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Chapter 6 

Prototype Evaluation 
 

“The mark of a truly civilised human being is the ability to read a 
column of numbers and then weep.” 

Bertrand Russell 

Evaluating a system implementation can be undertaken at two levels: component and system.  
A component analysis examines each system component in an isolated manner whilst a 
system analysis is holistic and operates at a higher-level, considering more functional 
problems.  Indeed there is a fine balance to be struck between being too specific which 
produces results that do not mean anything useful, and being so general that there is no 
content to the results.  The component level provides useful information that can aid 
development and testing but suffers from a lack of relevance when a system task is 
considered.  At the system level the whole system is asked to perform some useful task and 
evaluation of its performance can be used to judge its overall effectiveness. 

These methods are not mutually exclusive, in fact understanding system performance is 
difficult if the effects that the individual system components have are not fully understood.  
However, a component’s behaviour will often change when used in conjunction with other 
components within a system, e.g. its performance may be reduced when it has to bid for CPU 
time with other processes.  This chapter, therefore, deals with the system as a whole (an 
approach advocated by Checkland, 1994) but with a detailed look at the two major 
components of most (if not all) system processes: the UML interpreter and the PML. 

6.1 System Analysis 
Ideally one would like to compare the performance of this prototype with that of other 
solutions for distributed VE systems.  However, the only evaluation of a VE system that the 
author has found is for AVIARY (section 2.3.8), with the exception of a predictive 
performance chart for DIS (Figure 2.3).  Even if figures were readily available, the problems 
that must be faced when comparing systems are similar to those encountered when comparing 
CIGs.  Each manufacturer presents a list of figures which detail the CIG’s performance of 
certain tasks, e.g. rendering a 10 by 10 grid of polygons, in relatively useful units, e.g. 
polygons per second.  Unfortunately, information essential for comparison of the CIG’s results 
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with another CIG is often not presented, e.g. were the polygons lit?  Clipped?  Textured?  
With which texturing technique?  etc. 

The obvious course of action would be to derive a set of benchmarks that may be used to 
provide a fair basis for comparison of systems.  But even this has problems, for example some 
CIGs are optimised for triangles whilst others can handle polygons with any number of 
vertices.  Undoubtedly, any test using triangles will give any CIG optimised for this type a 
better rating than the other CIGs.  Conversely, a benchmark that tested polygon throughput 
with varying numbers of vertices cannot be run on a triangle-only system without extra 
application processing to split the polygons into triangles, thus defeating the objective.  There 
are many other examples of architectural differences that confound comparison. 

The architectures of distributed VE systems are even more diverse than that of CIGs and 
presents a challenge when designing benchmarks.  In the same way that a geometrical model 
can produce different performance ratings on different CIG’s, VE system performance is very 
application specific.  This may be a reason why figures are not available for existing systems - 
even the evaluation of AVIARY is based around an Air Traffic Control application.  No 
attempt will be made in this chapter to derive a set of useful benchmarks since this is a subject 
suitable for a thesis in itself, a more basic approach will be used instead. 

This thesis has already established that the user is the final judge of the system’s effectiveness 
and that certain criteria must be met to provide a usable interface (section 3.3).  Although this 
prototype was not built to test these measures, it is possible to extract the most important 
feature of any such system which is the ability to progress the simulation as fast as possible.  
A suitable metric is simulation steps per second and is used as the absolute measure of this 
prototype’s performance. 

6.2 Testing Methodology 
All of the benchmarks used in this chapter were run under similar conditions.  Normal 
operating system processes were reduced to a working minimum in order to maximise the 
available memory and minimise interference with the USS processes.  No users were 
permitted access to the machines during testing and normal Internet services were suspended.  
Disk accesses only occurred at the beginning of a test and at the end when results were logged.  
Even then, only local storage was used, which was especially important in the case of the SGI 
where normal user directories are held remotely and accessed using the Network Filing 
System (NFS).  This fact combined with the presence of virtual memory can drastically affect 
performance. 

This section documents the relevant characteristics of the machines used to test the prototype 
and highlights a number of issues that affected system performance. 

6.2.1 CPU Performance 

Table 6.1 shows the relative performance of several Intel CPUs present in IBM PCs and the 
MIPS processor used in SGI’s RealityStation.  The performance ratings are, of course, 
dependent upon the efficiency of the compiler and its ability to generate optimised code.  The 
Watcom C++ compiler was used on the Intel-based platforms whilst GNU C++ (G++) was 
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used on the SGI machine.  The native C++ compiler was not used because it did not support 
exceptions but unfortunately the GNU compiler had a number of faults that presented 
problems.  Firstly, the code optimiser could not be invoked if the source code used exceptions, 
subsequently the SGI’s performance was severely undermined.  The figures shown inside the 
brackets are those of the native C++ compiler with optimisation and those outside the brackets 
represent the results obtained using the GNU compiler without optimisation1.  Secondly, the 
implementation of C++ templates is less than efficient with the current release of G++ and 
requires the instantiation of each template within each and every module it is used (GNU, 
1995).  Consequently, the executable sizes produced are much larger than necessary which in 
turn has implications for the amount of paging required during execution. 

6.2.1.1 QNX 

The total memory available on each platform running QNX is shown in Table 6.1 as well as 
the actual amount that may be used by non-system software.  Since QNX does not provide any 
virtual memory this limits the number of system processes that may run at one time.  The 

                                                 

1 The benchmark code did not contain exceptions and thus could be optimised, resulting in performance only 
slightly worse than that produced by the native compiler.  However, these results would not be indicative of the 
prototype’s performance and hence the unoptimised figures are given. 

 Gateway 
i486 

 50 MHz 

Server 
i486 

66 MHz 

Pentium 
Pentium 
90 MHz 

Reality 
MIPS 4400 
200 MHz 

Integer 0.256645 0.330643  0.849287 0.653 (1.537) 
Floating-point 0.173911 0.211827 0.881350 0.517 (1.772) 

Memory 
(available / total) 

14 / 20 Mb 10 / 16 Mb 17 / 24 Mb 128 Mb + 
virtual 

memory 
Bus  16 bit 

(ISA) 
16 bit 
(ISA) 

32/16 bit 
(PCI/ISA) 

256 bit 

Bus Speed 50 MHz 33 MHz 30 MHz 47.6 MHz 
Bus Bandwidth 95 

Mbytes/sec 
63 

Mbytes/sec 
114/57 

Mbytes/sec 
1.42 

Gbytes/sec 
Disk 1 Gb 1 Gb 750 Mb 2 Gb 

 
The CPU speeds were obtained using BYTE Magazine’s BYTEmark benchmark 
program.  A rating of 1.0 is equivalent to a DELL Pentium 90 MHz PC running DOS.  
The figures given include the machine’s multi-tasking operating system overheads.  
Figures in brackets represent the native compiler’s performance on the SGI.  
ISA - Industry Standard Architecture 
PCI - Peripheral Connect Interface 

Table 6.1  Resource ratings for each test platform. 
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absolute maximum number of executables running simultaneously is 250 which allows for a 
maximum of 50 virtual circuits2 (QNX, 1995). 

Each of the three QNX machines (Pentium, Server and Gateway) are interconnected by a 
private Ethernet LAN using the same make of Ethernet card and the same Industry Standard 
Architecture (ISA) bus.  Gateway has a second interface card installed which is connected to 
the university’s backbone network. 

6.2.1.1.1 Scheduling 

There are three different scheduling methods that any given process may be assigned to under 
QNX: First In First Out (FIFO), round-robin and adaptive.  When using FIFO scheduling a 
process executes until either it voluntarily relinquishes control (blocks) or is preempted by a 
higher-priority process.  FIFO is only of real use to ensure mutual exclusion when two 
processes are sharing a resource.  Round-robin is like FIFO except that each process may also 
stop executing if it reaches the end of its timeslice (100 ms).  Adaptive scheduling uses 
decaying priorities for those processes that consume their timeslice and priority boosts for 
those processes that are starved of CPU for one second or more. 

The last scheduling policy is commonly used in systems where interactive and compute-
intensive processes share the same machine, however it does make performance evaluation of 
a network of interacting processes difficult.  All processes within the USS application were 
therefore placed in a round-robin scheduler at the same priority.  This causes considerable 
starvation of the normal interactive processes (using the adaptive scheduler) but not to USS 
processes such as the Console. 

6.2.1.2 IRIX 

The limits imposed by IRIX on the number of executables, etc., were not reached by the 
prototype system and therefore did not interfere with the system testing.  There were, 
however, two other issues which presented problems. 

6.2.1.2.1 Scheduling 

IRIX also supports different scheduling methods: real-time, deadline, timesharing, gang batch 
and batch.  Normal interactive processes run in the timesharing queue while the deadline 
scheduler enables time constraints to be applied to a process - although its effectiveness is 
uncertain when invoked on a single processor system.  Processes assigned to the real-time 
queue are guaranteed better performance than those in the timesharing and batch queues.  
Unfortunately, unlike QNX, only the super-user may promote processes to queues above the 
timesharing level.  Due to present departmental policy, access to the test platform at this level 
was not granted to the author and therefore all USS processes were subject to adaptive 
scheduling in the timesharing queue. 

                                                 

2 More virtual circuits may be supported by reducing the number of executables.  There will be no such limits in 
the next major release of the operating system (v4.3). 
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6.2.1.2.2 Virtual Memory 

Performance can also be compromised through the paging to and from disk that is undertaken 
when using virtual memory.  Ideally all of each process’ code and data would remain in 
memory, as with QNX.  This is possible under IRIX but super-user access is again required 
and therefore all results obtained under IRIX are confounded by irregular and uncontrollable 
paging activity. 

6.2.2 Computation and Communication 

The main emphasis on the resources consumed by the prototype has been split between 
computation and communications.  Sending/receiving messages requires CPU and therefore 
any computation rating is affected by communications.  This relationship is examined when 
analysing the PML and its results can be used to aid estimation of specific service overheads, 
e.g. registering interest in a particular UML component.  The other side of the equation in this 
example is the time it takes to manipulate the interpreter’s data structure.  Such information is 
provided by the section on UML which also deals with the resource that has, to date, been 
overlooked by system evaluations: memory. 

