Understanding Service Demand for Adaptive Allocation of Distributed Resources

Jose Renato Santos, Yoshio Turner, John Janakiraman

HP Labs

Koustuv Dasgupta

University of Maryland at Baltimore County

Outline

- Motivation
- Adaptive allocation of distributed resources
- Demand characterization
 - Demand distribution across clients
 - Regional distribution of clients and demand
- Conclusion

Motivation

• Internet Services characteristics:

- High variation of demand (high peak/average ratio)
- Demand is usually distributed over a wide area
- High latency and low bandwidth over wide area

Vision: Utility Computing model

- Computing resources (servers, network bandwidth, storage)
 will be owned by infrastructure providers and dynamically
 allocated to service providers according to their current needs.
 (pay per use model)
- Example: HP UDC (Utility Data Center) product

Adaptive Distributed Services

- Services will use distributed computing resources (wide area)
- to reduce network latency to clients
- to exploit resource markets
- to harness distributed compute power
- Infrastructure needs to adapt dynamically
 - to satisfy service constraints
 - to respond to changes in demand and resource conditions

Adaptive allocation involves

- Selecting sites where services instances should be placed
- Controlling distribution of client demand to these service sites
- Allocating site resources proportionate to their demand
- Adapting these assignments as demand and resource conditions change

Factors influencing allocation decisions

Demand attributes

- Location of clients
- Demand intensity and distribution among clients
- Resource attributes
 - Available sites
 - Capacity (number of servers, storage, BW)
 - Cost
- Network attributes
 - Latency and BW from server sites to clients
 - Latency and BW among server sites
- Service attributes
 - Service requirements: Latency, disaster tolerance
 - Service characteristics: components, communication patterns among components, scalability properties, etc.
- Dynamic variations in these factors over time

Demand characterization

• Goal:

Understand service demand characteristics important for resource allocation decisions

- a) Understand how demand is distributed among clients
- b) Understand how clients are distributed across the global Internet

Methodology

Data set:

- Web site for the 1998 Soccer World Cup
 - Duration: Web site active 88 days, Event 33 days
 - 1.3 billion hits
 - 2.7 million unique client IP addresses

Clustering:

- Large number of clients
 - Difficult to analyze and interpret measurements
- Need to group clients in clusters
- Clustering should preserve topological distribution of clients
 - Clustering based on topological proximity

BGP client clustering

- Technique proposed by Krishnamurthy & Wang [2000]
 - Based on BGP (Border Gateway Protocol) routing tables
 - Idea: clients that consistently share BGP routes are close to each other

BGP table (route across AS's)

• Result: 2.7 million clients \rightarrow 81,420 clusters

Daily demand variation

- demand varies significantly over time
 - dynamic allocation of resources is beneficial

Demand variation among clusters

- 20% of clusters contribute 90% of overall World Cup requests
- Skewed load: A few clusters contribute to majority of load

 ⇒monitoring/probing only a small subset of clusters is
 sufficient to characterize demand

Predictability of dominant set of clusters

- p%-persistent clusters: intersection of set of most active clusters generating p% of load on a given day with the similar set for the previous day
- *p%-week-persistent clusters:* intersection of set of most active clusters generating p% of load on a given day with the similar sets for the previous 7 days

- Active clusters are predictable from recent history
 - **⇒** useful for good placement

Demand characterization

• Goal:

Understand Service Demand characteristics important for resource allocation decisions

a) Understand how demand is distributed among clients

b) Understand how clients are distributed across the global Internet (Regional demand)

Regional demand methodology

Subdivide global internet in large regions

- Used 17 ping servers distributed around the world for defining 17 regions
 - North America: 7, Europe: 8, Africa: 1, Australia: 1
- Selected Subset of clusters
 - Dominant clusters responsible for 90% of load
- Group clusters in 17 non-overlapping regions
 - Estimated cluster/server latency using "ping"
 - Assign each cluster to the region of "closest" ping server

Clusters used in regional demand study

 Only a subset of clusters was consistently reachable in the experiments

- Load pattern of subset is a scaled version of original
 - 40% of original

Regional load distribution

- Small changes in relative load despite large changes in absolute load
 - ⇒ Regional distribution of load predictable (even if total load is not)

Regional demand - hourly distribution

• Different absolute load patterns

Regional demand - hourly distribution

- Relative load of regions varies from hour to hour in any day

 ⇒ dynamic placement/routing may be beneficial
- Similar pattern of hourly variations on multiple days (time zone)
 - **⇒** dynamics of hourly pattern can be predicted

Conclusion

- Studied demand characteristics of the 1998 World Cup Web site (for service placement)
- Small subset of clusters dominates demand
 - Stable on a daily basis (Useful for good placement)
- Dynamic allocation is desirable
 - Particularly to scale up/down resource allocation at each site
 - Dynamic changes in resource placement may be beneficial in some cases (To handle hourly demand variations)
 - Variations are predictable (Resources could be reserved)
- Need to consider other factors (service requirements, resource costs, resource characteristics variations, etc.) to make allocation decisions
- Other workloads may have different characteristics

