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Abstract

We present a dynamical model of web site growth in order to ex-

plore the e�ects of competition among web sites and to determine how

they a�ect the nature of markets. We show that under general condi-

tions, as the competition between sites increases, the model exhibits a

sudden transition from a regime in which many sites thrive simultane-

ously, to a "winner take all market" in which a few sites grab almost

all the users, while most other sites go nearly extinct. This prediction

is in agreement with recent measurements on the nature of electronic

markets.
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1 Introduction

The emergence of an information era mediated by the Internet brings about

a number of novel and interesting economic problems. Chiey among them is

the realization that ever decreasing costs in communication and computation

are making the marginal cost of transmitting and disseminating information

essentially zero. As a result, the standard formulation of the competitive

equilibrium theory is inapplicable to the Internet economy. This is because

the theory of competitive equilibrium focuses on the dynamics of price ad-

justments in situations where both the aggregate supply and demand are a

function of the current prices of the commodities [7, 2]. Since on the Internet

the price of a web page is essentially zero, supply will always match demand,

and the only variable quantity that one needs to consider is the aggregate

demand, i.e. the number of customers willing to visit a site or download

information or software. As we will show, this aggregate demand can evolve

in ways that are quite di�erent from those of price adjustments.

A particular instance of this di�erent formulation of competitive dynamics

is provided by the proliferation of web sites that compete for the attention

and resources of millions of consumers, often at immense marketing and

development costs. As a result, the number of visitors alone has become a

proxy for the success of a web site, the more so in the case of advertising

based business models, where a well de�ned price is placed on every single

page view. In this case, most customers do not pay a real price for visiting

a web site. The only cost a visitor incurs is the time spent viewing an ad-

2



banner, but this cost is very low and practically constant. Equally interesting,

visits to a web site are such that there is non-rival consumption in the sense

that one's access to a site does not depend on other users viewing the same

site. This can be easily understood in terms of Internet economics: once the

�xed development cost of setting up a web site has been paid, it is relatively

inexpensive to increase the capacity the site needs to meet increased demand.

Thus, the supply of served web pages will always track the demand for web

pages (neglecting network congestion issues) and will be o�ered at essentially

zero cost.

The economics of information goods such as the electronic delivery of

web pages has recently been reviewed by Smith et. al. [13]. They show that

when the marginal reproduction cost approaches zero, new strategies and

behaviors appear, in particular with respect to bundling [3], price dispersion

[4], value pricing versus cost pricing [14], versioning [15], and complicated

price schedules [9].

Since supply matches demand when the price become negligibly small,

the only variable quantity that we will consider in our model is the aggregate

demand, i.e. the number of customers willing to visit a site. This is the

quantity for which we study the dynamics as a function of the growth and

capacity of web sites, as well as the competition between them. In particular,

we explore the e�ects that competitive pressures among web sites have on

their ability to attract a sizeable fraction of visitors who can in principle visit

a number of equivalent sites. This is of interest in light of results obtained by

Adamic and Huberman [1], who showed that the economics of the Internet
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are such that the distribution of visitors per site follows a power-law char-

acteristic of winner-take-all markets. They also proposed a growth model of

the Internet to account for this behavior which invokes either the continuous

appearance of new web sites or di�erent growth rates for sites.

While such a theory accounts for the dynamics of visits to sites, it does

not take into account actions that sites might take to make potential visitors

to several similar sites favor one over the other. As we show, when such

mechanisms are allowed, the phenomenon of winner-take-all markets emerges

in a rather surprising way, and persists even in situations where no new sites

are continously created.

Our work also explains results obtained from computer simulation of com-

petition between web sites by O�gu�s et. al. [11]. Their experiments show that

brand loyalty and network e�ects together result in a form of winner-take-

all market, in which only a few sites survive. This is consistent with the

predictions of our theory.

In section 2 we present the model and illustrate its main predictions by

solving the equations in their simplest instance in section 3. In section 4 we

show that the transition from fair market share to winner-take-all persists in

the general case of competition between two sites and in section 5 we extend

our results to very many sites. We also show the appearence of complicated

cycles and chaotic outcomes when the values of the competitive parameters

are close to the transition point. A concluding section summarizes our results

and discusses their implications to electronic commerce.
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2 The Model

Consider n web sites o�ering similar services and competing for the same

population of users, which we'll take to be much larger than the number

of sites. Each site engages in policies, from advertising to prize reductions,

that try to increase their share of the customer base fi. Note that while fi

is the fraction of the population that is a customer of web site i, it can be

more generally taken to be the fraction of the population aware of the site's

existence. This could be measured by considering the number of people who

bookmark a particular site.

