
213

7. Conclusion

214

Chapter 7

Conclusion

“In my end is my beginning.”

Mary Stuart, Queen of Scotland

The final chapter of this thesis begins with a brief reminder of the work presented in the
preceding chapters. Following this, the USS architecture is classified using the taxonomy
presented earlier on and its most important features are highlighted. A few specific research
areas that are relevant to distributed VE systems are also described, indicating the benefits
they may provide. Finally, the current trendy topics in the area of distributed VE systems are
related to the work presented here.

7.1 Thesis Review
The introduction to this thesis gave a brief introduction to the area of VR, highlighted the
emphasis on interactivity, and described the two cornerstones of a system that would support
this: real-time and consistency. The services of a real-time system enable the generation of
real-time displays which are justified in chapter 3. Consistency reflects the need to ensure that
everything in the VE appears in the right place at the right time, to one or more users
simultaneously.

Chapter 2 began with an examination of the issues involved in the design of a system capable
of distributing VEs. The solutions used by existing systems that have attempted to tackle this
complex area vary quite substantially. In order to provide a way of comparing such systems a
classification scheme was derived which strove to categorise each system on the basis of: real-
time support, communications, data management, computation management, VE modeling,
time management, fault tolerance and security. There is an intricate web of inter-
dependencies connecting many of these categories which often makes examination of one
difficult without referring to another, e.g. data and computation management working together
to provide consistency. However, the author believes that this taxonomy is a good starting
point and was applied to the seven distinct systems that were reviewed. The results of
applying the classification scheme proposed in this thesis to the USS are presented later in
section 7.2.

215

Chapter 3 questions the current way that VEs are modeled and highlights a particular aspect of
human-computer interaction that is not addressed in most systems. To better understand how
to model a VE, the structure of the natural environment was examined and several taxonomies
of varying levels of detail were presented. Based on these attempts to classify natural and
virtual environments, the author presented a suitable definition and abstract model for a VE.
Essentially, current modeling practices take one perspective on the thing being modeled and
concentrate on one medium, usually visuals. With this approach the model will function
adequately until such time as another medium is considered, e.g. sound, or a different
perspective has to be taken, e.g. infra-red instead of natural light. At this point the model will
falter because some (or all) of the information that is now needed to simulate this
perspective/medium will be missing. If a more ecological approach had been taken to
modeling, then sufficient information would have been modeled initially such that similar
changes would not require extra work. There are obviously practical limits to the amount of
information that can be modeled at one time and these are discussed with relation to the
modeling process as a whole. When looking at the design process it was noted that an
integrated modeling and simulation system would enable development, experimentation and
evolution. The ability to develop a simulation on-line provides much greater flexibility than is
available with current systems and also a reduced development time cycle. These features
will hopefully also encourage the VE designer to explore the different forms the model can
take. Finally, evolution referred to the ability of each entity in the simulation to make changes
to the model and create other entities.

Related to the issue of modeling a VE is its display. The purpose of a display is to take raw
information from the environment, process it, interpret its meaning, and then present it in a
form that enables the viewer to extract some meaning. A good display will permit the natural
processing of the presented information and allow the participant to concentrate on the task at
hand. A bad display will require the participant to expend extra effort and will probably
degrade their performance. The second part of chapter 3 describes how variable-rate visual
displays cause problems when judging time to contact with a virtual object. The example
given is catching a virtual ball, but it could equally be braking in a virtual car to avoid a
collision on a virtual motorway, or attempting to perform in-flight refuelling in a flight
simulator. Essentially any task that requires the user to make judgements based on velocity
and acceleration/deceleration can be affected if a constant-rate display is not used. Two
methods of achieving such a display were presented: one requires special OS support, the
other will work on normal operating systems.

Chapter 4 starts with the presentation of the requirements for a USS, a set of realistic design
restrictions, and a little more detail on key aspects, e.g. distributed real-time systems. Having
settled on a modeling process using specialisation through inheritance in chapter 2, a suitable
representation of the VE abstract model is presented. Since the abstract model is derived from
our universe, an appropriate naming scheme was adopted based around “universal”. A
number of existing languages were examined before it was decided that none of them satisfied
(or could be modified to satisfy) the requirements of a VE modeling language. The proposed
language, UML, can be broken into two halves: data definition and instruction code. The
structure of UML is important since it is an integral part of the USS architecture. Although
UML code can be passed between USS processes, it could have any syntax or grammar. The
data definition, however, influenced the mechanisms used to manage state within the
architecture and vice versa. The design is dissected in section 7.2.

