The Payoff in
this Case is 0 for the Allies and 1 for the
Adversary

Allies’ choices Adversary’s choice

Ally 1 Ally 2 Left Right

Left Left 0 0
Left Right 0 1
Right Left 1 0
Right Right 0 0
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Table 3. Payoff Structure for the Rock,
Paper, Scissors for the Pair of Allied Players
Against the Third Player. Each Row and
Column Corresponds to Choices made by
the Pair (Assuming that they are the same)
and Their Opponent, Respectively, and their
Corresponding Payoffs. For Example, the
Entry of the Second Column, Second Row
Corresponds to the Allies both Choosing
Paper and the Third Player Choosing Rock

Choice Rock Paper Scissors

Rock 0,0 −1,1 1,−1
Paper 1,−1 0,0 −1,1
Scissors −1,1 1,−1 0,0

Another example is a three-player version of the game of rock, paper,
scissors, in which the two allied players must make the same choice to
have any chance of winning. If the allies make different choices their pay-
offs are zero and the third player gets a payoff of 1. When the two allies
make the same choice the payoff to the allies and the third player are
given the payoff matrix of the usual two-player rock, paper scissors game,
which is shown in Table 3.

This game has the feature that no single choice is best, i.e., there is
no pure strategy Nash equilibrium. Instead, the best strategy for ratio-
nal players is to make the choices randomly and with equal probability,
which gives it a mixed strategy Nash equilibrium with expected payoff
of 1/3.

For the full game without coordination the pair of allied players only
has 1/3 chance of making the same choice, and another 1/3 to win against
their opponent, leading to an expected payoff of 1/9. If they can be per-
fectly coordinated their payoff would be 1/3. In this example it is necessary
to play random choices because any a priori commitment between the
allied pair to a specific set of choices would no longer be a random strat-
egy, and therefore discoverable by observation.

1.2. Solving Coordination Problems

These and many other instances of coordination problems can be
solved in several ways. A first solution resorts to a trusted third party
who knows the preferences of the participants and is given the authority
to pick an equilibrium which is then broadcasted to the players. In the
case of competitive coordination problems the trusted third party may also
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have enforcement powers, since some players may wish to move the group
to another equilibrium with higher personal utility.

Another solution to coordination problems involves communication
among players so that they can negotiate a choice. In the case of coop-
erative games even one player flipping a coin and broadcasting the result
as the corresponding choice provides an effective solution. In a competi-
tive setting, the negotiation might be such that the players wish to choose
their equilibria at random as it would then be perceived as a fair choice.
This case would require a trusted mechanism of coin flipping over a com-
munication line, which can be enforced through cryptographic protocols.

A third mechanism for solving coordination problems invokes social
norms, in which common knowledge of the participants’ preferences can
distinguish one equilibrium from the others, as in the case of choosing
the largest river as a boundary between two countries. Such distinguished
equilibria are often called focal points.(10,19)

While these mechanisms can solve coordination problems, there are
times when none of these options are available, either because they are too
expensive, slow or difficult to implement, or because privacy worries pre-
vent the participants from using any of these options. Furthermore, a con-
straint from a larger context, such as the need to use a mixed strategy,
might make it disadvantageous for players to have their choices revealed
in advance. For instance, relying on communication could fail if jammed
by an adversary, or used to identify the fact that players are communi-
cating from specific locations—information that in itself could be damag-
ing to reveal. In particular, if one player awaits an acknowledgement from
the other, uncertainty over whether lack of response is due to jamming the
response or lack of reception of the original communication could prevent
establishing common knowledge needed to establish coordination.

This requirement for random but correlated choices without commu-
nication at the time the choices are made could be achieved by flipping
a coin in advance, setting another coin to match the first one, hiding
each coin in a separate box, and giving one box to each player. Open-
ing a box at some later time gives an outcome correlated with that of the
other player. A corresponding algorithmic approach would be prior agree-
ment on a secret seed for use with a pseudorandom number generator.
This amounts to prior agreement on the method for determining a choice,
rather than the choice itself. Still, an adversary could learn this method of
how the players will choose long before they actually do, use it to deter-
mine the choice to be made, and thus adjust its strategy accordingly.

If these considerations lead the players to prefer not using these
conventional techniques, it would appear that the only choice left for
the participants is to choose at random which strategy to pursue, which
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would lead to many instances of coordination failures and a consequent
reduction in their respective payoffs. Nevertheless, as we now show, there
is an alternative solution, which resorts to quantum mechanics to solve
coordination problems without communication, trusted third parties or
prearranged choices. It thus provides an additional option for addressing
coordination problems, with a different set of strengths and limitations
from those of the conventional approaches.