The time evolution of the customer fraction fi at a given site i is deter-

mined by two main factors. If there is no competition with any other sites,

the user base initially grows exponentially fast, at a rate �i, and then sat-

urates at a value �i. These values are determined by the site's capacity to

handle a given number of visitors per unit time. If, on the other hand, other

sites o�er competing services, the strength of the competition determines

whether the user will be likely to visit several competing sites (low competi-

tion levels) or whether having visited a given site reduces the probability of

visiting another (high competition level).

Speci�cally, the competition term can be understood as follows: if frac-

tions fi and fj of the people use sites i and j, respectively, then assuming that

the probability of using one site is independent of using another, a fraction

fifj will be using both sites. However, if both sites provide similar services,

then some of these users will stop using one or the other site. The rate at
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which they will stop using site i is given by ijfifj, and the rate at which

they abandon site j is given by jififj (note that ij is not necessarily equal

to ji).

Mathematically the dynamics can thus be expressed as

dfi
dt

= �ifi(�i � fi)�
X
i6=j

ijfifj; (1)

where �i is the growth rate of individual sites, �i denotes their capacity

to service a fraction of the customer base and ij is the strength of the

competition. The parameter values are such that �i � 0, 0 � �i � 1 and

ij � 0.

The system of equations (1), which determines the nonlinear dynamics of

user visits to web sites, possesses a number of attractors whose stability prop-

erties we will explore in detail �. In particular, we will show that as a function

of the competition level, the solutions can undergo bifurcations which render

a particular equilibrium unstable and lead to the appearance of new equi-

libria. The most striking result among them is the sudden appearance of a

winner-take-all site which captures most of the visitors, a phenomenon that

has been empirically observed in a study of markets in the web [1].

Since the complexity of the equations may obscure some the salient fea-

tures of the solutions, we will �rst concentrate on the simplest case exhibiting

a sharp transition from fair market share to a winner-take-all site, and then

�The equations are functionally similar to those describing the competition between

modes in a laser [6], and to those describing prey-predator equations in ecology [10].
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consider more complicated examples.

3 Fair Market Share to Winner-Take-All

Let us �rst consider one of the simplest instances of the problem described

above, in which two web sites have the same growth rates �1 = �2 = 1, the

same capacities �1 = �2 = 1 and symmetric competition 12 = 21 = . In

this case the equations take the form

df1
dt

= f1(1 � f1 � f2)

df2
dt

= f2(1 � f2 � f1)

The four �xed points of this equation, which determine the possible equi-

libria, are given by

(f1; f2) 2 f(0; 0); (1; 0); (0; 1); (
1

1 + 
;

1

1 + 
)g

Since not all of these equilibria are stable under small perturbations, we

need to determine their time evolution when subjected to a sudden small

change in the fraction of visitors to any site. To do this, we need to compute

the eigenvalues of the Jacobian evaluated at each of the four �xed points.

The Jacobian is

J =

0
@ 1 � 2f01 � f02 �f01

�f02 1 � 2f02 � f01

1
A
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and the eigenvalues at each of the �xed points are given in the following

table:

equilibrium eigenvalues

(0; 0) 1 (twice)

( 1
1+

; 1
1+

) �1 and �1
1+

(1; 0) or (0; 1) 1
2
(� �

p
(2� )2)

From this it follows that the �xed point (0; 0) is never stable. On the

other hand, the equilibrium at ( 1
1+

; 1
1+

) is stable provided that  < 1. And

the �xed points (0; 1) and (1; 0) are both stable if  > 1. From these results,

we can plot the equilibrium size of the customer population as a function of

the competition  between the two competitors. As Figure 1 shows, there is

a sudden, discontinuous transition at  = 1. For low competition, the only

stable con�guration has both competitors sharing the market equally. For

high competition, the market transitions into a "Winner-Take-All Market"

[5], in which one competitor grabs all the market share, whereas the other

gets nothing.

