
End-to-End Congestion Control for InfiniBand
Jose Renato Santos, Yoshio Turner, G. (John) Janakiraman

Hewlett Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

Abstract— InfiniBand System Area Networks (SANs)
which use link-level flow control experience congestion
spreading, where one bottleneck link causes traffic to block
throughout the network. In this paper, we propose an
end-to-end congestion control scheme that avoids conges-
tion spreading, delivers high throughput, and prevents flow
starvation. It couples a simple switch-based ECN packet
marking mechanism appropriate for typical SAN switches
with small input buffers, together with a source response
mechanism that uses rate control combined with a win-
dow limit. The classic fairness convergence requirement
for source response functions assumes network feedback is
synchronous. We relax the classic requirement by exploit-
ing the asynchronous behavior of packet marking. Our ex-
perimental results demonstrate that compared to conven-
tional approaches, our proposed marking mechanism im-
proves fairness. Moreover, rate increase functions possible
under the relaxed requirement reclaim available bandwidth
aggressively and improve throughput in both static and dy-
namic traffic scenarios.

I. INTRODUCTION

InfiniBand [1] System Area Networks (SANs)
[2][3][4], which provide high throughput and low latency
for efficient I/O and cluster communication, can have per-
sistent traffic congestion that severely limits performance.
They can experience congestion spreading [5], where
one bottleneck link causes traffic to block throughout
the network. These networks will experience these
congestion events frequently given their large network
size (number of devices), application diversity (e.g., for
storage as well as interprocess communication), and
lower host overheads that enable high applied loads on
the network fabric.

Congestion control has been widely studied in tradi-
tional networks, such as Local Area (LANs) and Wide
Area Networks (WANs). The unique characteristics of
InfiniBand SANs, however, make the congestion control
problem unique in this environment:
1) No packet dropping at switches

InfiniBand switches use link level flow control [6][7],
which prevents a switch from transmitting a packet

when the downstream switch lacks sufficient buffering
to receive it. This property prevents packet dropping
at switches and avoids the well-known congestion col-
lapse scenario of traditional networks [8], but it may
cause an undesired effect known as congestion spread-
ing or tree saturation [5], which is discussed in detail
in Section III. A consequence of this characteristic is
that packet losses cannot be used as indication of con-
gestion.

2) Low network latencies
Due to cut-through routing at switches and short link
distances, network latencies in empty networks are
very small (on the order of 100s of nanoseconds). Thus
switch logic, including any support required for con-
gestion control, must be simple enough to be imple-
mented in hardware. Low network latency results in a
relatively small bandwidth-delay product (usually less
than one Kilobyte) and a flow can use all the avail-
able bandwidth on its network path with a small num-
ber of bytes in transit at any time, even less than one
packet. In this environment, a traditional window con-
trol mechanism as used by TCP [8] is inadequate for
controlling flow rates.

3) Low buffer capacity at switches
InfiniBand switches are typically single-chip de-
vices [3][9] with small packet buffers. A typical In-
finiBand switch design, that we are aware of, can hold
4 packets of 2KB per port. Therefore, congestion can
occur even when the number of flows contending for
a single link is small. In addition, with small buffers,
queueing delays during congestion can be on the same
order of magnitude as queueing delays in normal op-
eration. Thus it is difficult to rely on network latency
as an implicit signal of network congestion.

4) Input-buffered switches
Since InfiniBand switches operate at very high speeds,
they are usually configured with buffers at the input
ports1 [10]. To identify packets causing congestion,

1Other buffer configurations, such as central or output buffer, require
internal switch data transfer rates higher than the link speed to service

input-buffered switches may benefit from approaches
that differ from traditional techniques [11][12] which
are aimed at output-buffered switches.

In this paper we propose an end-to-end congestion
control scheme for InfiniBand that consists of an ECN
packet marking mechanism at switches and a source re-
sponse mechanism that combines rate control with a win-
dow limit2. We also propose source response functions
that achieve higher bandwidth utilization than traditional
approaches by exploiting the asynchronous behavior of
packet marking.

The main contributions of this paper are summarized as
follows:
1) Congestion control solution suited to InfiniBand

SAN environment
• We propose a novel ECN packet marking mech-

anism for input-buffered InfiniBand switches.
An ECN approach was adopted mainly because
packet losses cannot be used as indication of con-
gestion and network latencies cannot be effec-
tively used to distinguish normal traffic condi-
tions from network congestion. For input-buffered
switches, our approach has better fairness proper-
ties than the traditional approach of simply mark-
ing packets in full buffers (appropriate for output-
buffered switches). In addition, our ECN mecha-
nism is simple to implement in hardware.

• We propose a source response mechanism that
is best suited to a SAN environment with low
bandwidth-delay product and low buffer capacity.
The mechanism combines rate control with a win-
dow limit to provide the wide range of operating
points and low buffer utilization associated with a
flow rate control mechanism and the self-clocking
property of a window limit.

2) Novel rate control source response functions
• We derive a new set of conditions for the design

of source response functions. The new condi-
tions exploit a bias of asynchronous packet mark-
ing for high rate flows in order to weaken the
convergence requirements previously proposed by
Chiu and Jain [14]. The new conditions allow
the use of source response functions that achieve
higher bandwidth utilization than is possible with

multiple packets that can arrive simultaneously from different input
ports, increasing the challenge of designing for very high link speeds.

2The InfiniBand standards body [1] has formed a working group
to define a congestion control mechanism for future versions of the
standard. We have submitted our proposal [13] to the working group.
Our proposal addresses additional issues not discussed here, such as,
heterogeneous links, ACK coalescing, variable packet size, unreliable
transport, etc.

the stricter requirements while ensuring conges-
tion avoidance and fairness.

• We propose two new source response functions
that satisfy the above properties and demonstrate
their advantages over the traditional AIMD (Ad-
ditive Increase Multiplicative Decrease) response
function in a SAN environment, using simulation.

The rest of this paper is organized as follows. Related
approaches to congestion control are briefly summarized
in Section II. Section III motivates the need for conges-
tion control in a SAN environment, by showing the harm-
ful effect of congestion spreading in a simple scenario.
The details of the proposed congestion control mecha-
nism are discussed in Section IV. Section V presents our
source response function design methodology and specific
response functions. Section VI presents simulation results
for our mechanisms, and Section VII presents our conclu-
sion.

II. RELATED WORK

Hop-by-hop congestion control, which limits the num-
ber of packets at a switch that share a common output link
or final destination, has been proposed for networks that
use link-level flow control [15][5]. To enforce the limits,
switches must implement a substantially enhanced link
flow control mechanism. In contrast, our approach aims to
keep switch design simple and easy to implement in hard-
ware, and adopts an end-to-end mechanism that relies on
flow endpoints to control traffic injection rates.

