Evaluation of Congestion Detection Mechanisms for InfiniBand Switches

Jose Renato Santos, Yoshio Turner, John Janakiraman

HP Labs

Outline

- Introduction \bullet
 - InfiniBand Characteristics
- The problem: Congestion Spreading ightarrow
- **Congestion Control Approach** ullet
- **Congestion Detection Mechanisms and** ullet**Simulation Results**
 - Naive
 - Input-Triggered
 - Input-Output-Triggered
- Conclusion

InfiniBand

- Industry Standard for System Area Network
- High Performance Server Interconnect
 - High Bandwidth: 2Gb/s(1x) to 24Gb/s(12x)
 - Low latency: Cut through switching
 - tens of nanoseconds switch forwarding delay (no traffic)
- Current Version 1.0 : Oct 2000
 - Does not address congestion control
 - Congestion Management Working Group
 - Defining Congestion Control mechanisms

3

HP Labs

Can't we just adopt TCP traditional congestion control?

- NO: InfiniBand has unique characteristics that requires a different solution:
 - No packet dropping
 - Low network latency
 - Low buffer capacity at switches
 - Switch buffers at input ports

• Therefore:

- Need network support for detecting congestion
- Simple Logic for Hardware implementation
- **TCP** window mechanism inadequate (narrow operational range)
- Alternative congestion detection mechanisms

What is the Congestion problem ?

since packets are not dropped

Problem: Congestion Spreading

(p)

Simulation Scenario

Link BW: 8 Gb/s (4x link) Packet size: 2 KB Buffer Size: 4 packets/port (8 KB) Buffer Org.: Input port

Simulation Results: Congestion Spreading

Ø

Our approach to Congestion Control

- Explicit Congestion Notification (ECN)
 - Switch detect congestion

60

- Set single bit ECN field in packet header
- Destination copy packet ECN field in ACK packet
- Source adjust packet injection according to network feedback encoded in ACK ECN field
 - Hybrid source response mechanism:
 - Combines window and explicit rate control
 - New Alternative source response functions more efficient than AIMD

This

Paper

Simulation Results

• Same scenario used to show congestion spreading:

• It uses a source response function that adjust inter-packet-delay (rate) combined with a fixed window of 1 packet

Marking Packets in Full Input Buffers (traditional approach)

• Effectively avoiding congestion

6

• Unfairness (remote vs. local flows)

Input-triggered packet marking

• Goal: Improve fairness

- Mark all packets using congested link
- Not only packets in full buffer
- Marking triggered by a full input buffer
- Mark all packets in input buffer (propagating packets)
- Identify root (congested) links:
 - •Destination of packets at full buffer
- Mark any packet destined to root links (generating packets)

Efficient implementation

 Use counters to avoid expensive scan of all switch packets (when searching for "generating" packets destined to a congested link)

Input-triggered Packet Marking

naive

Input-triggered

- Fairness Improved (still some unfairness)
- Marking still triggered by remote packets (bias marking towards remote packets)

root link (RL)

local flows (LF) remote flows (RF)

victim flow (VF)

- Still mark packets when input buffer is full (input triggered)
 - To avoid link blocking and congestion spreading
- Additional output triggered mechanism
 - Mark packets when total number of packets destined to an output port exceeds a threshold

Input-Triggered

Input-Output-Triggered (threshold: 4 packets)

- Fairness Improved
- Under-utilization (aggressive marking)

local flows (LF) _____ remote flows (RF) _____ victim flow (VF) _____ root link (RL) _____ inter-switch link (IL) _____

HP Labs

Input-Triggered

Output-Triggered (threshold: 8 packets)

\$

- High Bandwidth Utilization
- Better fairness than input-triggered

Threshold = $4 \rightarrow +$ Threshold = $6 \rightarrow -+$

16

18

- **Opposing effects**
 - Input-triggering (bias against remote packets)
 - Output-triggering (bias against local packets)

Threshold = 8 -Threshold = 16 -

No output marking +

Conclusion

- Proposed Congestion Control Mechanism for System Area Networks based on ECN at switches and rate control at end nodes
- Proposed and evaluated mechanisms for detecting congestion and marking packets at switches
 - Simple mechanisms
 - for hardware implementation
 - Input-triggered mechanism improves fairness over a naïve full buffer marking scheme
 - Input-output-triggered mechanism can improve fairness further