As we will show below, this sudden transition persists under extremely

general conditions, for two competitors as well as for n competitors. The

signi�cant feature is that a very small change in the parameters can radically

a�ect the qualitative nature of the equilibrium.

Another feature is that near the transition, the largest eigenvalue of the

stable state is very close to zero (but negative). This means that the time

of convergence to equilibrium diverges. In more complicated systems, this
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Figure 1: (a) Equilibrium values for f1 and (b) largest eigenvalues of the

Jacobian for the ( 1
1+ ;

1
1+ ) �xed point (dark) and the (1; 0) �xed points

(light), as a function of the competition value .

may make it extremely di�cult to predict which equilibrium the system will

converge to in the long term.

4 Competition between two sites

We now analyse the two site model in its most general form, without restrict-

ing the values of the parameters to be the same for the two sites. The system

of equations is

df1
dt

= f1(�1(�1 � f1)� 12f2)

df2
dt

= f2(�2(�2 � f2)� 21f1)

As in the previous section these equations possess four �xed points at:
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(f01 ; f
0
2 ) = (0; 0)

(f01 ; f
0
2 ) = (�1; 0)

(f01 ; f
0
2 ) = (0; �2)

(f01 ; f
0
2 ) = (

�2(�1�1 � �212)

�1�2 � 1221
;
�1(�2�2 � �121)

�1�2 � 1221
)

Let's analyze the stability of each �xed point. This is done by evaluating

the Jacobian

J =

0
@ �1�1 � 2�1f

0
1 � 12f

0
2 �12f

0
1

�21f
0
2 �2�2 � 2�2f

0
2 � 21f

0
1

1
A

and computing its two eigenvalues. Each �xed point will be stable only if

the real parts of both eigenvalues are negative. The �rst trivial �xed point

is always unstable, since the eigenvalues �1�1 and �2�2 are both positive

quantities. The second equilibrium, with (f1; f2) = (�1; 0) is stable provided

12
�1

> �1
�2
. The third equilibrium (f1; f2) = (0; �2) is similarly stable only if

21
�2

> �2
�1
. The �nal case is the most complicated one, and is stable in three

distinct regimes. However, two of the stable solutions have a negative f1 or

f2 and can never be reached from an initial condition with both populations

positive. The only remaining equilibrium is stable whenever the other two

aren't. In order to summarize these results in the table below, it is convenient

to de�ne the following parameters:

� =
�1

�2
� =

�1

�2
1 =

12

�1
2 =

21

�2
:
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equilibrium stable if

(0, 0) never

(�1; 0) � > 1
2

(0; �2) � < 1

(�1��211�12
; �2��12
1�12

) � > 1 � < 1
2

Note that in the last row, � > 1 and � < 1
2

imply that 12 < 1. As a

result, for �xed 1 and 2, there are two di�erent regimes. Either 12 < 1, in

which case intermediate values of � (1 < � < 1
2
) lead to a "fair" equilibrium

in which both sites get a non zero fi, or 12 > 1, in which case intermediate

values of � ( 1
2

< � < 1) lead to a situation in which either of the two

"winner-take-all" equilibria is stable. In this latter case, hysteresis occurs if

� slowly changes with time. This is illustrated in Figure 2. Starting from a

low value of �, the only stable equilibrium is (0; �2). If we slowly increase

the ratio �, this equilibrium remains stable, until � > 1. At that point, the

equilibrium (0; �2) becomes unstable and the system relaxes to the only new

equilibrium (�1; 0). If we now reverse the process, and decrease the value of

�, the new solution remains stable as long as � > 1
2
.

Thus, there always is at least one stable equilibrium, but there never are

more than two. If there are two stable equilibria, then the initial conditions

determine into which of the two the system will fall. Which of the equilibria

are stable depends on a total of three parameters (down from the �ve param-

eters that are required to fully describe the system once the time variable is

rescaled).
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γ1

γ2

β1
(0,β2)

(β1,0)

Figure 2: Hysteresis behavior as � is changed with 1 and 2 �xed.

It is interesting to ask which of the two sites will win as a function of a

set of �xed parameters and as a function of the starting point. To do this,

we plot the motion of (f1; f2) as a vector �eld in Figure 3, for a particular

set of parameters. As can be seen, the space of initial conditions is divided

into two distinct regions, each of which leads to a di�erent equilibrium.