6.2.3 Memory 

Table 6.2 gives a breakdown of the sizes of each USS process in terms of code size, initialised 
and uninitialised data, and total executable size.  A list of the required USS libraries 
associated with each process is also given in the table.  Under IRIX the majority of an 
executable’s size comes from other general-purpose libraries provided with the compiler, e.g. 
system call library, maths library, C++ iostreams library, etc.  These libraries are much smaller 
under QNX, for example the total amount of USS code used in the mailer is 48,894 + 1,966 + 
4,775 = 55,635 bytes, meaning that the system libraries account for 64,069 bytes.  This is a 
worst case scenario since the amount of space used by these libraries will remain roughly the 
same for the larger executables.  The figures for the data given above do not include the 
memory that the process may allocate during execution for dynamic data structures, etc.  The 
large difference in IRIX and QNX code sizes is in part due to not using code optimisation and 
also the different CPU instruction sets. 

A simple way to reduce the amount of memory required by each process is to make use of 
shared libraries.  Such a mechanism places commonly used routines into a special library 
which is loaded once into main memory.  A stub library is also compiled and is linked into the 
executable in place of the larger original.  When a function in the stub library is called, the 
equivalent routine in the shared library is executed.  In theory, the unique overheads incurred 
by each USS process may be reduced substantially since most libraries are used many times, 
e.g. the PML library and the UML interpreter. 

The implementation of shared libraries under QNX is based upon the mechanism used by 
UNIX System V Release 3.2 which has an explicit interface for importing and exporting data 
into and from the shared library (QNX, 1994).  Whereas managing data and code separately is 
a perfectly adequate approach for C-based applications, the technique cannot be extended to 
the object-oriented paradigm which deals with code and data together.  Specifically, problems 
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occur with C++ when virtual functions, static initialisers or exceptions are used.  Therefore it 
was not possible to exploit shared libraries with the QNX implementation. 

This is not entirely true because the C system libraries are shared which, for example, means 
that every mailer only needs 55,635 bytes of memory, not 119,704 bytes.  With USS shared 
libraries this could be reduced to 4,775 bytes or lower.  Similar improvements would be seen 
for the other processes. 

IRIX does support shared libraries but because the system was not available until very late in 
the project their potential was not explored.  It is important to note, however, that the use of 
shared libraries would not only reduce the amount of memory required by a USS process, but 
should also reduce the amount of paging under IRIX.  A large commonly used shared library 
has a greater chance of staying in physical memory than several large executables, each with 
their own copies. 

System 
Component 

OS Code 
Size† 

Data 
Size† 

Total 
Size† 

Required Libraries Executable 
Size† 

UML IRIX 247,984 59,904 307,888 - - 
    Library QNX 78,191 77,940 156,131 - - 
UCL IRIX 46,768 38,768 85,536 - - 
    Library QNX 13,478 37,803 51,281 - - 
PML IRIX 52,270 26,032 78,302 - - 
    Library QNX 22,385 26,509 48,894 - - 
Entity IRIX 32,496 4,016 36,512 - - 
    Library QNX 9,601 3,144 12,745 - - 
Manager IRIX 33,840 3,600 37,440 - - 
    Library QNX 36,830 6,838 43,668 - - 
RProfile IRIX 47,776 4,806 52,582 - - 
    Library QNX 10,436 2,296 12,732 - - 
Message IRIX 9,232 2,336 11,568 - - 
    Library QNX 1,822 144 1,966 - - 
Mailer IRIX 6,416 960 7,376 PML, Message 430,984 
 QNX 3,756 1,019 4,775  119,704 
RM IRIX 32,976 3,568 36,544 PML, Message, 541,576 
 QNX 24,971 5,275 30,246 RProfile, UCL 163,053 
UM IRIX 265,104 27,200 292,304 PML, Message,  1,180,552 
 QNX 84,916 18,044 102,960 RProfile, UCL, UML 355,173 
Benchmark IRIX 8,448 1,152 9,600 PML, Message, UML, 787,336 
    Manager QNX 4,153 1,192 5,345 Manager, RProfile 269,725 
Benchmark IRIX 10,656 1,424 12,080 PML, Message, UML 787,336 
    Entity QNX 4,601 1,482 6,083 RProfile, Entity 265,689 

 
†All sizes are given in bytes. 

Table 6.2  Minimum memory usage of USS components. 
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6.2.4 Instrumentation 

All of the data in this chapter was collected by instrumenting key execution paths with timing 
code.  A suitable number of iterations were executed for each test case, e.g. message size, and 
the averaged data is used in the charts.  The amount of iterations and the type of 
instrumentation used was determined by taking clock resolution and (erratic) operating system 
overheads into consideration.  Under QNX, the system clock has a resolution of 0.1 ms and 
the SGI has microsecond accuracy.  For events that completed faster or close to the clock 
resolution, such as some of the UML interpreter operations, the total time taken to perform all 
iterations was measured, adjusted for loop overheads and then averaged.  For longer 
operations, such as the simulation execution stages, each iteration was measured individually 
and then averaged.  In all cases the impact that the profiling code had on the measurements 
was taken into consideration. 

6.3 UML 
Quantifying the resources consumed by the interpreter permits the designer to gauge the 
impact their simulation will have on the system.  To this end a series of simple benchmarks 
were used to establish resource consumption on each of the test platforms.  Since these tests 
were compute bound, the same pattern of relative platform performance is evident in each test.  
Therefore, quite often only the figures from one platform will be used in the graphical 
illustrations of the results.  A full table of the results upon which this subsection is based, 
along with the simple UML code used, may be found in Appendix C. 

6.3.1 Code Size 

The one disadvantage of sending UML code between processes is that a complex description 
can take an appreciable amount of space.  Table 6.3 shows two possible techniques for 
reducing the size of UML code for transmission.  Compression is a method that can be applied 
to any kind of data, but those algorithms that work on repeating patterns, such as the Free 
Software Foundation’s GZIP, work well with textual data.  Simply applying compression to 
the original UML description can result in approximately a 60% reduction in size.  Another 
technique which can be used is that of tokenisation - it is unlikely that this would be used just 
before transmission but during the initial interpretation.  Tokenisation simply replaces the 
language’s ASCII keywords by single-byte tokens and reduces the whitespace used to a 
minimum.  If the tokenised form is compressed the relative effects are less because 
tokenisation is a simple form of compression.  However, compared with just compressing the 
original, the code can be reduced to around 35% of its original size. 

Of course, compression comes at the cost of increased computational requirements.  There is a 
minimum code size that compression will have a beneficial effect upon and, even then, the 
computation time sacrificed to achieve this makes the usefulness of such an operation 
dubious.  Apart from the initial definition sent to processes upon creation, it is predicted that 
most UML code sent will be quite small, e.g. function invocations, minor code redefinitions, 
etc.  It would seem practical, therefore, to restrict the use of compression to large messages 
and then only with hardware support. 
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6.3.2 Primitive Types 

Table 6.4 shows how much memory each primitive type uses on the test platforms.  Although 
this is dependent on the machine’s architecture and compiler rather than the operating system, 
the latter classification is used for convenience in this and some subsequent tables.  The 
boolean type is much larger than it could be but alignment on a four-byte boundary simplified 
the state encoding/decoding routines and thus improved performance.  The difference in the 
memory used by a string is due to the different C++ String class implementations provided 
with each compiler. 

6.3.3 Component Sizes 

Figure 6.1 presents some simple formulae which may be used to estimate the memory usage 
of a UML component, from a literal to all of the modeled universes.  Table 6.5 provides some 
approximate sizes of each component.  The basic overheads are those that are needed merely 
to declare the relevant component; this will include the requirements of the base class if it is a 
derived component.  Those overheads that are dependent on the definition being interpreted, 
e.g. adding a property to an element, are specified on an individual basis.  These figures do not 
represent the variable amounts of dynamic memory that may be used in the basic overheads, 
e.g. the storage of strings representing names, etc.  Therefore the total obtained from the use 
of this table will always be less than the actual memory usage.  In addition the values given 
are dependent upon the hardware architecture (section 5.3.4) and the C++ compiler used.  For 
example, there is no standard method of implementation to handle virtual functions in derived 
classes.  The remainder of this section presents brief textual notes on each of the main 
components. 

Filename Original Compressed† Tokenised Tokenised & 
Compressed† 

ts.uml 5910 2279 (38.5%) 4950 (83.8%) 2141 (36.2%) 
base.uml 1131 469 (41.5%) 825 (73.0%) 392 (34.7%) 

 
†The Free Software Foundation’s GZIP was used to compress the ASCII UML files. 
All sizes are give in bytes; percentages represent the compressed size in relation to the 
original size. 

Table 6.3  Effects of techniques to reduce code size. 

Name Description Usage (bytes) 
  QNX IRIX 
Integer Integral number 4 4 
Real Floating-point number 4 4 
Boolean Boolean 4 4 
String Character string 16 + len 4  + len 

 
Table 6.4  Memory consumption of the four primitive UML types. 
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6.3.3.1 Component 

All UML components are derived from the one base class, UMLComponent.  An overhead is 
incurred for each dependency associated with a component in addition to the actual 
dependency structure.  The skeleton dependency provided with the UML library only holds a 
single flag but, as shown in section 5.6.3, the extensions added by each application must be 
incorporated into this figure. 

6.3.3.2 Literal 

A literal stores either an integer, a floating-point number, a boolean flag or a character string.  
Dynamic memory is only allocated when storing a string, the amount being dependent upon 
its length. 

6.3.3.3 Constant 

A constant may be a list in which case an overhead is present for each list element, plus the 
actual size of each Literal. 

Component = Basic + (number of dependents * (overhead + Dependency)) 
Dependency = Basic + [size of derivatives] 

Literal = Basic + [length of string] 
Constant = Basic + Component +  (number of literals * (overhead * Literal)) 

Function = Basic + Component +  [return type] 

Element = Basic + Component + (number of elements * (overhead + Element)) +  
   (number of properties * (overhead + Property)) +  
   (number of functions * (overhead + Function)) +  
   (number of constants * (overhead + Constant)) +  
   (number of converters * (overhead + Converter)) 

Property = Basic + Component + (number of instances * (overhead + Instance)) 
Instance = Basic + (size of list * overhead per list entry) 

Universe = Basic + Component + (number of elements * (overhead + Element)) +  
   (number of properties * (overhead + Property)) +  
   (number of functions * (overhead + Function)) +  
   (number of constants * (overhead + Constant)) +  
   (number of converters * (overhead + Converter)) 

Entity = Basic + Component + (number of constants * (overhead + Constant)) 
   (number of functions * (overhead + Function)) 

UML = Basic + Component + (number of universes * (overhead + Universe)) 
   (number of entities * (overhead + Entity)) 

N.B.  Square brackets [] represent optional portions of a component. 