For traditional networks, such end-to-end control is ex-
emplified best by TCP, in which flow sources use end-
point detection of packet dropping [8] or changes in net-
work latencies [16][17] as an implicit signal of conges-
tion. An alternative to implicit notification is Explicit
Congestion Notification (ECN), in which switches detect
incipient congestion and notify flow endpoints, for exam-
ple by marking packets when the occupancy of a switch
buffer exceeds a desired operating point [11][12]. ECN
is used in ATM networks [18], and it has been proposed
for use with TCP [19][20]. These approaches assume
switches with output buffer configurations while we con-
sider switches with input buffer configurations.

A source of traffic should adjust packet injection in re-
sponse to congestion information. The most widely used
response function is Additive Increase Multiplicative De-
crease (AIMD), which has been shown to converge to fair-
ness under an assumption of synchronized feedback to
flow sources [14]. AIMD has been used for both window
control [8] and rate control [21]. Recently, other response
functions aimed largely at multimedia streaming applica-
tions have been investigated that attempt to be compatible

A1

A2

AR

AV

B1

B2

BL

BV

BC

.

SWITCH
A SWITCH

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF

IL

RF,VFIL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF

IL

RF,VFIL,RF

local flows (LF)
remote flow (RF)

victim flow (VF)

Fig. 1. Simulation scenario Fig. 2. Congestion Spreading

with TCP without suffering the large fluctuations in in-
jection rate that can arise from the multiplicative decrease
of AIMD [22][23]. We propose source response functions
based on more relaxed fairness convergence requirements,
that can reclaim available bandwidth faster than response
functions that satisfy the traditional convergence require-
ment (as for example, the traditional AIMD), increasing
the effective network throughput in a dynamic environ-
ment in which flows come and go.

III. CONGESTION SPREADING

In this section, to motivate the need for congestion con-
trol, we show the harmful effect of congestion spreading.
In order to illustrate this effect and to evaluate the perfor-
mance of our congestion control scheme, we conducted
a series of simulation experiments using an example sce-
nario that is shown in Fig. 1 and which we use for all re-
sults presented in this paper. Table I shows the parameters
used in the simulations. Our simulation topology consists
of two switches A and B connected by a single link. The
traffic is generated by a set of L local flows generated at
endpoints B1 through BL, R remote flows generated at
endpoints A1 through AR, and a victim flow generated at
endpoint AV . All remote and local flows are destined to
endpoint BC through a congested output link on switch B.
The victim flow is destined to a non-congested endpoint
BV and suffers from congestion spreading. All flows are
greedy, i.e. flows try to use all the network bandwidth that
they can. Congestion spreading originates at the oversub-
scribed link connecting switch B to endpoint BC which
we refer to as the root link of the congestion spreading
tree.

To illustrate the problem caused by congestion spread-
ing, we consider the scenario shown in Figure 1 with 5 lo-
cal flows and 1 remote flow (L = 5, R = 1) for a switch
buffer that can hold 4 packets per input port. Figure 2
shows the results of a simulation for this scenario, when
no congestion control is used. The experiment simulates
the example scenario for a period of 100ms. At the begin-
ing of the simulation, local and remote flows start sequen-
tially every 100µs, with the local flows starting before the

TABLE I
SIMULATION PARAMETERS

parameter default value
(unless otherwise specified)

link bandwidth 1 GB/sec (InfiniBand 4X links)
packet header 20 bytes (InfiniBand Local Header)

data packet size 20 + 2048 = 2068 bytes
data packet tx time 2.068 µs

ACK packet 20 bytes
switch minimum 40 ns (header delay)
forwarding delay

buffer configuration input port
buffer size 4 packets/port

switch scheduling FIFO with possible bypass of
older packets when crossbar is busy

(max bypass: 4)

remote flow. The local and remote flows remain active un-
til the end of the simulation, while the victim flow is active
only in the time interval [40ms,60ms]. The graph shows
the traffic rate on the root link and on the inter-switch link,
as well as the (aggregate) rates of local flows, remote flow,
and the victim flow. Rates are computed considering the
number of packets transmitted in a sliding time window of
duration 2ms centered on the corresponding time point.

The results reveal that the victim flow uses only 15%
of the bandwidth on the inter-switch link, even though the
inter-switch link is only 30% utilized. Since the link to
destination BC is oversubscribed, the buffers at switch B
(at the input port for the inter-switch link) fill with packets
and block incoming flows, causing the inter-switch link to
go idle. If the remote flow did not attempt to transmit at
the full link bandwidth and instead proactively reduced
its rate to the rate determined by the bottleneck link, i.e.
1
6 of the link bandwidth, the buffers at switch B would
not fill up and the victim flow would be able to utilize the
available bandwidth at the inter-switch link, improving the
network throughput.

IV. CONGESTION CONTROL MECHANISM

This section describes the two components of our pro-
posed congestion control mechanism for InfiniBand: an
ECN packet marking mechanism, and a source response
mechanism that combines rate control with a window
limit.

A switch detects and identifies packets which are con-
tributing to congestion. The switch sets a single bit ECN
field in the header of an identified packet to indicate the
occurrence of congestion to the destination. The destina-
tion returns the ECN value in the acknowledgment packet
and the source uses this information to adjust its packet
injection rate.

A. Packet Marking

Congestion is propagated by a switch full buffer since it
blocks an upstream switch from transmitting. Therefore,
a naive but straightforward way for switches to detect and
indicate the occurrence of congestion would be to mark all
packets in a buffer whenever it becomes full 3. In a switch
with output buffer configuration, this approach success-
fully marks all packets that are transmitted on the root
link of a congestion spreading tree. In a switch with input
buffers (typical for InfiniBand), however, other packets at
the switch besides those in a full buffer may be generat-
ing congestion by contending for the same root link. As
we show later in the simulation results of Section VI-A,
the failure of the naive approach to mark those additional
packets results in unfairness among flows contending for
the root link.

We propose a marking mechanism for input-buffered
switches that promotes fairness by marking all packets at
the switch that are generating congestion by contending
for a busy root link. The mechanism operates in three
steps. First, as in the naive approach, a switch input buffer
triggers packet marking each time it becomes full. Sec-
ond, any output link that is the destination for at least one
packet in such a full buffer is classified as a congested
link. Third, all packets that are resident (in any buffer) at
the switch and are destined to an output link that was clas-
sified as congested in the second step are marked4. The
third step seems to require an expensive scan of all input
buffers in a switch even when only one becomes full. We
specify an efficient implementation that does not require
this scan. The implementation does not mark packets im-
mediately after an input buffer becomes full. Instead, it
determines the number of packets that should be marked
and marks them at the time of their transmission, avoid-
ing the scan. For this purpose, we use two counters for
each output link. The first counter cnt1 records the current
number of packets in the switch that are waiting for that
output link; cnt1 is incremented and decremented as pack-
ets enter and leave the switch. The second counter cnt2
records the number of subsequent packets that need to be
marked when transmitted on that output link. Counter

3With the current use of small buffers in SAN switches, a lower
buffer occupancy threshold for marking is likely to only reduce link
utilization by causing the buffer to empty more frequently. If switch
buffers become larger, using a buffer occupancy threshold below
the maximum capacity might be beneficial by preventing congestion
spreading before its occurrence while preserving high utilization.