5 Many sites

5.1 Analytic treatment

We now show that the sharp transition to a winner-take-all market that we

found in the two site case is also present when many sites are in competition.

In order to do so, we �rst examine the case where the parameters are the

same for all sites, i, so that Equation (1) can be rewritten as

dfi
dt

= fi(�� � �fi � 
X
i6=j

fj):
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0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

f1

f2

Figure 3: Basins of attraction for the solutions to a winner-take-all market

as a function of the initial market share, for �1 = 1, �2 = 0:8, �1 = 0:8,

�2 = 0:7, 12 = 1:5 and 21 = 1:2

where i = 1; : : : ; n and n is the number of sites. For n equations, there are 2n

di�erent vectors (f1; : : : ; fn) for which all the time derivatives are zero, since

for each equation, either fi = 0 or �� � �fi �
P

i6=j fj = 0 at equilibrium.

Without loss of generality, we can relabel the fi such that the �rst k of them

are non-zero, while the remaining n are zero.

At equilibrium, the value of the fi with 1 � i � k will be given by the

solution of
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0
BBBBBBB@

�  : : : 

 � : : : 

...
...

. . .
...

  : : : �

1
CCCCCCCA

0
BBBBBBB@

f1

f2
...

fk

1
CCCCCCCA

=

0
BBBBBBB@

��

��

...

��

1
CCCCCCCA

Except for the degenerate cases, the matrix on the left hand side is in-

vertible, so that

fi =

8<
:

��

�+(k�1)
if 1 � i � k

0 if k + 1 � i � n

We are now ready to compute the Jacobian about this equilibrium. It

takes the form

J =

0
BBBBBBBBBBBBBBBB@

X Y : : : Y 0 : : : 0

Y X : : : Y 0 : : : 0

...
...

. . .
...

...
...

Y Y : : : X 0 : : : 0

0 0 : : : 0 Z : : : 0

...
...

...
...

. . .
...

0 0 : : : 0 0 : : : Z

1
CCCCCCCCCCCCCCCCA

where
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X = �� � (2� + (k � 1))
��

� + (k � 1)

Y = �
��

�+ (k � 1)

Z = �� � k
��

� + (k � 1)

The eigenvalues of the Jacobian are Z (with multiplicity n � k), X � Y

(with multiplicity k � 1) and X + (k � 1)Y (with multiplicity 1). Note that

the last two eigenvalues are absent if k = 0. Thus there are four distinct

cases to check: k = 0, k = 1, 1 < k < n and k = n. In the �rst case, the

only eigenvalues are Z = �� > 0, so this solution is always unstable.

With k = 1, the eigenvalues are

X = ���

Z = (�� )�

That is, an equilibriumwith one out of n winners is stable provided � < .

Note that this is the same condition we obtained for two competitors.

With 1 < k < n we have the eigenvalues

Z = ��
� � 

�+ (k � 1)

X � Y = ��
 � �

�+ (k � 1)

X + (k � 1)Y = ���
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The �rst and second eigenvalues above can not be negative simultane-

ously, thus there are no stable solutions with 1 < k < n.

Finally, for k = n we have the same eigenvalues as for 1 < k < n, except

that the eigenvalue Z is now inexistent. As a result, the solution with k = n

is stable provided that  < �.

To summarize, the only stable solutions are

fi =

8<
:

��

�+(n�1)
if  < �

��ij if  > �

That is, the winner-take-all dynamics observed for two sites persists in-

dependently of the number of competitors involved, at least in an idealized

symmetric con�guration. In the next section, we consider the dynamics for

large systems in which the parameter value are drawn from a random distri-

bution.

5.2 Critical dynamics

In the most general case, the dynamical change in the fraction of visitors to

web sites can be determined by numerically solving the general equations of

our model. In addition, provided the number of sites n remains small one can

check each of the 2n candidate equilibria for stability and verify whether the

numerical simulation converged to the only equilibrium or missed an existing

but hard to reach equilibrium.

In Figure 4, we show the time evolution of fi for sixteen web sites, ob-
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Figure 4: Solutions obtained by numerical integration for two di�erent distri-

butions of parameters. In (a) we are below the transition to winner-take-all,

with � = 0:5, while in (b) we are above the transition to winner-take-all,

with � = 1:5. In both cases �i = �i = 1 for all i.

tained by numerically integrating the equations using a Runge-Kutta scheme.