2. QUANTUM MECHANISM FOR COORDINATION

Quantum dynamics allows for the practical solution of a coordina-
tion problem via the generation of particles in entangled states. Quantum
entanglement results in the appearance of specific quantum correlations
between parts of a composite system, which can be exploited for quantum
information processing.(16)

In the simplest case, where players face two choices, A, and B, they
can use entangled particles with two physically observable states, such as
their spin or polarization. Figure 1 schematically shows how the states
are generated and distributed to the players. At a time of their choosing,
each participant observes the state of their particle, resulting in either A

or B as the outcome, and makes the corresponding choice. The key aspect
that makes this technique different from random choices is that entan-
glement implies a definite correlation between the two measurements, i.e.,
both players get either outcome A or B, irrespective of the spatial separa-
tion between them, and without communication.

Thus, quantum information processing, which already offers the
potential for improved computation, cryptography and economic mecha-
nisms(3,6–8,12,14) can help solve coordination problems without resorting to
the complex signaling procedures required to achieve common knowledge
when limited to unreliable or asynchronous communication.

Mathematically, the quantum state is specified by a vector of com-
plex numbers, called amplitudes, one for each possible configuration of
the physical system. These amplitudes have physical meaning in that their
squared magnitudes correspond to the probabilities of obtaining a given
configuration when the state is observed. Any such vector can always be
written as a linear combination of basis states. In this case, the basis state
corresponding to configurations C of the system, is conventionally written
as |C〉. In games for two players each having two choices (A or B), the
configurations of the game are all possible joint choices. For a quantum
implementation of a game, each player is given a physical state which can
take on either of the two choices. Thus the whole game, i.e., choices for
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Fig. 1. Schematic description of the quantum coordination mech-
anism. A source of entangled photons sends one to each of the
participants of a coordination game, who then observe it in order
to make a decision.

all the players, is described by a quantum state vector. For the case of two
players and two choices, we can illustrate the behavior of this mechanism
with the vector:

|S〉=a|AA〉+a|BB〉+b|AB〉+b|BA〉 (1)
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with the constants, a, b, subject to the normalization condition 2|a|2 +
2|b|2 = 1 because the probabilities must sum to 1. Except for special
choices of the constants (e.g., a =b), such a state is entangled, in the sense
that it cannot be written as a product of individual players’ states. This
property of entanglement is the key feature that allows quantum coordi-
nation.

To make use of such a state, players can observe their part of the
state by performing a physical measurement (e.g., the polarization of a
photon). This is possible because the players have physical possession of
the physical object representing their individual choices. For example, sup-
pose the first player makes an observation of the state in Eq. (1). The out-
come will be either A or B, with corresponding probabilities |a|2 +|b|2 =
1/2. This act of observation necessarily alters the overall state of the sys-
tem, giving either:

a
√

2|AA〉 + b
√

2|AB〉,
a
√

2|BB〉 + b
√

2|BA〉,

when the first player observes A or B, respectively. When the other player
makes an observation, the result will be the same as that of the first player
with probability 2|a|2, and opposite with probability 2|b|2. We thus see
that if the players desire to have the same choice, they should prepare
Eq. (1) with a = 1/

√
2 and b = 0. Notice that while the outcomes are

correlated, the individual choices are still completely random (i.e., each
happens with probability 1/2), a property that cannot be achieved with
a classical system in absence of communication or a priori agreement
on specific choices or deterministic methods for generating them from
common knowledge.

Notice that by using the quantum mechanism in a competitive set-
ting the players can have undetectable randomness in their choices, no
communication between them and still maintain complete correlation at
every period of the game. Entanglement thus offers a way for the play-
ers to get correlated random bits they can use in addition to any public,
broadcast information, without communication or prior agreement on the
specific choices they will make. In this context, we should note that this
mechanism does not allow the players to act completely independently:
they must arrange to obtain the entangle pair and agree on how they will
interpret their subsequent observations as choices in the game.

A cooperative setting where our quantum mechanism could be useful
is one in which each player does not know others involved in the game,
or they wish to remain mutually anonymous and avoid communication. If
the interested players are known to be members of a larger group,(1) and
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entangled states are easily distributed among all members of the group,
those players interested in coordinating their activities can use the entan-
gled states to ensure all players make the same choice.