4Our design choices favor simple mechanisms that can be easily
implemented in low cost fast switches and avoid solutions that re-
quire complex instrumentation and parameter tuning, such as for ex-
ample congestion detection based on a time averaged buffer occupancy
threshold or time averaged link utilization.

cnt2 is initialized to zero. Whenever a buffer becomes
full, the value of counter cnt1 is copied to counter cnt2.
Then, the output port starts marking the next transmitted
packets, decrementing cnt2 at each transmission, until it
reaches zero again. Note that marking can be re-triggered
on the same output port even before counter cnt2 reaches
zero. The implementation will operate correctly even in
such cases by triggering the marking of all new packets
that arrived since the last marking event, in addition to the
packets previously identified.

Note that this counter implementation may mark a dif-
ferent set of packets than a direct packet scanning ap-
proach, since packets can be transmitted out of order. This
turns out to be an advantage, since our implementation
will mark the first packets to leave the switch and provide
faster feedback to network endpoints.

Our proposed packet marking mechanism and descrip-
tions of additional schemes are discussed in more detail in
[24].

B. Source Response: Rate Control with a Window Limit

The source response mechanism controls the injection
of packets into the network in response to ECN informa-
tion delivered to the source via ACKs.

Window-based congestion control is a common ap-
proach which adjusts the number of outstanding packets
for a flow based on the congestion feedback. A window-
based mechanism offers the benefit that packet injection is
self-clocked [8], and it limits the amount of buffer space
that a flow can consume in the network. The range of use-
ful window sizes is very small in an InfiniBand SAN en-
vironment since its bandwidth-delay product is small. For
example, a network with 1 GByte/sec links, 64 ns per-
switch forwarding delay, and a diameter of 32 switches
has a bandwidth-delay product equal to just one 2048-byte
packet. Thus a flow that is limited to a window of size one
(packet) is able to use most of the bandwidth on its path in
an otherwise empty network. A window of size two com-
pletely saturates the bandwidth (the ACK for one packet
is returned in parallel with the transmission of a second
packet). For example, Fig. 3(b) shows that when each flow
in Fig. 2 is limited to a window size of one packet, high
link utilization can be sustained while eliminating con-
gestion spreading. Since only two flows share the inter-
switch link, the window ensures at most two packets re-
side at switch B’s input buffer for the inter-switch link
and the link is never blocked. Hence the inter-switch link
is fully utilized and the victim flow consumes all its idle
bandwidth (the slight under-utilization of the root link and
the inter-switch link is an artifact of the starvation preven-
tion function of switch B’s scheduling mechanism).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF

IL

RF,VFIL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF

IL

RF,VFIL,RF

local flows (LF)
remote flow (RF)

victim flow (VF)

(a) No Congestion Control
(L = 5, R = 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL,IL
RL

LF,VFLF

RF
IL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL,IL
RL

LF,VFLF

RF
IL,RF

local flows (LF)
remote flow (RF)

victim flow (VF)

(b) Window Limit
Window=1 (L = 5, R = 1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF IL,LF

RFIL,RF

VF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

LF IL,LF

RFIL,RF

VF

local flows (LF)
remote flows (RF)

victim flow (VF)

(c) Window Limit
Window=1 (L = 5, R = 5)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL RL,IL

IL,LF,RF LF,RF,VF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL RL,IL

IL,LF,RF LF,RF,VF

local flows (LF)
remote flows (RF)

victim flow (VF)

(d) Fixed Optimal Rates
Window = 1 (L = 5, R = 5)

Fig. 3. Congestion Spreading: fixed window vs. rate control (buffer capacity = 4 packets).
(Fig. 3(a) is the same as Fig. 2 and is shown here for convenient comparison)

However, such a window-based mechanism is inade-
quate for InfiniBand SANs for two reasons. First, the
small range (one to two packets) of useful window sizes
severely limits the flexibility of the congestion control5.
Second, even with the use of a minimal per-flow window
of size one packet, congestion spreading can occur when
the number of contending flows exceeds the number of
buffer slots. That condition can occur easily in InfiniBand
networks where switch buffer sizes are small. Fig. 3(c)
shows that when there are five local flows and five remote
flows (L = 5, R = 5, and a buffer with 4 packet slots)
in the scenario of Fig. 1, with each flow limited to a win-
dow size of one packet, congestion spreading prevents the
victim flow from achieving high throughput and the inter-
switch link is under-utilized.

Congestion spreading can be avoided in scenarios
where numerous flows contend for a smaller number of
buffer slots if the average buffer utilization in the network
is maintained at less than one packet per flow. This cannot
be achieved by a pure window control mechanism, since
the minimum window size is one packet. In contrast, a
rate control mechanism can satisfy this requirement. Rate
control also greatly increases the range of control com-
pared to pure window-based control in the InfiniBand en-
vironment. We therefore propose the use of rate control.
In order to preserve the self-clocking benefits of a win-
dow, we further propose to maintain a fixed window size
of one packet in addition to the use of rate control. A vari-
able window limit may be beneficial when ACKs suffer
short delays in the reverse path. We plan to investigate
this case as future work.

Fig. 3(d) shows simulation results that illustrate the po-
tential for rate control to improve performance over the
results in Fig. 3(c). In the experiment, the rate limit for

5Larger windows could be required to enable high utilization of a
flow’s path, but only in two unlikely cases: an unusually large diameter
network with long delay in an empty network, or traffic with persistent
high delay on the path taken by the flow’s ACKs (unlikely because of
the use of congestion control).

each flow is set manually to the optimal value (1/10 of
the link bandwidth for remote and local flows and to 1/2
for the victim flow). The graph shows that all flows can
achieve their ideal throughputs when their injection rates
are set appropriately. In the following section, we describe
our approach for designing source response functions that
can automatically converge to appropriate rate limits.