216

After outlining the USS design, a prototype implementation was described in chapter 5. Key
to the system is a real-time distributed deadline scheduler which is difficult to implement with
current hardware/software technology. The author had, prior to USS development,
implemented a far less complex worst-case scheduler at the application level to help enforce a
constant-rate graphical display. It was the author’s experience that, even with a special-
purpose operating system, use of such a scheduler was problematic due to the difficulty in
accommodating actions beyond the application’s control, e.g. network and disk access.
Therefore the architecture’s key elements were implemented without the scheduling
functionality. The PML is used to provide a common interface to the various OS services that
the USS processes require - mainly message passing. Following details of the PML, the
structure of the UML interpreter was described, including a detailed explanation of the
complex data structure used to hold the model description and its instance data. The
remainder of the chapter dealt with each major software component in turn, starting with the
UM, and highlighted key aspects of their implementation.

The implementation was evaluated in chapter 6 which started with a characterisation of the
platforms used for testing. This was followed by a detailed examination of the UML
interpreter, its performance and memory requirements. The impact inter-process
communications have on performance was analysed in the section dealing with the PML. The
rest of the chapter examined the simulation performance of the system as a whole, in single
node, two node and three node configurations. In addition the process migration mechanism
was demonstrated using the two and three node configurations. A number of enhancements
that could be made to the design and implementation in order to improve the prototype’s
performance were also described. The chapter concluded with a discussion of the factors
affecting the performance of the prototype and a number of general observations.

7.2 USS Classification
Table 7.1 replicates part of Table 2.3 in order to provide some basis for comparison of USS’s
features. USS is the only distributed VE system architecture out of those reviewed that has
pursued the goal of interactivity through real-time displays and the application of real-time
systems techniques.

7.2.1 Communications

Currently only point-to-point communications are used but there is scope for the utilisation of
reliable multicast once it becomes available. Although USS was not designed with a specific
bandwidth in mind, it is clear from the results presented in chapter 6 that anything below 10
Mbps would be unsatisfactory due to the associated latencies. Two communication structures
have been adopted by USS. Firstly, a client/server paradigm is used between processes within
the same node, but the communication paths are heavily influenced by a hierarchical
organisation, e.g. messages to other nodes are routed through the UM. Secondly,
communication between nodes is strictly hierarchical.

217

7.2.2 Data and Computation Management

The method of monitoring state updates which are only sent by the owner when changes are
made can be classified as passive partial replication. This technique is used between USS
nodes but all data is replicated in each system, with only system-unique data being transmitted
between them. Localisation, which also has implications for computation management, is
supported through the use of constraint functions in the UM. Complementing the choices of
data management is the complete distribution of computation between processes within a
system. Rather than distribute computation between systems, it is completely replicated in
every system. Process migration is supported, thus increasing the scheduling options and
hopefully efficiency. As discussed in section 4.5.4.10, arguments can be made for the use of

Feature dVS AVIARY USS
Real-time
Constraints

Supported? No No Yes

Communications Transport
Mechanism(s)

Point-to-Point Point-to-Point
and Multicast

Point-to-Point
(+ Reliable Multicast?)

 Targeted
Bandwidth

10 Mbps + 10 Mbps + 10 Mbps+

 Structure(s) Client/Server Client/Server Client/Server &
Hierarchical

Data
Management

Organisation Passive Partial
Replication

Complete
Distribution

Passive Partial
Replication

(within USS) &
Total Replication
(between systems)

 Localisation
Support?

No Yes Yes

Computation
Management

Organisation Partial
Distribution

Complete
Distribution

Complete Distribution
(within USS) &

Complete Replication
(between systems)

 Behaviour Level 0 0 0, 1, 2
VE Modeling Environment

Management
Parallel Multiple Multiple

 User Support Multiple,
Decoupled with
Representation

Multiple,
Decoupled

Multiple,
Integrated or
Decoupled

Time
Management

Progression
Method

None Implicit Implicit
(within USS) &

Explicit
(between systems)

 Node
Synchronisation

None None NTP
(SPS Idealised)

Fault Tolerance Degree 0 0 2 through 4
Security Method(s)

Employed
None Object Interface

Level
Basic Access Control

Table 7.1 Comparison of distributed VE feature classifications including USS.