Figure 6.1  Basic relationships between UML components and their memory usage.
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6.3.3.4 Function 

The memory used by a function is substantially increased when a return type has been 
declared. 

6.3.3.5 Element 

As one of the container components, an element can use greatly varying amounts of memory.  
Essentially, each component contained within the element requires information to be stored 
about its location. 

Name Description Usage (bytes) 
  QNX IRIX 
Component Basic 48 36 

Overhead per Dependency 12 12 
Dependency Basic 4 4 
Literal Basic 8 6 

Overhead for a string of len characters len len 
Constant Basic + Component 76 56 
Function Basic + Component 76 68 

Optional return type 44 20 
Element Basic + Component 140 116 

Overhead per Element 12 12 
Overhead per Property 12 12 
Overhead per Function 12 12 
Overhead per Constant 12 12 
Overhead per Converter 12 12 

Property Basic + Component 88 64 
Overhead per Instance 12 12 

Instance Basic 24 24 
Overhead per list entry 12 12 

Universe Basic + Component 128 104 
Overhead per Element 12 12 
Overhead per Property 12 12 
Overhead per Function 12 12 
Overhead per Constant 12 12 
Overhead per Converter 12 12 

Entity Basic + Component 92 68 
Overhead per Constant 12 12 
Overhead per Function 12 12 

UML Basic + Component 76 64 
Overhead per Universe 12 12 
Overhead per Entity 12 12 

 
Table 6.5  Approximate memory usage for UML components. 
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6.3.3.6 Property 

Whilst a property declaration is only held once in memory, the bulk of the memory 
consumption attributed to it is used when instancing it. 

6.3.3.7 Instance 

An instance is a list of pointers to the actual instance data.  Therefore, each list entry incurs an 
overhead in addition to the actual data size which can vary from 4 bytes for most primitives, 
to any amount for an element. 

6.3.3.8 Universe 

The type of overheads detailed in Figure 6.1 are the same as those for an element except that 
the minimum size is slightly smaller. 

6.3.3.9 Entity 

The overheads for an entity are relatively small currently because instruction code is not 
stored, only constants and functions. 

6.3.3.10 UML 

A single instance of the UML interpreter holds references to all of the universes defined and 
the entities that exist within them.  Following the data structure tree from this point enables us 
to determine the amount of memory used by the interpreter. 

6.3.3.11 Example 

Table 6.6 shows a small segment of a UML data definition.  Using the data for QNX 
presented above, it shows how much memory would be used to represent the definition’s 
structure within the interpreter and hold a single instance of element Triangle.  Each 
component within an element automatically generates a 12 byte administration overhead in 
addition to the structure needed to hold that component’s information.  When creating an 
instance of a property, a 24 byte administration overhead is incurred and a further 12 bytes for 
every entry in a list.  In the case of the coord array, this means that 60 bytes are used to 
manage 12 bytes of actual instance data, whereas 60 bytes are used to manage 216 bytes of the 
instance data for vertexList. 

Any instance of a property with a primitive type will have a disproportionate amount of 
memory used to manage the instance versus storing the instance data.  The reasons for this 
complexity have already been discussed (section 5.5.3).  Although a special arrangement 
might be made for properties of a primitive type, this would make the interpreter more 
complex and probably increase execution time. 
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6.3.4 Interpretation 

Figure 6.2 shows the relative time taken to perform the three basic interpretation operations 
(insert, replace and delete) for three primitive components on each of the test platforms.  In 
the case of the element and entity components, the definitions used in the test had no contents 
so that the measurements would be representative of each component.  The property was 
given an arbitrary primitive type (integer) for the same reasons.  Similar measurements were 
performed for functions and constants but give results very close to that of the property 

UML Definition Representation 
Size 

vertexList 
Instance Size 

coord 
Instance Size 

ELEMENT Triangle
{

ELEMENT Vertex
{

PROPERTY coord : REAL[3];
}
PROPERTY vertexList : Vertex[3];

} 

140 
 
12  + 140 
 
12  + 88 
 
12  + 88 
492 

 
 
 
 
 
 
24 + (3 * (12 + 72)) 
276 

 
 
 
 
24 + (3 * (12 + 
4)) 
72 
 

Table 6.6   Example of how much memory is allocated to represent a UML 
definition and hold its instance data under QNX. 

Componen
t 

Action Pentium 
(ms) 

Server 
(ms) 

Gateway 
(ms) 

Reality 
(ms) 

ELEMENT Insert 0.308 1.160 1.032 0.284 
Replace 0.376 1.397 1.192 0.314 
Delete 0.313 1.117 0.946 0.244 

CONSTANT Insert 0.339 1.202 1.094 0.303 
Replace 0.381 3.911 1.202 0.318 
Delete 0.297 1.060 0.917 0.230 

PROPERTY Insert 0.342 1.217 1.097 0.301 
Replace 0.372 4.752 1.205 0.316 
Delete 0.298 1.073 0.939 0.230 

FUNCTION Insert 0.320 2.430 1.039 0.288 
Replace 0.353 3.853 1.149 0.304 
Delete 0.288 1.067 0.909 0.226 

ENTITY Insert 0.302 2.102 0.968 0.282 
 Replace 0.324 3.237 1.046 0.286 
 Delete 0.325 1.156 1.029 0.260 
Dependenc
y 

Add 0.005 0.047 0.059 0.021 

 Delete 0.019 0.184 0.076 0.039 

 
Table 6.7  Fundamental interpreter operations timings for each test platform. 
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because the same amount of memory is currently used to represent them internally.  Complete 
details may be found in Table 6.7. 

Figure 6.3 shows how long it takes to add and remove a dependency for any component. The 
actual time taken to perform this operation is dependent on the number of existing 
dependencies on the component and its position within the dependency list.  The results 
shown here are, therefore, the best case results. 

 
 
 
 
a) 
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ENTITY Insert
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ENTITY Delete

 
 

Figure 6.2  Basic interpreter overheads for three primitive types: 
a) Element; b) Property; c) Entity. 
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6.3.5 State Management 

The five operations that are performed on a component’s state are those for instance control: 
construct-destruct, and those needed for state encoding: size-pack-unpack.  The duration of 
these compute-bound operations on an integer, real or boolean is shown in Figure 6.4 (an 
empty string increases the time for these actions marginally due to its slightly larger size).  
There is a linear relationship between state size and operation performance, and the time taken 
to complete any operation is extended if the component is an array. 
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Figure 6.4  Fundamental state operations on an Integer/Real/Boolean and their cost on 

each platform. 

To examine the impact that state size has on the performance of each operation, the length of 
an array of integers was varied and resultant times recorded.  Figure 6.5 is a graphical 
representation of the results whilst Table 6.8 details the time increase of operation execution if 
one element is added to the array. 
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Figure 6.3  Cost of adding and removing a dependency on a UML component. 
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Figure 6.5  State operation costs based upon state size (Pentium). 
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Figure 6.6  State operation overheads for an element with zero and one properties 

(Pentium). 

The performance of the state operations on an empty element compared to that of an element 
with a single property (an integer) may be viewed in Figure 6.6.  Unsurprisingly the difference 
is equal to that of a single property (Figure 6.4), therefore the computational cost of managing 
an element may be calculated by totalling the costs of the individual properties contained 
therein, added to the basic element overhead. 

Operation Pentium 
Time (ms) 

Server 
Time (ms)

Gateway 
Time (ms) 

Reality 
Time (ms) 

construct 0.008 0.024 0.035 0.006 
destruct 0.006 0.018 0.027 0.005 

size 0.002 0.006 0.009 0.001 
pack 0.003 0.015 0.012 0.002 

unpack 0.003 0.016 0.011 0.002 

 
Table 6.8  Operation overheads per integer array element. 
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Similarly, nested elements produce predictable results (Figure 6.7), each level comes at the 
price of a single element’s overheads. 

The cost of reinterpreting any part of a UML definition may be estimated by determining the 
differences between the current and new definition.  Those parts that are now obsolete must 
have their state destructed and then the relevant portion of the data structure removed.  New 
component definitions are added in the normal way whilst those components that are 
redefined require partial (or complete) state destruction, re-interpretation and re-construction. 

When preparing state information for transmission its total size is estimated and a buffer is 
allocated into which the state is packed.  The receiver of the state unpacks the transmitted 
buffer into its data structure.  If the sender or receiver uses big-endian byte ordering, then a 
byte swapping operation is performed when packing or unpacking respectively.  Figure 6.8 
shows the performance of each of the test platforms when the three state encoding operations 
are performed on primitive types of the same size.  Although Reality must always byte-swap 
its state, the performance of these operations without byte-swapping is shown for comparison 
purposes. 
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Figure 6.7  State operations on elements nested 1 to 5 levels deep (Pentium). 
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Figure 6.8  Costs of state sizing/packing/unpacking a Boolean/Integer/Real on 

all the test platforms. 
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Figure 6.9  State encoding operation overheads for a String of 40 characters. 

The time it takes to perform these same operations on a string with 40 characters is about 10 
times slower than for the other primitive types (Figure 6.9).  The extra time is consumed by 
the larger amount of data that must be copied into the buffer.  There is no real difference 
between the performance of the byte-swapped operation and the normal version because 
character strings are not swapped in any way, only the integer that is used to hold the size of 
the variable length string. 

6.3.6 Summary of UML Analysis 

The amount of memory used by the interpreter is just as important as how fast it can interpret 
and execute UML code.  The size of the textual UML definition is of interest since it may be 
sent between processes and thus affects communications performance.  Whilst compression 
techniques can greatly reduce the space used by such descriptions, the computational overhead 
is prohibitive unless specialised hardware is available to accelerate the compression and 
subsequent decompression process.  A compromise could be the transmission of tokenised 
code but this would reduce readability. 

The cost of interpreting such definitions was presented in the previous sub-sections.  Not only 
may the computational cost of managing the interpreter’s internal data structure be estimated, 
but also the memory it occupies by applying the simple equations and empirical data in 
sections 6.3.2 and 6.3.3.  It has been shown that there is a simple relationship between the 
time taken to process a component’s state, its size and its structure.  Such a relationship 
enables predictions to be made about the time required to manage state information. 

6.4 PML 
Performance evaluation of the PML can be conveniently broken into two parts: message 
transmission and message reception.  Although the time taken to send a message is somewhat 
dependent on the processing done at the receiver, they can, for the most part, be treated 
separately.  All of the charts in this section are based upon message size and therefore have 
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only been calculated up to the largest message size currently supported: 20 Kbytes3.  In most 
cases, the performance of only one platform will be presented although the full suite of 
benchmarks were executed on all platforms.  The equivalent graphs for the other platforms 
can be found in Appendix D. 