V. DESIGNING SOURCE RESPONSE FUNCTIONS

The source response function defines how the flow
rate is adjusted in response to network congestion feed-
back. Since congestion feedback is delivered through
ACK packets, we assume that the flow’s injection rate is
adjusted at each time an ACK packet is received. Upon
receipt of an unmarked ACK, the source response must
increase the flow’s rate based on an increase function,
rnew = finc(r). Similarly, upon receipt of a marked
ACK, the source response must reduce the rate limit based
on a decrease function, rnew = fdec(r). Naturally, these
functions must maintain the flow rate limits between some
minimum setting, Rmin, and some maximum setting,
Rmax

6. finc and fdec should be designed to operate to-
gether and have the following desired properties:

• Congestion Avoidance
• High Network Bandwidth Utilization
• Fair Allocation of Bandwidth among Flows

A. Design conditions for Source Response Functions

We now identify source response conditions that we use
to design finc(r) and fdec(r), in order to achieve the above
desired properties:

. Condition 1: Avoiding Congested State
In steady state, flow rates will oscillate around an op-
timal value. Congestion notification will be sent to

6In this paper we assume packets have the same size and rate is rep-
resented in packets per unit of time. The extension of our results for
packets with different sizes and rate represented in bytes per unit of
time is straightforward [13].

sources when the aggregate rate of flows sharing a bot-
tleneck link exceeds the link bandwidth, causing the
flows to reduce their rate. On the other hand, while the
aggregate rate is kept below the link capacity, the ab-
sence of congestion notifications will cause the flows
to increase their rates with time, until they exceed the
link bandwidth again. This will cause flows to oper-
ate in cycles of rate decrease steps followed by rate
increase steps. In these cycles, it is desirable for the
increase steps to recover the rate by less than the mag-
nitude of the decrease so that flows are less likely to
experience the same (or higher) degree of congestion
after recovery. This is also reasonable because the
lack of a mark is not a clear signal to increase the
rate whereas a packet is marked if and only if there
is at least some degree of congestion spreading. The
absence of a mark can mean either that there is spare
bandwidth and thus an increase is desirable, or it can
mean that the current injection rate is ideal. This leads
to our first condition.

Condition 1: The magnitude of the response to a
marked ACK should be larger than or equal to mag-
nitude of the response to an unmarked ACK

finc(fdec(r)) ≤ r

. Condition 2: Fairness Convergence
The response function should be able to converge to a
fair operating point, starting from any initial distribu-
tion of rates among competing flows.
Chiu and Jain [14] have identified sufficient conditions
that ensure linear source response functions converge
to fairness assuming all flows receive feedback and ad-
just their rates synchronously. The conditions require:
an increase function that improves fairness combined
with a decrease function that either improves or main-
tains the fairness, or a decrease function that improves
fairness combined with an increase function that either
improves or maintains the fairness. Chiu and Jain [14]
show that the traditional AIMD response function sat-
isfies their convergence requirement.
A fairness convergence requirement that assumes syn-
chronous feedback and synchronous rate adjustment,
as proposed in [14], can be overly conservative. For
most networks, and particularly for SANs that have
switches with small buffers, packet marking is not
synchronous. These networks have the property that
only a subset of flows is affected by a marking event,
and packets of higher rate flows are more likely to
be marked than those of lower rate flows. Source re-
sponse functions that are designed to increase fairness

in a synchronous environment do not take into account
the packet marking bias.
We exploit the packet marking bias and weaken the
fairness convergence requirement in two ways. First,
it is sufficient to require that each cycle of decrease and
increase not degrade the level of fairness. Specifically,
unlike Chiu and Jain[14], each cycle need not strictly
improve fairness; they can maintain the same level of
fairness. Due to the marking bias against higher rate
flows, these flows will receive a higher rate of conges-
tion notification and experience more decrease steps
reducing their rate over time. Second, we relax the
requirement that the increase and decrease functions
must individually maintain or improve fairness. We al-
low one of these functions to decrease fairness as long
as the other function ensures that a cycle of increase
and decrease at least maintains the fairness. The ob-
servation that source response functions can converge
to fairness even if either (but not both) of its decrease
or increase functions decreases fairness has also been
made in [22]. This weaker fairness convergence re-
quirement allows the use of response functions that can
reclaim available network bandwidth faster than re-
sponse functions that satisfy the stronger requirement.
In our congestion control mechanism, congestion
feedback is asynchronous because congestion infor-
mation is piggybacked on ACKs. Furthermore, the
rate of congestion notification is not the same for all
flows since higher rate flows receive ACKs more of-
ten than lower rate flows. Therefore, we formulate the
convergence requirement using a description of flow
rate adjustments over time (rather than flow rate ad-
justments at synchronous events). We define recovery
time Trec(r) for a flow at rate r as the time elapsed
from the time the flow rate is decreased from r, due
to a marked ACK, until the time the flow rate recov-
ers to its original rate r, assuming no other marked
ACK is received until rate r is achieved. Consider
the case in which flows at different rates each receive
a marked ACK due to the same congestion event. If
we guarantee the recovery time Trec(r) for lower rate
flows does not exceed that of higher rate flows, fairness
is not degraded over the decrease and recovery cycle.
This meets our weaker convergence requirement. This
also allows decrease/increase function designs that in-
dividually degrade fairness. Hence, we formulate our
condition for fairness convergence as follows:

Condition 2: For any two competing flows with dif-
ferent rate limits, the recovery time for the lower rate
flow should be less than or equal to the recovery time
for the higher rate flow

Trec(r1) ≤ Trec(r2) for r1 < r2

. Condition 3: Maximizing Bandwidth Utilization
In order to maximize bandwidth utilization the source
response function must be able to reclaim available
link bandwidth as fast as possible. Minimizing the
time to reclaim available bandwidth corresponds to us-
ing the limiting case for conditions 1 and 2.
First, assuming the recovery time after a rate decrease
to the minimum rate Rmin is fixed, the recovery time at
higher rates is minimized when condition 2 is set at the
limiting case, Trec(r1) = Trec(r2). Second, we choose
the minimum value of Trec that satisfies condition 1,
for the minimum rate. This corresponds to recovering
a flow at the minimum rate Rmin to the original rate
R′

min (which is f−1
dec(Rmin)) after receiving only one

unmarked ACK. Since ACK packets are received at
the same rate as data packets are transmitted the min-
imum recovery time is given by the time between two
consecutive packet transmissions, i.e. Trec = 1

Rmin
.

Condition 3 is then summarized as follows:

Condition 3: The recovery time after a rate decrease
from an arbitrary rate r is constant and equal to the
interval between the transmission of two consecutive
packets at the lowest rate Rmin.

Trec(r) =
1

Rmin
for f−1

dec(Rmin) ≤ r ≤ Rmax

Note that condition 3 is equivalent to the limiting case
of condition 1, only for the minimum rate. For higher
rates (r > R′

min), the response to a marked ACK is
strictly larger than the response to an unmarked ACK,
i.e. finc(fdec(r)) < r. Higher rate flows receive ACK
packets more frequently and therefore should receive
a larger number of ACKs during the constant recovery
time Trec.