218

all 3 levels of behaviour distribution. Most of the systems reviewed supported the
transmission of an entity’s state variables, whether continuously, by request, or only when a
change of value has occurred. Level 1 distribution (commonly called dead-reckoning) was
used exclusively by WAVES and DIS. Despite the potential display side-effects of this
technique it is quite effective in reducing bandwidth consumption. If necessary, it is possible
to implement dead-reckoning with USS on top of the basic state management system.

7.2.2.1 Dead-Reckoning

Given an entity whose definition consists of a position vector and a velocity vector, a manager
would monitor the velocity vector rather than the position. This would mean that rather than
sending continuous position updates as the entity moved, the manager could extrapolate a
position from the velocity vector. If velocity was constantly changing then this technique
would give little improvement. However, if two velocity vectors were maintained by the
entity then even this can be accommodated. One vector would be used internally for the
entity’s own calculations and the second vector would be its exported property - monitored by
the manager. The exported version would fuel its own approximated behaviour model (the
same as the manager’s) and updated only when its approximated behaviour differed
significantly from its actual behaviour. This now replicates the same functionality that
conventional dead-reckoning systems have.

7.2.2.2 High-Level Behaviour

Level 2 behaviour distribution can also be supported through another basic USS mechanism,
that of remote UML function invocation. A number of functions would be defined to achieve
some high-level tasks, such as driving around a corner, and then executed at the appropriate
time. This technique can be used to control a user’s shadow on a remote system (section
7.4.5).

7.2.3 VE Modeling

Multiple universes may be simulated simultaneously by a USS, although the prototype only
supports one. There can be many users interacting in a simulation and within a system there is
no special distinction made between an entity representing a user and an automated entity.
Input devices are sampled from within the user entity, however, whether this is mapped into a
direct device access or through a server process is an implementation decision.

7.2.4 Time Management

Both forms of time management are utilised by USS. Explicit time progression is almost a
by-product when a distributed deadline scheduler is used to coordinate the simulation. To
ensure synchronicity between individual systems, an implicit progression model is used so
that behavioural information generated by one system is valid in another.

219

7.2.5 Fault Tolerance

Fault tolerance is an expensive goal, best achieved by duplicating hardware and software
components. However, there are a number of features of USS that lend themselves to at least
a little reliability and recoverability - at a cost. The state held by a manager or entity may be
reconstituted gradually through state updates or explicitly by request to the UM. If not enough
information is held within a system to reconstruct the process, then it may be obtained from
another system which is also simulating the same universe. If there is a problem with a
particular node then entities can be migrated to another node. Alternatively, their state can be
obtained from another system and started locally on another node.

7.2.6 Security

Security is another feature that can generally only be realised at a computational price. This
aspect was not fully investigated because security measures can often hinder evaluation of
other system features. However, there is basic access control support in that a process may
locate the originator of any service request and the UML interpreter can limit access to OS
services.

7.3 Important Features
The proposed architecture deals with a number of issues but there are a few aspects which are
either worthy of note or unique to this solution.

7.3.1 Real-Time

A distributed real-time system forms the basis upon which the USS architecture is built. In
order for the participants to efficiently interact with the environment and each other, it is
important that they are provided with real-time displays. To keep in step with the constant
update rate of the displays, it is necessary to ensure that all entities are also updated at a
constant rate. Failure to meet this hard deadline is a system failure. If all updates are
guaranteed to happen within a given time frame it is possible to start accommodating for lags
in the system by performing predictive calculations. When the simulation is distributed over a
number of machines the network must also have deterministic properties if it is not to upset
the processing deadlines. Predictability at this level also presents the opportunity to
compensate for communications latency. It is likely, however, that determinism will be
realised at the cost of performance and the under-utilisation of resources - a matter of concern
to the designers of ATM switches where guaranteed bandwidth and bounded latency are
primary requirements.

7.3.2 Scaleability

All of the distributed VE systems reviewed chose one mechanism for handling computation
and one mechanism for handling data within the system. It is not possible to scale the system
up or down without affecting the performance of such mechanisms. DIS, for example,
replicates the data making up the VE on each node and partially replicates computation on

220

each node through the use of dead-reckoning algorithms. Therefore if the VE has 10,000
entities, then each node must handle data and computation for each entity. Initially, when the
number of entities in the simulation was in their low hundreds, this was not a problem. It was
only when larger simulations were attempted that the idea of using localisation to reduce the
workload of each node was suggested (section 2.3.3.1). In a similar vein, AVIARY uses a
system model that works well when on a tightly-coupled network of workstations but will
require some modifications if it is to support larger simulations. A similar story can be told
for the other systems.