This section examines the performance of both the QNX IPC and TCP/IP mechanisms as 
utilised by the PML.  Only Gateway supported TCP/IP under QNX, this is unfortunate 
because it is also the slowest of all the test platforms.  However, the relative performance of 
these two mechanisms can still be compared. 

6.4.1 Transmission 

Each communication mechanism shares a common need for a separate mailer process used 
purely for message transmission.  In addition to the general cost of each IPC mechanism, the 
impact of communications to the mailer and the effect of transmission over Ethernet are 
examined. 

6.4.1.1 Pipes 

Figure 6.10 shows the time taken to transfer messages with different sizes along pipes on each 
platform used in the evaluation.  Under QNX a pipe has a buffer size of 5 Kbytes, therefore 
when a message length exceeds a multiple of this buffer size, an extra read() system call is 
required.  This extra operation is reflected in the chart as small jumps in transfer time at 5, 10 
and 15 Kbytes.  Despite having the faster CPU clock speed, Server has the worst performance.  
This can be attributed to having a slower internal bus speed than Gateway, whereas Pentium 
benefits from having a much faster CPU.  IRIX uses a pipe buffer size of 10 Kbytes but the 
test results are too noisy to identify the relevant shifts in performance. 

                                                 

3 This is an arbitrary limit imposed in the prototype and does not reflect an operating system limitations. 
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Figure 6.10  Relative overheads imposed by a pipe on each test platform. 
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6.4.1.2 QNX IPC 

Figure 6.11 shows a simple breakdown of the tasks performed by the PML in order to send a 
message using QNX IPC.  The administrative overheads include filling the transmission 
buffer and, for remote communications, establishing and destroying a virtual circuit.  The time 
taken to complete the actual Send() system call is also shown, including the time that the 
remote PML needs to receive the message and unblock the sender.  All message sends must 
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Figure 6.11  Deconstructed PML overheads for sending a message 
under QNX (Server). 
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Figure 6.12  PML message transmission latency between local processes 

on the QNX platforms. 
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be sent to the mailer via a pipe (section 5.3.5.4); the delay caused by this is also shown and is 
added to the other overheads to produce a total send time.  The proportion of time used by 
each of these tasks is similar for each platform. 

6.4.1.3 Latency 

A comparison of the different QNX platforms used to run the prototype and their impact on 
message transmission latency is shown in Figure 6.12.  The plotted data includes the latency 
introduced by the pipe.  Figure 6.13 shows the difference in latency between local and remote 
inter-process communications.  Unsurprisingly, on Pentium, communications with Gateway 
have the highest latency since it has the slowest processor.  At the other extreme, when 
examining the same properties on Gateway, the longest delay is experienced when 
communicating with Server (Figure 6.13b).  This result is forseeable since it is the slowest 
combination of CPUs within the three systems. 

There is, therefore, a large difference between the latency experienced when sending a 
message to a local process and one on a remote node.  On Pentium this magnitude ranges from 
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Figure 6.13  PML message transmission latency between remote processes on: 
                     a) Pentium and b) Gateway. 
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6-30 times longer for a remote communication, whilst Gateway experiences anything from 4-
15 times greater delay. 

6.4.1.4 TCP/IP 

Figure 6.14 shows the time taken by each of the main stages to send a message using TCP/IP 
(under both QNX and IRIX) to another process on the same node and an absolute total which 
includes the pipe overhead.  Establishment of a connection to the destination process is the 
most expensive stage: approximately 11 ms on Gateway and 1 ms on Reality (shown as 
dashed lines).  The default TCP transmit buffer size under QNX is 7300 bytes and the default 
receive buffer size is 8192 bytes, therefore the TCP buffers were set to accommodate the 
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Figure 6.14  PML message transmission times for TCP/IP: a) under QNX 
(Gateway); b) IRIX (Reality). 
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largest message size under QNX to avoid unnecessary message segmentation.  This action 
alone accounts for around 4 ms of the total time required for buffer control.  The IRIX buffer 
sizes default to 64 Kbytes and were not modified for the test. 

The large performance difference between the QNX implementation of the TCP/IP protocol 
stack and its own proprietary IPC mechanism is shown in Figure 6.15.  The reasons for poor 
TCP performance are discussed in section 6.4.4. 

6.4.2 Reception 

The tests used in this section are based upon the same methodology used in the previous 
section for message transmissions and are decomposed into their constituent tasks.  
Calculations are simplified, however, since the latency introduced by a pipe is not present 
when receiving a message. 
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Figure 6.15  Effect of protocol on local PML transmission time (Gateway). 
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6.4.2.1 QNX 

There are three basic tasks that are performed when receiving a message using QNX IPC:  
actual message reception into the receive buffer, unblocking the sender and extracting the 
message from the buffer.  To minimise the transmission latency, the sender is unblocked 
directly after the buffer has been filled.  The average time for this sequence of events is shown 
by a dashed line.  Figure 6.16 shows how much of the total receive time is used by the 
administration overheads.  A slight trend towards longer durations is visible in the 
administration tasks as the message size increases. 
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Figure 6.16  Breakdown of a PML message receive under QNX (Gateway) 
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Figure 6.17  Comparison between receiving messages from local and remote 

processes (Pentium). 



181 

In a similar manner to message transmission, receiving a message from a remote process takes 
a lot longer than from a local process (Figure 6.17): on Pentium approximately 6 times longer. 

6.4.2.2 TCP/IP 

Figure 6.18 depicts the duration of the major stages required to receive a message using 
TCP/IP through polling and blocking.  When blocking for a message, the accept() call is 
issued immediately; when a connection is made, the message is spooled into the receive buffer 
and then the message is extracted from it.  For a polled receive, the select() system call is 
used to check for pending connections and accept() is only called when there is a 
connection waiting.  The chart deceptively shows that a blocked receive is faster than a polled 
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Figure 6.18  PML message reception using TCP/IP: a) QNX (Gateway); 
b) IRIX (Reality). 
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receive since it does not include the (potentially very long) period when the process is waiting.  
Under QNX, the receive buffer was increased in size in order to accommodate the largest 
possible message.  Again we see that Reality outperforms Gateway by approximately 10 times 
for a blocked receive and 2-3 times for a polled receive.  The unusual sharp decrease in 
performance experienced at about 9 Kbytes with IRIX TCP/IP is consistently repeatable.  The 
only explanation that the author can offer is that this is the result of some internal buffering in 
the IRIX socket daemon and may be connected to the poor TCP/IP performance experienced 
(section 6.4.4). 

6.4.3 Throughput 

A useful metric is the amount of data that can be transmitted in any given period of time - 
throughput.  This section discusses two forms of this metric: local throughput which refers to 
data transfer within a machine and network throughput which refers exclusively to data 
transfer between machines. 

6.4.3.1 QNX 

Comparison of local throughput is straight forward when all platforms use the same operating 
system.  The maximum throughput at a given point can be calculated as follows: 

Using QNX IPC, it is necessary to subtract the time it takes the receiver to unblock the sender 
from the actual send time (not including administration overheads).  Then it is just a matter of 
converting the result into Mbytes per second.  Figure 6.19 shows the maximum amount of 
data that can be sent within each system based upon message size.  If throughput was limited 
by bus speed we would expect to see Gateway slightly outperforming Server and an increased 
throughput for Pentium with its PCI bus.  As it stands, however, internal throughput seems to 
be compute bound.  The actual throughput will be less if the sender and/or receiver are not 
getting as much CPU as they need. 

maximum throughput = (1000 / (send time - receive time)) *
message size) / 1024
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Figure 6.19  Maximum local throughput within each node using QNX IPC. 



183 

All of the QNX platforms share the same physical LAN and each has the same make of 
network card connected to the same type of internal bus.  Therefore, it should be possible to 
estimate maximum network throughput using the same technique used for local throughput.  
Figure 6.20 represents the estimated maximum network throughput between each possible 
node pair.  The calculation was performed each way on the link, e.g. Pentium to Server and 
Server to Pentium, and the result averaged to simplify this chart.  The results reinforce the 
conclusion that throughput is compute bound: the two fastest machines have the highest 
throughput, followed by the fastest and slowest and then the two slowest machines. 

The uncharacteristic drop in performance when the message size reaches 4 Kbytes is caused 
by a large number of out-of-window collisions being generated by faulty Ethernet cards.  In 
fact, throughput should rise dramatically as message size increases and start to level out at 
around 6 Kbytes.  This problem had not been noticed until these tests were run. 
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Figure 6.20  Maximum QNX network throughput between node pairs. 
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Figure 6.21  Maximum TCP/IP message passing throughput for each platform. 
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The largest message transfer gives Pentium a network throughput of 0.762 Mbytes/sec which 
may also be expressed as 6.096 Mbps.  On a 10 Mbps Ethernet network this is a high 
utilisation rate which may be attributed to QNX’s lightweight protocol and few collisions due 
to the controlled manner in which the tests where executed.  This figure is, in fact, 0.1 
Mbytes/sec lower than the manufacturer’s own performance data for a 20 Kbyte message and 
is almost certainly due to the aforementioned problem. 

6.4.3.2 TCP/IP 

The local message passing throughput for QNX TCP/IP is on the same scale as that of QNX 
IPC network throughput.  Reality, however, matches the top QNX message passing 
performance (Figure 6.21).  A meaningful value for the network throughput between these 
two machines could not be obtained because they are located two miles apart and are 
separated by two Ethernet LANs, a large FDDI MAN and many routers.  The traffic on these 
networks is generated by machines scattered throughout the university. 
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Figure 6.22  PML message reception test for TCP/IP on Reality with TIME-WAIT 

build-up. 

6.4.4 TCP/IP Performance 

The way that TCP is used by PML has highlighted a problem with this protocol.  A 
connection passes through various states during its lifetime, the last of which is TIME-WAIT.  
The connection spends long enough in this state to ensure that the remote end has received the 
acknowledgement of the connection termination request and that all segment4 duplicates have 
expired (Postel, 1981a).  This period is twice the Maximum Segment Lifetime (MSL) which 
is the time a TCP segment can exist in the internetwork system.  MSL has been arbitrarily 

                                                 

4 The user message data is broken into segments by the TCP when sent along a connection. 
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defined as 2 minutes although, as noted by Jacobson et al. (1992), TIME-WAIT has more to 
do with the round-trip time for the connection than anything else.  Regardless, if TIME-WAIT 
is not long enough it is possible for old duplicates to infect a new connection (Braden, 1992). 