B. Methodology for Designing Response Functions

In this section we describe the methodology we use to
design fair and efficient source response functions. We
assume a decrease function fdec(r) is defined, and then
derive an increase function finc(r) using the conditions
proposed in the last section.

In the absence of marks, we would like the rate to grad-
ually increase over time. Suppose F r

inc(t), for t ≥ 0, are

a family of continuous monotonic increasing functions,
each of which describes the desired flow rate increase be-
havior as a function of time since the last rate decrease to
an arbitrary rate F r

inc(0) = r (Rmin ≤ r ≤ Rmax).
Since we define the increase function finc(r) as a func-
tion of the current rate, the time behavior of the rate in-
crease should be independent of the past history of the
flow rate, i.e. it should be independent of the elapsed
time since the last decrease. Therefore, the time behav-
ior of the rate for two arbitrary initial rates r1 and r2,
(Rmin ≤ r1 < r2 ≤ Rmax), should be identical for rates
r > r2, i.e.:

F r2
inc(t) = F r1

inc(t + t′) for t ≥ 0, and t′ such that

F r1
inc(t

′) = r2
(1)

It follows that the rate increase behavior can be rep-
resented by just one member of the family of functions:
Finc(t) = FRmin

inc (t). All other functions F r
inc, for

Rmin < r ≤ Rmax, can be obtained by shifting the
time origin of Finc(t) as described in equation 1.

From our condition 3, the recovery time Trec is con-
stant for any rate r. Thus, after a flow decreases its rate
to r = fdec(r′), due to a marked ACK, it would take a
constant time Trec for recovering to its original rate r′, i.e.
F r

inc(Trec) = r′. Equivalently, Finc(t + Trec) = r′, for t
such that Finc(t) = r. Therefore,

fdec(Finc(t + Trec)) = fdec(r′) = r = Finc(t) or

Finc(t) = fdec(Finc(t + Trec)) (2)

In practice we cannot adjust the flow rate continuously
with time, but only at discrete times. As previously stated,
we chose to adjust the rate at the reception of each un-
marked ACK. After an adjustment to rate r, the next ACK
is nominally received in a time interval 1/r. Thus we de-
fine7 finc(r) = min(F r

inc(1/r), Rmax).
In summary, to obtain an increase function finc(r) we

need to find a function Finc(t) that satisfies Equation 2.
A discussion of how this can be accomplished for general
response functions is out of the scope of this paper. In the
next Sections, we show how we obtained finc(r) for two
specific response functions.

C. Function 1:
Fast Increase Multiplicative Decrease (FIMD)

For the FIMD source response function we adopt a mul-
tiplicative rate decrease function, which is the same de-

7Our derivations and definitions assume all packets are of the same
size and that each ACK acknowledges a single packet of this size.
Our analysis can be easily extended to handle variable size packets
by defining T in terms of the maximum size of a packet and increasing
the rate on an ACK in proportion to the size of the packet that is being
acknowledged by the ACK.

crease function used by the traditional AIMD function.

ffimd
dec (r) = max

(
r

m
, Rmin

)

where m > 1 is constant

From Equation 2, Finc(t) must satisfy:

Finc(t + Trec) = Finc(t) ∗ m

With Finc(0) = Rmin, this is satisfied by the continu-
ous function:

Finc(t) = Rmin ∗ mt/Trec

For any rate r, there exists a t′ for which r = Finc(t′) =
Rmin ∗ mt′/Trec . Therefore,

F r
inc(t) = Finc(t + t′) = Rmin ∗ mt′/Trec ∗ mt/Trec

= r ∗ mt/Trec

and

ffimd
inc (r) = min(F r

inc(1/r), Rmax)

= min(r ∗ m1/rTrec , Rmax)

= min(r ∗ mRmin/r, Rmax)

D. Function 2:
Linear Inter-Packet Delay (LIPD)

The LIPD response function is designed to leverage the
Inter-Packet Delay (IPD) design feature in InfiniBand [1].
IPD is the idle period length that is inserted between the
injection of consecutive packets of a flow, expressed in
units of packets transmission time. A flow operating at an
IPD of ipd corresponds to a flow rate of Rmax

1+ipd . We define
a flow’s rate decrease as an increment by one of the flow’s
IPD value (which increases the inter-packet delay by one
packet transmission time). This rate decrease function is
intuitively attractive for the following reason. If n identi-
cal flows share a bottleneck link, the optimal rate for each
flow is Rmax

n (IPD of n − 1). If n flows are at the optimal
rate and a new flow arrives, then upon receiving one mark
each of these flows reduces its rate to Rmax

(n+1) (IPD of n),
which is the new optimal rate assignment. Also, at lower
rates this function decreases the rate by smaller steps than
a multiplicative decrease function (FIMD and AIMD). In
typical scenarios where several dynamic flows are sharing
a link, the use of smaller decrease steps results in lower
amplitude of oscillation and larger overall utilization of
the link. This rate decrease function can be derived using
the inverse relationship of flow rate to the flow IPD:

f lipd
dec (r) = max

(
Rmax

Rmax
r + 1

, Rmin

)

From Equation 2, Finc(t) must satisfy:

Finc(t + Trec) =
Rmax

Rmax
Finc(t)

− 1

With Finc(0) = Rmin, this is satisfied by the continu-
ous function:

Finc(t) =
Rmax

Rmax
Rmin

− t
Trec

For any rate r, there exists a t′ for which r = Finc(t′) =
Rmax

Rmax
Rmin

− t
Trec

. Therefore,

F r
inc(t) = Finc(t + t′) =

Rmax

Rmax
Rmin

− t′
Trec

− t
Trec

=
Rmax

Rmax/Finc(t′) − t/Trec

=
Rmax

Rmax/r − t/Trec

and

f lipd
inc (r) = min(F r

inc(1/r), Rmax)

= min

(
Rmax

Rmax/r − 1/rTrec
, Rmax

)

= min

(
Rmax

Rmax/r − Rmin/r
, Rmax

)

= min

(
r

1 − Rmin/Rmax
, Rmax

)

Although the analytical description of the response
functions presented above looks complex, these functions
can be easily implemented in hardware. This can be
done by choosing a finite set of discrete rates and using
lookup tables to implement discrete versions of the func-
tions finc(r) and fdec(r). The equations presented here,
are just needed at design time to compute the values stored
in these lookup tables.

VI. EXPERIMENTAL RESULTS

We have evaluated the performance of our packet mark-
ing and source response mechanisms through simulation
and present the results in this section. The simulations use
the example topology of Fig. 1. Source response functions
combine the appropriate rate control function with a win-
dow limit of one packet.