3. DISCUSSION

In this paper, we showed how quantum entanglement provides an
alternate technique for solving coordination problems. Unlike prior exten-
sions of classical games to allow quantum operations as additional
choices,(3,6,8,14) this mechanism retains the same choices as in the origi-
nal classical game and instead utilizes quantum entanglement as an extra
resource to aid the participants in their choices. Furthermore, this quan-
tum solution cannot be achieved via a classical simulation since we are
assuming an absence of any communication among the participants. This
is unlike the situation with other quantum games proposals.(20)

As to the implementation of these mechanisms, these quantum solu-
tions of coordination problems are not just a theoretical construct, as they
can be implemented over relatively large distances. In particular, para-
metric-down conversion techniques can produce twin photons which are
perfectly quantum correlated in time, space and often in polarization.(11)

These photons can then be physically separated by many kilometers so
that each participant gets one of the entangled particles. If the lifetime of
the entangled state is long, each participant can then receive an entangled
photon and perform a polarization measurement later, thus not having to
communicate with each other during the whole procedure. On the other
hand, if the lifetime of the entangled state is shorter than the period of the
game, photons can be regenerated periodically, thereby requiring a trans-
mission channel from the source to the participants (but not between the
participants). In this case the advantage lies not in avoiding the possibility
of blocked communication by an adversary, but in avoiding the detection
of a coordinated solution and the direct communication among the partic-
ipants (which is relevant when the participants wish to remain anonymous
to the adversary). This makes for a feasible quantum solution to coordi-
nation problems that can be implemented with current technology, in con-
trast with most schemes for arbitrary quantum computation.

The practical difficulties in implementing any of these schemes depend
on the number of players who need joined entangled states and the extent
to which they can prearrange to get the suitable states. In the simplest
case, as discussed above, there are two players known to each other and
can make prior arrangements to obtain entangled pairs. A more com-
plicated case involves a network (a quantum internet(13)) that delivers
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entangled states to those who wish to participate while avoiding detection
of who else they are entangled with. This implies the ability to create and
distribute large numbers of pairs.

In principle, this quantum coordination mechanism applies to more
complicated games with correlated equilibria among n players.(2) In these
cases more complicated entangled states allow finding these equilibria
without communication or prior agreements. It can also produce higher
correlations than is possible for a classical games.(15) However, creating
entangled states among many players in intrinsically more difficult. While
it has been recently shown(18) that it is possible to create entangled states
of few particles, it will be technically difficult to use this mechanism
for coordination problems involving many participants who require all to
share the same choices. On the other hand, even pairwise coordination
could be useful for larger groups in cases requiring less stringent coor-
dination, e.g., just having coordination among all pairs of players or a
hierarchy of coordinated choices made by successively larger groups of
the participants but with each level of the hierarchy only involving two
subgroups.

An interesting issue is the extent to which the incentive structure
changes in the face of practical issues such as noise and decoherence. For
example it may be necessary to test or purify the entanglement in order
to store it over long times, which may reduce the advantages of not hav-
ing any communication. This question of practical implementation arises
even in conventional classical games because the basic assumptions and
payoff may not reflect the full complication of real life. Even more sig-
nificantly, fully rational behaviors predicted by game theory do not always
describe the choices made in practice, raising interesting empirical ques-
tions of how well people can learn to exploit the capabilities of entangle-
ment as an decision aid in practical coordination games.

Finally, this quantum approach to coordination games is more gen-
eral than it may first appear, as it can also be applied to a variety of
economic situations that involve achieving some or partial coordination
among members of a group. One example is several groups participating
in an auction in which the value of an item to a person depends on what
others in their group get. For example imagine bidding for construction
tools that members of a group share and the auction is for each item
separately. In this case, the valuation depends on the complementarity of
the goods that the whole group gets, rather than who in the group gets
each item. While more complicated than the pure coordination game we
discussed, because this problem also involves a bidding strategy, it still
involves the need for the group to coordinate without signaling to other
groups.
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As we have shown, the utilization of simple properties of quantum
states gives an alternative solution to coordination problems, one that
does not require communication, trusted third parties involved in the deci-
sion making or prior commitment. It can also achieve common knowl-
edge without complex protocols involved when participants are limited to
asynchronous communication. An important property of entangled states
is that, without communication, they can only be used to produce cor-
related random choices with pre-arranged probabilities, as is appropriate
for mixed-strategy scenarios. They cannot substitute for communication,
e.g., if players would wish for their correlated choices to depend on pri-
vate knowledge obtained by one player but without needing to communi-
cate that information to the others.

An interesting question is identifying practical instances of coordi-
nation problems that would benefit from an alternative to the conven-
tional approaches, and whether the properties of the quantum mechanism
would be useful in these cases. This is a particularly relevant economic
question since this quantum solution is achievable with today’s technology.
More generally, this discussion shows that the benefits of developments
in quantum information technology are not limited to improving existing
tasks (e.g., computation speed or cryptography), but could also provide
the basis for novel economic mechanisms with a different mix of infor-
mation privacy, communication requirements and trust guarantees than is
possible with conventional methods.
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