Jacobson et al. have noted that this state could cause an indirect performance problem if an 
application repeatedly closes one connection and opens another at a very high frequency.  The 
current limit of available TCP ports on any host is 216.  PML establishes a connection every 
time a message is sent, consequently there is a rapid build-up of connections in the TIME-
WAIT state.  For simulations with many entities this can soon produce thousands of 
connections in the time-out phase.  The results shown in Figure 6.18 were obtained by 
ensuring that the benchmark for each message size started when there were no connections 
still timing out.  Figure 6.22 shows what happens if connections are made with others still in 
time-out.  When the message size is small the benchmark program has a short execution but 
creates a lot of connections.  Up until around 8 Kbytes this happens at a rate faster than time-
outs occur, but afterwards more connections time-out than are established which results in 
increased performance.  Under QNX the time-out period is around 30 seconds whilst IRIX 
uses a period around twice that which means that this problem is less pronounced with QNX. 

The only way of improving performance using TCP is to maintain fixed connections between 
key processes but at the price of increased memory and computational overheads on the part 
of the PML (section 5.3.5.3).  Before any decision is taken on whether or not to pursue this 
solution, it would be prudent to investigate the potentially more rewarding problem of a 
reliable datagram service (section 6.6.3). 

6.4.5 PML Summary 

The tasks of sending and receiving messages using two IPC mechanisms have been broken 
down into their constituent parts and analysed.  QNX IPC is very lightweight and 
subsequently outperforms TCP/IP when running under QNX.  The faster processing power 
available to the IRIX implementation shows that this protocol can be used in systems of this 
nature.  However, its performance is rather unpredictable, especially when there is a high 
connection turnover rate.  It would seem, therefore, that TCP/IP is best used for 
communications between nodes in a USS and that an alternative local IPC mechanism is used, 
e.g. based upon shared memory. 

When lightweight threads become readily available it will remove the need for the physically 
separate mailer process and thus the latency introduced by the pipe.  This would improve 
transmission times at the most by between 0.5 ms and 3.5 ms depending on the platform. 

The dramatic difference between message passing performance locally and remotely using 
QNX IPC was shown in Figure 6.13.  This is due to a throughput difference of over 10 times 
and emphasises the importance of reducing to a minimum the amount of data that is sent 
between machines.  In this test case the machines were only located 1 metre from each other, 
if they had been further apart, e.g. separated by routers, the results would have been even 
worse. 



186 

6.5 Simulation Execution 
A UM provides a number of services, most of which serve to progress the simulation as fast 
as possible.  There are a number of factors that dictate performance: 

• Number of entities. 
• Number of managers. 
• Number of monitored components. 
• Frequency of state updates from each entity. 
• Size of the state updates. 

The contributions made by each of these factors is application dependent and can vary quite 
substantially.  For example, an architectural walk-through may have a large number of entities 
but they will be predominantly static and therefore produce few state updates.  On the other 
hand, a highly dynamic simulation such as birds flocking will require constant state 
recalculation.  To fully explore all of the possible options would take a very long time and it is 
unclear what benefits such a varied and non-specific analysis would produce, therefore a more 
pessimistic approach has been taken. 

The core sequence of events for one simulation cycle are as follows: 

1. Send an update notify message to each entity and manager in the system. 

2. Each entity sends its state updates to its local UM. 

3. The UM forwards the state messages to interested managers (and other UMs). 

4. When all state updates have been sent, each entity sends an update complete message 
to its local UM. 

5. When all entities have completed the manager is informed and performs its 
processing. 

6. The UM waits for all managers (and slave UMs) to finish their work before starting 
again at stage 1. 

The factor that will have the most impact on performance is the amount of state updates that 
the UM must handle.  This is directly related to the number of interested components and 
managers in the system.  Through examination of a worst-case scenario, a more insightful and 
stable picture is presented of an architecture that attempts to reduce state flow as much as 
possible. 
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To test the affects of state updates, each node was stressed using increasing numbers of 
entities, each of which modified its state every simulation step and was monitored by an 
increasing number of managers.  The majority of the charts in this section show the duration 
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Pentium: 2 Managers, 1 Monitor
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Figure 6.23  Activity breakdown of a UM when there is one monitored 
component and: a) no managers; b) 1 manager; 
c) 2 managers (Pentium). 
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of the simulation step as it is affected by entity numbers.  Under QNX, the number of entities 
that could be used was limited by the amount of memory available on each node.  The 
memory consumption varied depending on the amount of state information each entity had 
and the number of managers in the simulation that were monitoring that state.  The universe 
definition consisted of one and two properties of integer type for the one and two monitor 
cases respectively.  The sizes of the actual messages used in the tests were very small, 
averaging < 100 bytes.  This is because the state transmissions for the monitored components 
only contained data for one or two integers.  If the simulation protocol overheads can be 
established then the impact that an increased state size would have on performance can be 
extrapolated from the knowledge of its structure (section 6.3) and the increased message sizes 
(section 6.4, section 5.3.3).  The source code for the benchmark manager and entity used in 
the tests can be found in Appendix B. 

Several configurations of a USS were examined: 

1. Single node (all nodes were tested in this configuration). 

2. Two nodes with the Pentium occupying the master node role and Server 
acting as the slave. 

3. Three nodes - the same as configuration 2 but adding Gateway as another 
slave. 

The test results obtained with these configurations are presented below and are followed by an 
examination of the entity migration mechanism. 

6.5.1 Single Node 

When there are no managers in a system, there is not a need for entities to send state updates.  
Consequently only update notification/complete messages are sent to the RM and update 
messages transmitted to each entity.  The idle time shown in Figure 6.23 represents the time 
spent waiting for the entities to inform the UM that they have completed their update.  When a 
special manager is introduced and registers interest in one component (1 monitor) a 
considerable time is spent relaying each entity’s state to it.  This does not, of course, affect the 
amount of time spent idle but does reduce it relative to the total simulation step duration.  
When there are two managers interested in the same component the state must also be sent to 
that manager (Figure 6.23c) which, in this case, means more time is spent relaying state than 
sending the update messages.  The time needed to send the update complete messages 
increases slightly with each manager but is so small that it barely registers on these charts and 
is therefore not shown. 

Figure 6.24 shows equivalent charts where there are two monitored components.  When the 
case with a single manager and two monitors is compared with that of a single manager and 
one monitor, it is clear that the time spent sending state information has doubled.  The same is 
true for the equivalent cases with two managers. 

Two  different perspectives on these results are shown in Figure 6.25: firstly in terms of 
simulation steps per second and, secondly, as a workload relative to the case with no 
managers.  An extra case is presented here, that of three managers and 1 monitor whose 
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performance is matched by the 1 manager, 2 monitors case.  This may be explained by 
examining the messages sent in each circumstance. 

If there are x managers, y monitored components and z entities, then y*z state updates are sent 
by entities to the UM and x*y*z state messages received by managers in total each step.  For 
10 entities this results in 10*1 messages originating from entities and 3*10*1 messages sent to 
managers in the former case - a total of 40 message transmissions.  Applying the equations to 
the latter case, 20 state messages are sent by entities and 20 messages received by the 
manager.  Therefore the same amount of bandwidth (40 state messages) is being used every 
simulation step resulting in the same simulation rate.  The slight performance discrepancy 
visible in the charts can be attributed to the different numbers of update notification/complete 
messages that are sent in each case and the difference in total manager overheads.  In this 
case, state transmissions are the largest performance limiting factor. 

The UM’s idle time is the sum of the total time spent polling for an incoming message 
(because there are still pending internal events in the action queue) and the time spent 
blocked, waiting for a message since there is no other work to do.  Figure 6.26 shows this idle 
period as a percentage of a simulation step (which gets longer as the number of entities 
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Figure 6.24  Activity breakdown of a UM when there are two monitored 
components and: a) 1 manager; b) 2 managers (Pentium). 
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increases).  For small numbers of entities the amount of time spent idle is high but it soon 
settles into a consistent rate as the number of entities and system workload increases.  When 
there is no state to forward, the UM is idle for around 30% of the time, but when there is one 
or more managers in the system, the UM idles approximately 16% of the time. 
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Figure 6.25  Effects of various factors on simulation rate: a) steps per second; b) 
percentage of basic performance (Pentium). 

All of the results presented here are from the tests performed on the Pentium platform.  The 
results for the other platforms have the same relative proportions but indicate a lower 
performance.  Figure 6.27 shows how the baseline UM performance (0 managers, 1 monitor) 
compares with the equivalent configuration on Gateway.  Pentium consistently performs on 
average 3 times faster than Gateway.  Server’s results (not shown) are very similar to that of 
Gateway’s, reflecting their comparative computational power.  Complete charts may be found 
in Appendix E. 
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6.5.2 Two Nodes 

To examine the performance effects of a multi-node USS, the same tests used in the single 
node trials were repeated with the entities distributed amongst the nodes.  The decision of 
whether to allocate an entity to one node or the other was based upon a CPU rating derived 
from the single node results obtained previously.  For example, in the case with no managers, 
the total simulation time for 31 entities on Pentium is ~38 ms, whereas this same time is used 
by 9 entities on Server.  This would give a CPU rating for Pentium of just over 3 times that of 
Server’s, a figure backed up by the CPU performance figures given in Table 6.1. 
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Figure 6.26  Percentage idle time in the UM for each test case 
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Figure 6.27  Comparison of Pentium and Gateway baseline 

performance. 
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In this and subsequent multi-node tests the fastest node was used to run the MUM, the activity 
breakdown of which may be found in Figure 6.28b.  The total simulation time for each node is 
identical since the SUM must wait for the MUM to send it an update notification message 
before it begins each simulation step.  The stepping effect is caused by the changes in entity 
distribution which is measured by the scale on the right hand side - at most 40 entities were 
used system-wide.  The somewhat irregular shape and downward tilt of the steps is a 
reflection of the error in the distribution algorithm.  That is, whereas an optimum distribution 
may require fractional parts of an entity to be distributed in order to keep the workload exactly 
balanced, only whole entities can be moved. 