A. Marking Policy Comparison

In our first set of simulation experiments, shown in
Fig. 4, we compare our proposed packet marking mech-
anism with the naive scheme that only mark packets in

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

IL,LF

VF

LF

RFIL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ed
 r

at
e

time (ms)

RL

IL,LF

VF

LF

RFIL,RF

local flows (LF)
remote flows (RF)

victim flow (VF)

(a) Naive

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ae
d

ra
te

time (ms)

RL

IL

VF

LF

RF
IL,RF

root link (RL)
inter-switch link (IL)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

no
rm

al
iz

ae
d

ra
te

time (ms)

RL

IL

VF

LF

RF
IL,RF

local flows (LF)
remote flows (RF)

victim flow (VF)

(b) Proposed

Fig. 4. Comparison of Packet Marking Policies:
buffer capacity = 4 packets.

a full buffer. In this set of experiments we assumed the
scenario shown in Fig. 1 with 10 remote and 10 local
flows (R=10, L=10) and used the LIPD source response
function. Fig. 4(a) show that although the naive mecha-
nism can avoid congestion spreading and allow the victim
flow to receive high throughput, it results in an unfair al-
location of rates between remote and local flows. While
the average throughput is approximately the same among
flows of the same type, local or remote (this is not shown
in Fig. 4(a)), the local flows utilize 90% of the available
root link bandwidth. This unfairness is a consequence
of the selection of packets to be marked. Packets of re-
mote flows are marked when they collectively fill the in-
put buffer at switch B that receives packets from the inter-
switch link. In contrast, none of the packets of the local
flows is marked since each local flow uses a different in-
put buffer and the window limit prevents it from filling
the buffer. That penalizes the remote flows, which have
their rate reduced while the local flows take a dispropor-
tionate share of the congested link bandwidth. In gen-
eral, the naive mechanism penalizes flows that arrive at a
switch competing for an oversubscribed link through an
input port shared with many competing flows.

Fig. 4(b) shows the simulation results obtained for our
proposed packet marking mechanism. The results show
that this marking policy also avoids congestion spreading
and keeps the inter-switch link at high utilization. More-
over, fairness between the remote and local flows is im-
proved when compared to the naive scheme. This is ex-
pected since the proposed mechanism marks all packets
that are generating congestion on a root link, both from
remote and local flows.

Unfairness is not entirely eliminated with this marking
policy because the event that triggers packet marking (a
full input buffer) is biased to preferentially mark remote
flows. Marking is triggered at times that sample the peak
buffer usage for the remote flows and only the average
buffer usage for the local flows. In our proposed marking
mechanism, the number of packets of remote flows that
are marked is approximately equal to the number of input

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2048 10000 20000 30000 40000 50000 60000 65280

no
rm

al
iz

ed
 r

at
e

time (units of packet transmission time)

FIMD

AIMD

LIPD

Fig. 5. Finc(t) with Rmin = Rmax/256
for AIMD, FIMD, and LIPD.

buffer slots8. In contrast, for the local flows the mark-
ing scheme samples a distribution of buffer usage over
the whole range from zero usage to the peak usage. A
fair state, in which local and remote flows have the same
rate limits, is not stable because in that state each marking
event tends to mark more packets of remote flows than of
local flows, reducing the rate limits of each remote flow
more frequently than for each local flow.

We have elsewhere proposed and evaluated additional
packet marking mechanisms that can further improve fair-
ness if properly tuned [24].

B. Evaluation of Source Response Functions

In this section we compare the performance of LIPD,
FIMD, and traditional AIMD. As with FIMD, the AIMD
source response uses a multiplicative rate decrease func-
tion. For the increase function, the rate limit is increased
linearly with time9. The maximum slope of the linear rate
increase is limited by the minimum recovery time Trec at
the lowest rate, which corresponds to a recovery with just
a single unmarked ACK. In the results presented here we
use this maximum slope for the AIMD rate increase.

In all our evaluations we set the minimum rate limit
Rmin to Rmax

256 , based on the limitation imposed by the In-
finiBand IPD mechanism as explained later in this Sec-
tion. For FIMD and AIMD we use a decrease factor
m = 2. To compare the increase behavior of the three
response functions, Fig. 5 plots Finc(t) normalized by
Rmax, which shows how the flow rate increases over time
starting at rate Rmin = Rmax/256. Fig. 5 shows that
AIMD recovers from minimum rate to maximum rate in

8It is not exactly the number of buffer slots, because sometimes a
victim flow may be using one of the buffer slots or a packet in the
buffer is being transmitted and cannot be marked anymore. However
the probability of having a victim packet in a full buffer is very small,
since most of the time the victim can cut through and start being trans-
mitted to its output port just after its header is received, occupying the
buffer just for a short period of time.

9This is analogous to TCP’s window-based AIMD, which increases
the window size by one maximum segment size each round trip time
[8].

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

discrete/root link
discrete/interswitch link

discrete/local flows
discrete/remote flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

continuous/root link
continuous/interswitch link

continuous/local flows
continuous/remote flows

(a) LIPD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

discrete/root link
discrete/interswitch link

discrete/local flows
discrete/remote flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

continuous/root link
continuous/interswitch link

continuous/local flows
continuous/remote flows

(b) FIMD

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

discrete/root link
discrete/interswitch link

discrete/local flows
discrete/remote flows

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11

no
rm

al
iz

ed
 r

at
e

buffer size (packets)

continuous/root link
continuous/interswitch link

continuous/local flows
continuous/remote flows

(c) AIMD

Fig. 6. Performance of source response functions with static traffic pattern.
(Dashed lines are mostly invisible because they are hidden by the solid lines)

the same total time as LIPD and much slower than FIMD,
even though AIMD and FIMD reduce their rates iden-
tically with the same number of marks. LIPD recov-
ers quickly at high rates and slowly at low rates, which
matches its rapid decrease in response to marks at high
rate and gradual decrease at low rates. For example, for
1 GByte/sec links and 2048 byte packets, the total time to
reach the maximum rate starting from the minimum rate
is 4.2 ms for FIMD and 133.7 ms for LIPD and AIMD.

In the following subsections, we compare the dynamic
behavior of our response functions with AIMD. For that,
we run simulations assuming the scenario shown in Fig. 1
with 10 remote and 10 local flows (R=10, L=10). Each
simulation is run for 500 ms simulated time, and the re-
ported results average the rates over the last 400 ms. With
all three response functions, flows are initialized to the
maximum rate limit Rmax. We expect traffic flows in
the SAN environment to be bursty, short-lived and sen-
sitive to latency. For such environments, initializing flows
to the maximal rate can allow the flows to attain maxi-
mum bandwidth quicker and incur lower latency than an
approach based on slow-start. Two traffic environments
are investigated: a static traffic pattern that has long-lived
static flows, and a dynamic traffic pattern that has flows
that come and go.