The parameters de�ning the competitive strength between sites, ij, were

randomly chosen from a Gaussian distribution with a standard deviation of

0:1, and a �xed mean �. On the left panel we exhibit a solution for � = 0:5,

far below the transition point. On the right panel, � = 1:5 places us well

above the transition, and we observe the evolution towards a winner-take-

all market. Whereas below the transition the equilibrium has all sixteen

competitors sharing the market, above it one web site takes all visitors.

Given the �xed set of parameters for the model, it is possible to diago-

nalize the Jacobian, evaluated at each of the 2n = 216 �xed points. As in the

case of the symmetric case, or for the general two site case, only one equi-

librium is stable when � � 1. In addition, the values of the fi at the single
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stable equilibrium found in this manner match the values that the numerical

simulation converges to.

When � � 1, numerically diagonalizing the 2n Jacobians shows that the n

equilibria of the form fi = �ik, and no others, are stable. Thus the transition

to a winner-take-all market subsists even when the parameters come from a

randomized distribution.

A more interesting situation is posed by the dynamics of competition

when the competitive strength approaches the critical value, � � 1. Since

near the transition point the largest eigenvalue has an absolute value very

close to zero the transients to equilibrium are very long. Moreover, the nature

of the transients is such that many sites alternate in their market dominance

for long periods of time.

1.0

0.8

0.6

0.4

0.2

0.0

f i

40003000200010000
Time

Figure 5: Dynamics near the transition to winner-take-all, for the same pa-

rameters as in Figure 4, but with � = 1:0.
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Numerical diagonalization of all the possible Jacobians near criticality

shows that frequently there are several stable equilibria, in which some sites

have non-zero fi, and some sites don't. However, these solutions typically are

not reached in a �nite amount of time (if at all) when numerically integrating

the equations. Furthermore, numerical integration, as shown in Figure 5,

suggests that for this range of parameters the dynamics are chaotic (small

di�erences in the initial conditions lead to diverging trajectories). For some

initial conditions the system may converge to limit cycles, rather that to

static equilibria. Thus, when the parameter values of ij are drawn from a

distribution, the transition is not sudden in �. There is a range of values of

� for which the dynamics are more complicated.

For much larger n, it is no longer possible to verify every single candidate

�xed point for stability. However, it is still possible to numerically integrate

the equations. Either way, as the example in Figure 5 shows, the question

of existence and stability of the equilibria is irrelevant if the stable equilibria

are never reached, or only reached after an unreasonable amount of time.

6 Conclusion

In this paper we have shown that under general conditions, as the competition

between web sites increases, there is a sudden transition from a regime in

which many sites thrive simultaneously, to a "winner take all market" in

which a few sites grab almost all the users, while most other sites go nearly

extinct, in agreement with the observed nature of electronic markets. This
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transition is the result of a nonlinear interaction among sites which e�ectively

reduces the growth rate of a given site due to competitive pressures from the

others. Without the interaction term, web sites would grow exponentially

fast to a saturation level that depends on their characteristic properties.

Moreover, we have shown that the transition into a winner-take-all market

occurs under very general conditions and for very many sites. In the limiting

case of two sites, the phenomenon is reminiscent of the "Principle of Mutual

Exclusion" in ecology [10, 8, 12], in which two predators of the same prey

can not coexist in equilibrium when competitive predation is very strong.

Smith et. al. [13, 4] attribute the price dispertion of goods sold online

to several features of web sites: di�erences in branding and trust, in the

appearance and in the quality of the search tools, switching costs between

sites, and last but not least retailer awareness. A winner-take-all economy

may thus have strong consequences for price dispertion, since a few sites can

charge more by virtue of dominating the mind share of their customers.

It is interesting to speculate about the applicability of this model to

di�erent markets. We motivated the model for a massless Internet economy,

in which demand can be instantly satis�ed by supply at a negligible cost to

the supplier, and in which competition does not occur on the basis of cost,

but rather on advertising and di�erentiation in the services provided by the

web sites. However, since winner-take-all markets are being observed in a

much broader range of markets, it might well be the case that the sudden

transition to winner-take-all behavior might also be a feature of these markets

as well.
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