A large portion of the SUM’s time is actually spent waiting for the MUM to start the next 
simulation step - 14 ms in this case.  The SUM notifies the MUM that it has completed its 
processing for that step and, when all the MUM’s local processes have finished as well, the 
MUM sends the next update complete message.  The waiting time is therefore the sum of two 
message transmission latencies and some processing with the exception of one condition.  It is 
true that a significant portion of the idle time can be attributed to the waiting period.  
However, it is possible for the SUM to wait for a period greater than its idle time if the SUM 
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Figure 6.28  Activity breakdown of UMs in a master-slave configuration 
with no managers: a) SUM (Server); b) MUM (Pentium). 
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should be starved of CPU - a situation that may occur in a heavily loaded simulation.  This 
aside, if the waiting period is subtracted from the simulation time series, the product is the 
equivalent of a single node simulation. 

The same test conditions were used to introduce a manager on the node with the MUM and 
the largest number of entities (Figure 6.29).  This reduces the state updates sent over the 
network to a minimum, i.e. the few entities on the SUM send them to the MUM.  Initially, 
when there are no entities on the slave node, performance is identical to the previous case.  
However, as soon as an entity is allocated to the slave the latency of a state update is incurred.  
This, added to the additional message processing on both nodes significantly increases the 
duration of the simulation step. 
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Figure 6.29  Activity breakdown of UMs in a master-slave configuration 
with 1 manager on the master node: a) SUM (Server); b) 
MUM (Pentium). 
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The effect of placing the manager on the slave node rather than the master node may be seen 
in Figure 6.30.  When there are 40 entities in the system, 31 state updates must be sent across 
the network to the SUM and then forwarded to the manager.  The master’s chart (Figure 
6.30b) shows that the MUM spends most of its time idle, waiting for the slave to process all 
the state information.  The chart is somewhat deceptive, however, since the state time does not 
include the message transmission latency which would put it close to the total simulation time 
and reduce the idle time appropriately.  Introduction of a second manager on the master node 
increases total simulation time by about 100 ms (when using 40 entities) since state 
information is now also sent from slave to master. 

It is clear, therefore, that not only is computational power an important consideration when 
distributing entities5, but also the inter-node communication overheads and the location of 

                                                 

5 Without resource dependencies, such as input devices. 
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Figure 6.30  Activity breakdown of UMs in a master-slave configuration 
with 1 manager on the slave node: a) SUM (Server); b) MUM 
(Pentium). 
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special managers.  With the technology used in this prototype, the network is by far the most 
limiting factor. 

6.5.3 Three Nodes 

Figure 6.31 shows the task durations on three nodes as the simulation is distributed amongst 
them.  In contrast to the equivalent case with two nodes (Figure 6.28), the wait time has risen 
to 20 ms and the overall simulation time by 10 ms.  The MUM’s largest workload has been 
lightened by 8 entities which have been spread between the two SUMs.  The added processing 
time incurred by the extra node has caused the MUM’s increase in simulation and wait times. 

When a manager is added on the master node, the total simulation step time degrades to a 
maximum of 218 ms which is ~40 ms more than the equivalent case with 2 nodes (Figure 
6.29).  However, as Figure 6.32 shows, when the manager is allocated to a slave node, the 
overall system performance is identical to the master-slave case depicted in Figure 6.30.  On 
an individual basis, the first SUM (on Server) is managing one less entity than previously 
which results in slightly lower state management times. 

Unlike the other slave node, the SUM’s waiting period is greater than its idle time, indicating 
that there are other processes on that node that have more urgent need of the CPU.  The idle 
time is smaller because some of the time that the SUM would have spent idling was consumed 
when it was waiting for its next timeslice.  Therefore, despite communication latency 
hindering performance, this three node configuration, with a manager on Server, is as efficient 
as the master-slave case presented in the previous section. 
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Figure 6.31  Activity breakdown of UMs in a master and 2 slaves 
configuration with no managers: a) SUM1 (Server); 
b) SUM2 (Gateway); c) MUM (Pentium). 
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Figure 6.32  Activity breakdown of UMs in a master and 2 slaves configuration 
with a manager on slave node Server: a) SUM1 (Server); 
b) SUM2 (Gateway); c) MUM (Pentium). 
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6.5.4 Entity Migration 

In order to demonstrate entity migration it is necessary to have some way of estimating 
resource usage for each entity.  A measure is not meaningful unless it is measured with 
reference to a fixed time span, i.e. a simulation step.  Since full scheduling and RM 
functionality had not been implemented, only CPU usage was monitored and a suitable step 
duration threshold specified (sections 5.6.5, 5.7.3).  Every step the RM obtained the current 
CPU usage for each process on the node and if the total consumption for all entities exceeded 
the threshold, the most expensive entity was volunteered for migration.  The processor usage 
for the RM and the UM was not included in the total to simplify the charts.  Unlike the entities 
used in the previous tests which had a uniform workload, a random element was programmed 
into each entity which would trigger a gradual increase in CPU usage.  After peaking, this 
consumption would diminish until the entity’s original workload level had been reached.  In 
all cases a total of 40 entities system-wide was used and the threshold was set to 65 ms (with 
the intent that 70 ms would not be reached), beyond which a migration is required.  The MUM 
does not actively load balance in these tests which rely on the passive mechanism triggered by 
a threshold violation. 

Figure 6.33 shows two time series which represent the workloads of the two nodes in the test 
system and the number of entities present on each node (measured using the scale on the 
right).  The peaks on Server are much higher since it has the slower CPU and at the 30th step 
exceeds the threshold resulting in a migration.  The only place for the entity to go is the master 
node (Pentium) which already has an entity on the downward slope of a brief workload 
increase.  Both nodes progress as other entities experience increases in workload.  The double 
peaked feature at step 175 represents the product of the workload of two entities, one 
decreasing, the other increasing.  After 250 steps, the nodes have gone from the same starting 
workload to one that differs by 6 ms.  This does leave room for moving a few entities around 
to improve the load balance if the MUM was actively load balancing. 
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Figure 6.33  Single entity migration within a two node system 

(Pentium/Server). 
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Another example of entity migration on two nodes is shown in Figure 6.34 where two entities 
on Server cause the threshold to be exceeded.  This time an entity also pushes Pentium over 
the edge at step 120 and it is migrated to the slave node. 

The charts in Figure 6.35 show entity migrations occurring in a three node system.  In Figure 
6.35a two migrations are required from Gateway and in both cases the chosen target node is 
Server.  Each time the target node’s CPU also exceeds the threshold, this is due to the fact that 
the state construction performed for each entity directly after migration is more expensive than 
the update function.  For this reason, after a process has been created a four step period6 is 
used to wait for the CPU consumption to settle down to normal levels.  If this hysteresis 
period was not in force then the target node would immediately reject the new entity; an 
action which could be repeated any number of times resulting in the entity bouncing between 
nodes and thus destroying system performance.  The second migration shown in Figure 6.35b 
is from Pentium to Gateway which is clearly a mistake on the part of the load-balancing 
algorithm.  Even after the resting period, CPU consumption is far too high and the entity is 
migrated to Server. 

The workload patterns in these tests were contrived but clearly demonstrate the migration 
mechanism.  It is also clear that more comprehensive information must be used to determine 
the target node in order to avoid misallocations, i.e. a full RM implementation is needed 
(section 5.7).  If some allowance was made for a short burst of CPU when the new entity is 
constructing, it would be possible to remove the current four step settling period. 

                                                 

6 Discovered by empirical means. 
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Figure 6.34  Multiple entity migration within a two node system 

(Pentium/Server). 
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6.5.5 Process Activity 

Currently the time between starting a process and it reaching alive status is more in the region 
of hundreds of milliseconds rather than a few milliseconds.  The most intensive part of this 
time is the creation of the main component process and the mailer.  Following this the 
allocation of the UPID must take place and then the process’ internal initialisation which can 
vary depending on its purpose, i.e. manager or entity.  The actual creation time for a process 
also depends on the number of other processes starting at the same time.  For example, when 
initiating a simulation with 40 entities, all entities and managers may not reach an active state 
until 30 seconds after the UM was started.  Creation of a process on a slave node by the MUM 
is further confounded by the communications latency. 

From the UM’s perspective, the termination of an entity is quicker because the actual process 
termination is faster and the administration overheads are comparable with creation, e.g. 
informing managers of an entity’s death. 

6.5.5.1 Benchmark Entity 

An integral part of the entity process creation/termination is the execution of that entity’s 
specialised construct and destruct functions respectively.  The duration of these functions in 
the entity that was used in all but the migration benchmarks is shown in Figure 6.36.  
Execution of the entity’s destruction routine takes longer than construction because 
constructing a UML component generally takes less time than destructing it (section 6.3.5).  
This does not hold true for Reality in this case, probably because the unoptimised code for 
construction is actually slower than the operations needed to free memory. 

Approximately 38% of the time that an entity uses when updating is spent sending the state 
data to the UM.  The remainder of the time is used by the invocation of the entity’s update 
function prior to the state transmission which, in this case, merely toggles the flag to indicate 
that the component has been modified (although its value is not actually changed). 
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Figure 6.36  Construct/Update/Destruct times for the entity used during 

benchmarking. 
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Measuring the performance of an entity with the current prototype is somewhat problematic 
since the duration of any given task is totally dependent upon scheduling.  As the number of 
entities grows the variances in measured duration become more profound; despite getting the 
same amount of CPU each time.  The best way to measure an entity’s performance, therefore, 
is to restrict the simulation to one entity such that it is unlikely to be interrupted during 
measurement.  Figure 6.37 shows that the entity used in the benchmarking is idle for ~79% of 
the simulation step under QNX, the update taking at the most a few milliseconds.  Again, due 
to poor TCP/IP performance Reality is already idling at 99% along with all the other system 
components.  If the number of entities in the simulation was increased we can expect to see an 
increase in both the time it takes to send a state update and the idle time of the process. 

6.5.5.2 Benchmark Manager 

In the same way that most of the entity’s life is spent idle, so is that of the manager used in the 
tests when there is only one entity in the simulation (Figure 6.38).  The ratio of processing 
state updates to the total step duration will always be small, because a manager only performs 
its work at the end of the step when all entities have sent their updates.  With just one entity 
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Figure 6.37  Average task breakdown for a single entity. 
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Figure 6.38  Activity breakdown for the benchmark manager. 
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the manager is idle around 88% of the time under QNX, but an increase in the number of 
entities will increase the time spent processing updates, the step duration and the idle time. 

6.5.5.3 Resource Manager 

The most intensive activity that the current RM performs is obtaining the CPU usage of each 
process on its node.  The basic overheads specified in Table 6.9 include the cost of monitoring 
itself and the UM; the costs of checking CPU usage for an entity or manager is also given.  
Usage of the PML mailer process is included in the calculated resource ratings.  It is clear that 
this process is quite computationally expensive if performed every simulation step - as it was 
in the migration benchmarks.  However, the current version does not attempt to perform any 
usage predictions that may be used to reduce the frequency with which this monitoring is 
required. 