1) Static Traffic Pattern: Simulation results in Fig-
ure 6 show the impact of response function on link uti-
lization when all flows are static (long-lived). The graphs
show link utilization as a function of the size of the switch
buffer in number of packets per input port. For each re-
sponse function, the results are plotted for a design that
employs a discrete set of rates and for a design with con-
tinuous rate values. For the discrete case we use 256 dis-
crete rates, as supported by the InfiniBand [1] IPD mech-
anism. We choose rates corresponding to integer values
of ipd in the range [0, 1, . . . , 255], yielding rates Rmax

1+ipd .
The discrete and continuous curves in Figure 6 are nearly
identical, suggesting that an IPD mechanism that supports

a discrete set of rates, as in InfiniBand, can be leveraged
and used for congestion control without sacrificing perfor-
mance.

Overall, the results show that LIPD performs the best
for this static flow scenario, resulting in almost 100% uti-
lization of the root link and high utilization of the inter-
switch link. In comparison to FIMD and AIMD (with
m = 2), LIPD responds to a packet mark with a smaller
reduction of the rate limit. Thus at equilibrium the os-
cillation of the flow rate has lower amplitude with LIPD
than with FIMD and AIMD. For all the schemes, fair-
ness between local and remote flows improves with larger
buffers, as explained in Section IV-A.

In contrast to LIPD and FIMD, with AIMD the inter-
switch link has low utilization in scenarios with small in-
put buffers. Although victim packets rarely receive marks
(usually they cut through switch B and avoid an extended
stay in the input buffer), victim packets receive more
marks with smaller buffer sizes. The slow rate increase
function of AIMD causes the victim to recover slowly
from the sporadic marks resulting in poor utilization of
the inter-switch link. In contrast, LIPD and FIMD exhibit
fast recovery that tolerates occasional victim packet mark-
ing.

2) Dynamic Traffic Pattern: In a real network, traf-
fic flows arrive and depart dynamically. To gain under-
standing of the performance impact of the source response
function with dynamic traffic, we performed experiments
in which flows come and go dynamically. In our experi-
ments, an ON-OFF process determines the arrival and de-
parture of dynamic flows for a (source, destination) pair.
A new flow arrives at the source at the start of an ON pe-
riod and departs at the start of the OFF period. The ON
and OFF times are exponentially distributed with equal
mean duration. Simulation times were set to values large
enough to have an average of at least 20 ON cycles per dy-
namic flow for the experiments with long ON times, and
to at least 500 ms for experiments with short ON times.

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

no
rm

al
iz

ed
 r

at
e

mean source ON duration (ms)

dynamic flows
static flows

0

0.2

0.4

0.6

0.8

1

0.01 0.1 1 10 100

no
rm

al
iz

ed
 r

at
e

mean source ON duration (ms)

persistent state - dynamic flows
persistent state - static flows

(a) 50% static flows
50% dynamic flows

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100

no
rm

al
iz

ed
 r

at
e

mean source ON duration (ms)

LIPD - root link
FIMD - root link
AIMD - root link

0

0.2

0.4

0.6

0.8

1

1.2

0.01 0.1 1 10 100

no
rm

al
iz

ed
 r

at
e

mean source ON duration (ms)

LIPD - inter-switch link
FIMD - inter-switch link
AIMD - inter-switch link

(b) 100% dynamic flows

Fig. 7. Dynamic traffic patterns.

Fig. 7(a) shows results for a mixed environment in
which half the local and remote flows in the scenario
of Fig. 1 are dynamic, and half are static (L = 5 + 5,
R = 5 + 5). The Figure shows the aggregate flow rates
of dynamic and static flows, plotted as a function of the
mean ON duration. The curves labeled “dynamic flows”
and “static flows” illustrate that with frequent arrivals and
departures (small mean ON duration), dynamic flows hog
the bandwidth, starving the static flows. When a new flow
arrives it is initialized to the maximum rate limit, and its
contention with the static flows causes both to be marked.
Since the dynamic flows are short-lived, the marks have
little impact on them. The static flows, however, suffer
continually from the frequent arrival of new flows and the
consequent marking. As ON duration increases, the dy-
namic flows arrive less frequently, approaching a static
scenario in which the static flows receive twice as much
bandwidth than the dynamic flows, since just half of the
dynamic flows are active on average at any time.

Since initializing each new flow to have the maximum
rate limit results in poor performance for long-lived flows,
we propose the use of a scheme in which rate limit per-
sists across consecutive flows that have the same (source,
destination) pair, similar to the approach proposed in [25].
Results for this approach are also presented in Figure 7(a),
corresponding to the curves labeled “persistent state”. We
observe that when using this approach static flows are not
penalized and receive a fair share of the bandwidth. For
the shortest ON durations, the persistent congestion con-
trol state makes short-lived flows that arrive frequently
behave similarly to a single static flow. In this case the
dynamic flows receive the same amount of bandwidth as
static flows, since they all behave as static flows, explain-
ing why the persistent curves approach a normalized rate
of 0.5 at low ON durations.

Figure 7(b) shows the results of an experiment in which
all the flows (except the victim) are dynamic, with persis-
tent congestion control state. The graph shows how the
choice of response function affects the utilization of the
root link and the inter-switch link. The inter-switch link

has high utilization, except in the case of AIMD (as ex-
plained in Section VI-B.1), which confirms that conges-
tion spreading does not affect the victim, when using our
proposed response functions.

For the root link, when the ON duration has the low-
est and highest values, the source response functions have
similar behavior as with static traffic patterns; utilization
is maximized by LIPD, then FIMD, then AIMD. For large
ON durations, the traffic pattern is nearly static and for
short ON durations dynamic flows behave as static flows
as mentioned before. The intermediate range of ON dura-
tions (from approximately 0.2 ms10 to 2 ms), corresponds
to a dynamic traffic behavior and thus benefits from using
FIMD which can adapt faster to changes in traffic demand.
The results show that FIMD can achieve higher root link
utilization in this range.

AIMD has the worst performance on all ranges achiev-
ing approximately 10% lower utilization than the best re-
sponse function, which is FIMD for more dynamic sce-
narios and LIPD for more static scenarios.

VII. CONCLUSIONS

In this paper, a new congestion control scheme for In-
finiBand networks was developed and evaluated. The
scheme eliminates congestion spreading, a consequence
of InfiniBand link level flow control in which conges-
tion that originates at one oversubscribed link may dras-
tically reduce the throughput of seemingly unrelated traf-
fic throughout the network. Key properties of InfiniBand
such as no packet drops, small bandwidth-delay product,
small packet buffers, etc. guided the development of a
scheme that has two components: a simple ECN packet
marking mechanism applicable to modern input-buffered
switches, and a source response mechanism that combines
rate control with a window limit, adequate for an Infini-
Band environment.

The proposed ECN mechanism is triggered by a full
input buffer and differs from conventional approaches by
marking all packets that contribute to congestion even if
their buffers are lightly utilized. The performance re-
sults show improved fairness of this approach over con-
ventional packet marking.

We derived a set of conditions to be satisfied by source
response functions in order to achieve convergence to fair
and efficient operating points. While fairness convergence
requirements have been proposed in previous work [14]
for a scenario with synchronous network congestion feed-
back, we derive convergence requirements for a more real-
istic asynchronous environment. Our conditions are based

10Each flow can transmit only a few packets in a ON period of 0.2
ms, 5 to 10 packets assuming there are 10 to 20 active flows

on a more relaxed constraint for fairness convergence than
proposed in [14]. The use of more relaxed conditions
enables the use of source response functions that can re-
claim unused link bandwidth faster and can achieve higher
bandwidth utilization than could be achieved by response
functions based on the stricter convergence requirement
proposed in [14]. We proposed two novel source response
functions based on our weaker convergence requirement.
We showed through simulation results that these func-
tions outperform the traditional AIMD response function
which satisfies the stricter convergence requirent proposed
in [14].

This paper focused on the rate control aspects of con-
gestion control, while maintaining a fixed window size of
one packet. We envision, however, that a hybrid window
and rate control approach may be beneficial for SANs in
which ACKs experience queueing delays in the reverse
path. We plan to investigate how rate control and window
control can be combined into a single mechanism that ap-
propriately adjusts both the window size and the rate limit.
In addition, we want to explore our end-to-end congestion
control mechanisms with richer traffic patterns and larger
and more general network topologies.

REFERENCES

[1] InfiniBandSM Trade Association, InfiniBandTM Architecture
Specification Volume 1, Release 1.0. (www.infinibandta.org),
October 2000.

[2] Robert W. Horst, “TNet: a reliable system area network,” IEEE
Micro, vol. 15, no. 1, pp. 37–45, February 1995.

[3] W. Baker, R. Horst, D. Sonnier, and W. Watson, “A flexible
ServerNet-based fault-tolerant architecture,” in 25th Intl. Symp.
Fault-Tolerant Computing, June 1995, pp. 2–11.

[4] N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik, C. Seitz,
J. N. Seizovic, and Wen-King Su, “Myrinet: a gigabit-per-second
local area network,” IEEE Micro, vol. 15, no. 1, pp. 29–36,
February 1995.

[5] D. M. Dias and M. Kumar, “Preventing congestion in multistage
networks in the presence of hotspots,” in International Confer-
ence on Parallel Processing, August 1989, pp. 1.9–1.13.

[6] William J. Dally, “Virtual-channel flow control,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 3, no. 2, pp.
194–205, Mar. 1992.

[7] H. T. Kung, Trevor Blackwell, and Alan Chapman, “Credit-
based flow control for ATM networks: Credit update protocol,
adaptive credit allocation and statistical multiplexing,” SIG-
COMM ’94, vol. 24, no. 4, pp. 101–114, Aug. 1994.

[8] Van Jacobson, “Congestion avoidance and control,” in SIG-
COMM. Lawrence Berkeley Laboratory, August 1988, pp. 314–
329, ACM.

[9] Mellanox Technologies Inc., InfiniScaleTM, Mellanox’s 2nd Gen-
eration Switch, (www.mellanox.com/news/articles/intro.pdf),
October 2001.

[10] Nick McKeown, Martin Izzard, Adisak Mekkittikul, William
Ellersick, and Mark Horowitz, “Tiny tera: A packet switch core,”
IEEE Micro, vol. 17, no. 1, pp. 26–33, Jan. 1997.

[11] K. K. Ramakrishnan and Raj Jain, “A binary feedback scheme
for congestion avoidance in computer networks,” ACM Trans-
actions on Computer Systems, vol. 8, no. 2, pp. 158–181, May
1990.

[12] Sally Floyd and Van Jacobson, “Random Early Detection gate-
ways for congestion avoidance,” IEEE/ACM Transactions on
Networking, vol. 1, no. 4, pp. 397–413, August 1993.

[13] Yoshio Turner, Jose Renato Santos, and G. (John) Janakiraman,
“An approach for congestion control in InfiniBand,” Tech. Rep.
HPL-2001-277, HP Laboratories, October 2001.

[14] D. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,” Com-
puter Networks and ISDN Systems, vol. 17, pp. 1–14, June 1989.

[15] Ludmila Cherkasova, Al Davis, Robin Hodgson, Vadim Kotov,
Ian Robinson, and Tomas Rokicki, “Components of congestion
control,” in ACM Symposium on Parallel Algorithms and Archi-
tectures, 1996, pp. 208–210.

[16] Lawrence S. Brakmo and Larry L. Peterson, “TCP Vegas: End
to end congestion avoidance on a global internet,” IEEE Journal
on Selected Areas in Communications, vol. 13, no. 8, pp. 1465–
1480, October 1995.

[17] Christina Parsa and J. J. Garcia-Luna-Aceves, “Improving TCP
congestion control over internets with heterogeneous transmis-
sion media,” in 7th International Conference on Network Pro-
tocols (ICNP’99). October-November 1999, pp. 213–221, IEEE
Computer Society.

[18] N. Golmie, Y. Saintillan, and D. Su, “ABR switch mechanisms:
design issues and performance evaluation,” Computer Networks
and ISDN Systems, vol. 30, pp. 1749–1761, 1998.

[19] K. K. Ramakrishnan, S. Floyd, and D. Black, “The addition of
Explicit Congestion Notification (ECN) to IP,” Tech. Rep. RFC
3168, IETF, September 2001.

[20] S. Floyd, “TCP and explicit congestion notification,” Computer
Communication Review, vol. 24, no. 5, pp. 8–23, October 1994.

[21] The ATM Forum Technical Committee, Traffic Manage-
ment Specification Version 4.1, Number AF-TM-0121.000.
www.atmforum.com, March 1999.

[22] D. Bansal and H. Balakrishnan, “Binomial congestion control
algorithms,” in IEEE INFOCOM, April 2001, vol. 2, pp. 631–
640.

[23] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer,
“Equation-based congestion control for unicast applications,” in
SIGCOMM, August 2000.

[24] Jose Renato Santos, Yoshio Turner, and G. (John) Janakiraman,
“Evaluation of congestion detection mechanisms for InfiniBand
switches,” in IEEE GLOBECOM – High-Speed Networks Sym-
posium (to appear), November 2002.

[25] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan Seshan,
“An integrated congestion management architecture for Internet
hosts,” in ACM SIGCOMM, September 1999.