6.5.6 Simulation Execution Summary 

This section has concentrated on the performance of the USS as a whole.  Each of the test 
platforms, with the exception of Reality, were examined as single node systems.  This 
provided a basis for evaluating performance when they were combined in two and three node 
systems.  Although the same tests were performed on Reality and Gateway using TCP/IP, due 
to the problems with its use, each process spent 99% of their time waiting for messages.  This 
issue is dealt with in section 6.6 which looks at improving the prototype’s performance. 

It was found that the most limiting factor in a distributed configuration was the network 
latency and that it had a substantial impact on performance.  By carefully allocating processes 
to nodes, a three node configuration was shown to produce the same performance as an 
equivalent two node configuration.  However, for the same number of entities this was still 
many times slower than simulating all the entities locally.  This is not a common situation 
since the entities in question did no real work and used little memory.  Given computationally 
more expensive or physically larger entities, distribution becomes a necessity rather than a 
luxury. 

Often entities will consume different amounts of resources at different times which has the net 
result of producing a variable node workload.  By migrating entities from one node to another, 
the available resources may be utilised to the maximum.  To test the migration mechanism, 
multi-node systems were stressed with a number of entities, each with a variable 
computational workload.  Finally, it was shown that it is possible to monitor resource usage 
and move entities in order to keep the system workload relatively evenly balanced. 

Overheads Pentium Server Gateway 
Basic (ms) 5.72 20.85 19.17 
per Process 

(ms) 
0.8 2.705 3.84 

 
Table 6.9  Time penalties incurred when RM monitors CPU usage. 
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6.6 Improving Performance 
Based upon the knowledge gained from the analysis of the prototype presented in this chapter, 
it is clear that there are a number of improvements that can be made. 

6.6.1 Message Elimination 

One of the most limiting aspects of the current implementation is the use of point-to-point 
communications between processes, especially the UM and its entities.  Figure 6.39 indicates 
the percentage performance increase that would be experienced if the update notification 
messages could be sent to all entities simultaneously rather than sequentially, i.e. an inter-
process multicast.  This was calculated by replacing the usual linear increase of time for the 
update task with the time taken to update a single entity; all other overheads were left 
untouched.  The figure shows that a multicast method would produce greater performance 
benefits as more entities are added to the system.  If the chart was extended by testing the 
method with more entities the performance increase would remain about 150%.  The overall 
effect is not as dramatic with those configurations that transmit more state information.  Also, 
the impact is diminished because each entity must still inform the UM that it has completed 
updating every simulation step. 

However, use of both the update notification and complete messages within a node is actually 
mimicking the behaviour of a deadline scheduler.  When the scheduler triggers the entity to 
start processing, this may be taken as a cue to begin updating.  After sending any state updates 
that were necessary, the entity would reach its deadline and this would indicate to the UM that 
the entity had finished updating.  Therefore the actions that are currently performed explicitly 
with messages would be replicated implicitly by the nature of the scheduler.  The greater the 
number of entities, the more time saved each step by eliminating the update complete message 
(Figure 6.40). 
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Figure 6.39  Potential performance increases with a multicast update (Pentium). 
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6.6.2 Shared-Memory IPC 

QNX IPC essentially copies a block of memory (the message) from one process’ address 
space into another, therefore implementation of a shared memory based IPC protocol is 
unlikely to show much improvement.  This is not the case when compared against the burden 
of using TCP/IP for local communications.  The same simulation combinations executed on 
Gateway when using QNX IPC are a lot faster than when using TCP/IP on the same machine, 
e.g. 24 times for 1 manager/1 monitor, and 34 times for 2 managers/1 monitor.  The idle rates 
of processes using TCP/IP on both Reality and Gateway are very similar (~99%) and a shared-
memory IPC system will likely show similar performance to that of QNX IPC.  Given this, it 
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Figure 6.40  Increases in simulation rate when eliminating both update control 

messages: 0 Managers, 1 Monitor (Pentium). 
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is not unreasonable to use this speed-up factor as a rough indicator of the performance 
increase we could expect to see on Reality if shared-memory IPC was adopted.  Figure 6.41 
presents a comparison between the predicted performance and that of the fastest QNX node 
using the native IPC.  Saying any more than that the two machines now present comparable 
performance would be unwise given the uncertainty of the estimation procedure used. 

6.6.3 Multicast 

Of course, TCP/IP is still the only available reliable method for communicating between 
heterogeneous machines on a network.  This is also an area that could be optimised through 
the adoption of a reliable multicast protocol.  A MUM could multicast update notification 
messages to its slaves and its use would also open up the possibility of state multicasts.  The 
Single Connection Emulation sublayer presented by Talpade and Ammar (1995) is designed 
to sit between an existing reliable transport protocol and the network layer providing the 
unreliable multicast capabilities.  The presented implementation used TCP as the transport 
protocol and IP as the network layer.  The existing TCP API is utilised as usual but is 
supplemented by a direct interface to the SCE layer in order to control the multicast-specific 
variables of the multicast connections.  One advantage of this approach is that it is possible to 
modify the semantics of multicast connections by changing the SCE without affecting the 
transport protocol.  Unfortunately, because TCP is used, this solution also requires that prior 
to transmission a connection is established from the source of the multicast to the set of 
destination nodes.  After transmission has concluded the connection must be closed.  
Consequently, in order to make use of this solution, the modifications to PML operation 
discussed in section 5.3.5.3 would have to be made.  Nevertheless, of the solutions to 
providing a reliable multicast service that the author has seen, this seems like the most 
promising.  In addition, should a more suitable reliable transport protocol come to light, SCE 
could be adapted for use with it. 

The biggest savings that can be made are with the transmission of state information which is 
the most common and often the largest type of message that is sent.  Each inter-process and 
inter-node communication pathway has a unique monitor ID associated with every component 
whose state is transmitted along it.  This method works well for point-to-point links where the 
monitor ID is modified as the state is forwarded to all interested parties, but precludes the use 
of multicast in any form7.  A possible solution to this problem would be to replace the monitor 
ID by the component’s absolute name within the UML definition.  The implications of this 
change would be an increase in message size (the absolute name could be potentially very 
long), and an increase in the amount of time needed to identify the component in each 
process’ internal data structures prior to unpacking. 

The adoption of multicast communications between machines would remove some of the 
burden from the master USS; it would also use less bandwidth.  Consider a system with a 
master and two slave nodes: currently state information from a slave is sent to the master 
which forwards it to the other slave (if needed).  With a multicast only one message would be 
required which would reach both nodes simultaneously.  This cuts the required bandwidth by 

                                                 

7 Multicast between processes on a node may be simulated through a shared-memory buffer that is monitored by 
all processes. 
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half and as message sizes and the number of slaves increases, so do the savings.  In addition, it 
is possible that the component dependency list could be used to form a multicast group for 
those machines interested in its state updates.  Although this would not reduce bandwidth 
consumption, it would ensure that any node not interested in the multicast did not waste time 
processing the message.  Using a shared-memory emulation of multicasting, such gains as 
these could also be experienced by processes on the same node. 

The application of this technique promises to yield significant performance increases but the 
computational cost of supporting it is uncertain.  It is, however, an area worthy of further 
investigation. 

6.6.4 Accounting for Latency 

Section 6.5.2 presented a situation where the slave node spent a considerable amount of time 
waiting for the next simulation step to begin.  Although it is not possible to eliminate the time 
the SUM spends waiting, its counterpart in the MUM may be removed if the slave’s workload 
is reduced such that it finishes its work earlier.  Figure 6.42 shows the current situation on the 
left hand side where the MUM (with an identical workload) has to wait for the SUM to 
respond before it begins the next simulation step.  If the SUM’s workload is reduced by 14 ms 
from 30 to 16 ms then the MUM no longer has to wait, thus increasing the simulation rate.  In 
the case presented in Figure 6.28 this technique would effectively require the reduction of the 
SUM’s (and the system’s) workload by 5 entities.  Thus, when the MUM is managing 31 
entities, the SUM would be coordinating 4. 

6.6.5 Increased Bandwidth 

Increasing bandwidth would not obviate the need for the technique presented in the previous 
section, but it is the simplest way of improving performance.  The results presented in this 
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Figure 6.42  Accounting for message latency reduces simulation cycle duration. 
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chapter were based upon a dedicated Ethernet link with a theoretical speed limit of 10 Mbps.  
Recently, networking mediums such as FDDI and Fast Ethernet, capable of operating at 100 
Mbps, have become widely available.  Figure 6.43 shows the impact that using a 100 Mbps 
link between machines would have on messages sent between Pentium and Server.  This 
prediction is based upon three assumptions: firstly, that the network throughput would 
experience a seven-fold improvement8; secondly, the bus can cope with the increase in 
required data transfer rate9; thirdly, that the same level of utilisation QNX currently achieves 
would be increased by the same degree (section 0).  Whereas it took between 2 and 25 ms to 
send a message between nodes, this now occurs in 0.3 to 3.7 ms.  The result is that latency is 
now lower than the PML overheads which now account for approximately 55-65% of the total 
send time. 

The impact this would have on the master-slave benchmarks presented is difficult to estimate 
due to the unknown scheduling factor, but all messages sent were less than 1K in size.  This 
would mean that a few milliseconds would be saved on each transmission.  Considering the 
case presented in Figure 6.29 this would probably result in a latency reduction of around 23 
ms (1 update complete + 1 update notify + 9 state updates).  Currently all processes idle 
enough to cope with this decrease in transmission time but consideration of a more complex 
case would require further investigation. 

6.7 Summary 
This chapter has presented an evaluation of a prototype USS concentrating on the modeling 
language, the characteristics of the message passing systems and general simulation 

                                                 

8 This assumption is based upon manufacturer’s data that states a data transfer rate of 7.4 Mbytes/sec for 
100BaseT Fast Ethernet as opposed to 0.9 Mbytes/sec for 10BaseT. 

9 An ISA bus cannot match the demands of a 100 Mbps network, whereas a PCI bus will. 
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performance.  A number of points were made in the section summaries throughout this 
chapter but there are a few observations and aspects worth emphasising. 

6.7.1 Living with TCP/IP 

Although TCP provides a reliable connection, it uses an unreliable medium (IP).  Positive 
acknowledgement is used to ensure that packets arrive at their destination - failure to do so 
results in retransmission.  The greater the distance between the connection’s two endpoints 
(and the more routers, etc.) the longer it will take to determine whether a packet has been 
successively received.  The use of a hierarchy to connect nodes (and processes) in a USS and a 
network of USSs provides a more robust communications mechanism than requiring a single 
process to communicate with a server over some large distance.  Should a link fail then this 
can be detected far quicker because the distance between nodes is far less.  Resolution of this 
problem can be handled by the node that detected the problem or the sender can be informed 
and action taken accordingly. 

This information also supplements the determination of whether the destination node is still 
alive.  Although routers report when they cannot deliver any given message using the Internet 
Control Message Protocol (ICMP - Postel, 1981b), they may not be able to detect all such 
errors.  The ability to detect errors is dependent upon the hardware protocol.  For example, 
Ethernet does not acknowledge transmission of packets meaning that a node can be 
disconnected without affecting the rest of the network.  Unfortunately, this also means that 
with Ethernet it is not possible to detect power failure, etc. 

All of the message size tests are dependent upon the Maximum Transfer Unit (MTU) which 
may be different for all network media.  For example, Ethernet has an MTU of ~1500 octets10, 
whilst FDDI has an MTU of 4770 octets and ATM uses 9180 octets11 (Laubach, 1994).  If a 
message is transmitted greater than the MTU in size then it is fragmented.  This fragmentation 
and corresponding reassembly at the destination inevitably incurs some overhead.  In addition, 
the more fragments the greater the chance that one will be lost and the message will be 
discarded. 

TCP/IP has its faults but it is the backbone protocol of the Internet and, in one form or 
another, it is here to stay.  It would seem prudent, therefore, to find some way of working with 
it. 

The Hyper Text Transfer Protocol (HTTP) is used by the World Wide Web (WWW) to 
retrieve distributed objects.  HTTP uses TCP as the transport layer enabling WWW servers 
and clients to communicate.  Every time a request is sent from client to server a connection is 
established, e.g. loading a new page, new icon/in-line image, etc.  As the author discovered 
when evaluating the performance of the PML, this is an inefficient way of using TCP which is 
designed to handle data transfer over connections established for long periods of time, e.g. file 
transfer.  Spero (1996) presents a detailed summary of the problems with the way in which 
                                                 

10 Some implementations vary from the Ethernet specification. 

11 ATM could handle 64K octets but has been limited to 9180 so that it is compatible with the older Switched 
Megabit Data Service (SMDS) technology (Piscitello and Lawrence, 1991). 
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TCP is used by HTTP, including TCP’s TIME-WAIT state (section 6.4.4).  A proposed 
solution to these problems is the incorporation of a simple multiplexing protocol to be used 
with HTTP, enabling multiple requests to be dealt with on a single connection (Gettys, 1996). 

The advantages of shared memory IPC over TCP as a local IPC mechanism have already been 
discussed.  However, permanent connections could be established between key components 
on each node using TCP/IP, for example MUM to all SUMs and between systems, which are 
the links that need to be optimised the most.  The price for this change is increased complexity 
within the PML which now has to handle two different types of connection.  Nevertheless, 
applying TCP/IP in this manner would be more efficient than the way it is used now and is the 
equivalent solution to the multiplexing protocol mentioned earlier. 

6.7.2 Resource Management 

The amount of memory used by each program’s execution image alone is larger than 
necessary because shared libraries could not be used.  Currently each entity process under 
QNX requires approximately 256 Kbytes of memory (section 6.2.3); with shared libraries this 
could be reduced to the order of 6 Kbytes.  Around 330 Kbytes of USS shared libraries would 
be shared amongst all processes in addition to ~55 Kbytes of system libraries. 

The memory needed to store the UML definition and its instance data is quite large.  
Unfortunately this is the price that must be paid in order to effect modifications at run-time 
with as little disruption as possible.  There is a relationship between definition structure and 
the amount of resources that any given operation consumes.  This type of information could 
be used by the interpreter to predict how long an operation will take or how much memory a 
definition will require.  Accurately predicting resource consumption aids the RM in its work. 

The total simulation workload is unlikely to remain the same throughout the simulation and 
local fluctuations are to be expected.  The migration mechanism presented is currently in a 
primitive state but adequately demonstrates the benefits such a technique can have on system 
loading.  More resource utilisation information is needed so that better decisions can be made 
about a node’s loading and predictions of an entity’s workload. 

6.7.3 Scaleability 

A detailed analysis of the PML proved that communicating between machines is many times 
slower than between processes on the same node.  An unexpected problem with TCP/IP was 
encountered which, combined with its use by the PML, made using it as a local IPC 
mechanism impractical.  Examination of the PML provided a basis for evaluating system 
performance as a whole and also enabled predictions to be made by modifying key variables 
such as bandwidth. 

A number of simulations were run on single node systems, each one using a different number 
of managers and an increasing number of entities.  The results showed that, in general, more 
time is spent processing state information that any other type of data.  Also, the UM spends a 
considerable amount of time idle waiting for other processes to complete their work.  This 
analysis of single node systems provided a basis for evaluating multi-node configurations. 
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6.7.3.1 Standalone USS Performance 

Performance in a USS is dictated by a number of factors (in no particular order): 

1. Number of special managers. 
2. Location of the special managers/entity processes. 
3. Number of entity processes possessing monitored state. 
4. Size of the state information monitored by those managers. 
5. Transmission frequency of the monitored state. 
6. Number of USNs in the USS. 
7. Latency/bandwidth of the connections between the nodes. 

The more managers that monitor any given part of the whole VE’s state, the more state 
information that must be sent between processes, i.e. the more bandwidth consumed.  The best 
case is if the manager in question is interested in just the state held by entities on its local 
node: where the available bandwidth is highest and the latency lowest.  The more common 
case is when a manager is interested in state held by entities that are spread on many nodes 
within the system.  In this case the size of the state information that must be sent to the 
manager(s) becomes even more important - the more state information or the smaller the 
link’s bandwidth, the lower the performance.  If the manager is on a slave node then an entity 
on another slave node will send its state update to its local UM, which forwards it to the 
MUM, then onto the manager’s local UM and finally to the manager itself.  If the manager is 
on the master node then this procedure takes one stage less.  If the entity is on the master node 
and the manager is on a slave node then the procedure is also one step quicker. 

The amount of state data sent is dependent upon the frequency of changes to that state made 
by each entity.  It is not possible to calculate in advance what this frequency will be since it is 
semantic specific.  A well designed manager will monitor information that changes on a 
periodic basis and make use of constraint functions.  These can be used to filter, at source, the 
state data before it is sent to the manager consuming valuable bandwidth and processing time. 

Although the number of nodes in a system and the speed of their communications links plays 
an important part in performance from a state management perspective, they are also relevant 
when considering synchronisation.  At the beginning of each simulation step the master node 
synchronises all the slave nodes through an exchange of messages.  Using unicast, there is a 
linear relationship between the time taken to perform this procedure and the number of nodes 
in the system.  Again, this could be partially rectified by replacing the initial master-to-slave 
synchronisation control unicast with a multicast. 

As the reader can see from this list of confounding factors, it is difficult to build a clear 
picture as to exactly how performance will scale as more managers and/or entities are added to 
the system.  What is clear from the results presented in this chapter, is that performance will 
fall sharply initially, and then gradually asymptote as more processes are added.  However, 
this could be dramatically scaled down if multicast was used to send state updates to 
interested managers (Figure 6.39).  Not only would bandwidth be saved but the burden on the 
MUM as a router would be reduced significantly, thus removing what would become a major 
bottleneck in the system as state information flow increases. 



212 

6.7.3.2 Networked USS Performance 

Performance between USSs is also dictated in a number of ways: 

1. Total number of users across all systems. 
2. Type of information sent between systems. 
3. Method used by the user’s shadow process to approximate behaviour. 
4. Number of networked systems executing same simulation. 

The amount of traffic on the inter-system links is mainly due to two related factors.  Firstly, 
the more users participating in a given simulation, the more user-specific data that must be 
sent to all systems executing that simulation.  Secondly, the amount of information is 
dependent upon the type of data being transmitted.  For example, low-order information such 
as position and velocity will be sent almost continuously whereas high-order information 
indicating changes in behaviour will be sent less frequently.  It would seem therefore that the 
latter would guarantee better performance.  Unfortunately this requires a more complex 
shadow process to interpret the information and do something sensible with it.  Balancing the 
amount of data and the amount of computation a shadow requires to process it is the key to 
good performance. 

With the current hierarchical structuring of systems performance, there will be a non-linear 
degradation in performance as the number of systems increases.  Not only will the effort 
expended by the MUM in each system be increased due to routing but the time taken to ensure 
every system gets the transmitted message will also grow.  Again, multicast will relieve this 
problem, allowing a single transmission to reach each system running the simulation.  Using 
this technique, performance should be mainly affected by the number of users in the system, 
not the transport mechanism. 

6.7.4 Distribution at a Price 

When the author started this work, distribution seemed like the answer to all the problems 
regarding limited resources and multi-user interaction.  It is now clear that there is a distinct 
price to pay for distribution and it should only be considered if the advantages outweigh the 
disadvantages. 

Communications latency is presently the largest factor responsible for inhibiting progress of a 
distributed simulation.  In simple simulations there is little to be gained by spreading the load 
throughout a network of machines because more time will be spent communicating than 
actually performing simulation work.  Only when the simulations become more expensive is 
this cost offset enough to prove beneficial.  The advantages of distribution include the 
possibility of multiple users.  It should be noted, however, that the desire to include more 
users in a VE may well degrade performance due to the problem just mentioned.  At the other 
end of the scale, if the presence of many users generates too much state information flow, then 
it will not matter how much computation there is to perform. 
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6.7.5 Conclusions 

The prototype is not perfect and several enhancements that would improve performance have 
already been discussed.  Some, such as the deadline scheduler, require more specialised 
operating systems whilst others, such as multicast, need a combination of hardware and 
software protocols that is not currently readily available.  Fortunately, a shared memory IPC 
mechanism could be implemented now, as could the technique used to account for 
transmission latency. 

The balance between CPU performance, bus speed, memory capacity and network bandwidth 
(amongst others) is an important one; a well configured system will take all of these into 
account.  For example, if only network bandwidth is increased then eventually there will come 
a time when the bus may become the bottleneck, or the CPU is incapable of processing data 
fast enough for transmission.  The relationship between these factors is influenced by the 
software system.  Unless analysis of the type presented in this chapter is performed, i.e. at the 
component and system levels, systems engineers will not be able to deliver the technology 
capable of supporting distributed VE systems. 
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