Adapting a design after the fact is always undesirable, because the end result is less attractive
than it could have been if the design had taken a broader perspective to begin with. The
architecture presented in this thesis is by no means perfect, but it does attempt to define a
system that may be scaled from tightly-coupled multiprocessors through to large scale
networking of machines over large geographical distances.

The decision of when to network a machine as a USN in a larger USS or as a separate system
requires further investigation. It is clear, though, that there comes a point when the network
bandwidth between two clusters of machines can no longer handle the amount of traffic
generated within a system. In order for users on either end of this connection to participate in
the same simulation, two systems must be configured from these nodes that are capable of
replicating each other’s simulation workload.

7.3.3 Bandwidth Reduction

A great deal of effort has gone into reducing the amount of bandwidth used between processes
and nodes, thus increasing the number of nodes it is practical to have in a system. Only those
portions of an entity’s state information that are of interest to managers are transmitted and
only when a change in this information has occurred. Managers may also specify constraint
functions that are applied to the state data the entities transmit to their UM. These functions
can filter out unwanted data before it is sent to managers resulting in unnecessary computation
and, more importantly, sent over lower bandwidth communication links to other nodes.
Further savings could be made if a multicast protocol was available.

7.3.4 Modeling

The premise with which the process of VE modeling was approached in this thesis was that
the development of VEs should not be constrained by past technological standards.

The need to model a VE is relatively new and is presently more of an art than a scientific
practice. It is an exploratory process that often requires many changes before the model has
reached a satisfactory state. UML is integrated into the USS architecture in such a way that
the initial VE model can be developed off-line and then modified on-line. Any changes are
reflected instantaneously throughout the simulation. For example, a function describing the
behaviour of an entity may be replaced by sending that entity a new UML definition for the
relevant function(s). It is also possible to add or delete parts of the UML definition without
affecting the existing state information for the rest of the definition.

221

The ability to build upon existing VE models is a powerful tool which can save time and cut
development costs. Establishing a set of base environments with well defined core behaviours
would ensure that VEs built by different designers would allow entities to move from one VE
to another with reasonable ease. Although the movement of entities between universes was
not implemented in the prototype, the ability to preserve those parts of an entity’s state that are
common in the source and destination universes is already in place.

Different perspectives on the same environment may be supported through the use of
managers that monitor different components of the universe definition and display the
contents in the desired manner. Alternatively, each manager may monitor the same
information but only process those that meet certain criteria, probably with the aid of
constraint functions to reduce bandwidth.

Any type of information may be modeled, subsequently the system has no knowledge of space
per se and there is no requirement for it to be modeled. In fact, the UM and the core entity
and manager libraries understand how information is structured, but do not expect any
particular organisation, or look for any specific component in it. Consequently, only when a
suitably dimensioned property (such as position) is added to the universe definition will space
be modeled. Also, the relationship between simulation time and real clock time within the
environment can be defined arbitrarily (section 4.5.5.1).

7.3.5 Flexibility

A minimal working system requires a RM, a UM and one or more ENT processes. In this
state it is possible to run any non-interactive simulation. Although an entity may sample input
devices, the user would not be able to see the consequences of their own or the simulation’s
actions unless a manager was present, connected to a display. A manager may be introduced
to monitor state changes and generate a suitable display. For VE simulations the two most
commonly used managers would be VIS and AUR. However, non-interactive simulation may
simply require a text-based display of key simulation variables. Managers are not only used
for generating displays; for example, the SIM checks for violations of an entity’s space and
informs the involved entities so they may resolve the situation.

The design of USS was driven by the desire to simulate interactive VEs, but due to its flexible
structure it may be applied to other types of simulation. For example, artificial life simulators
often use the model of a parallel processing, shared memory machine. Each “entity” within
the simulation is a program whose instructions may mutate or, through breeding, become
merged with another entity’s code resulting in a hybrid. This process continues over and over
again. USS lends itself well to this problem because:

1. There is a direct comparison between the beings in the artificial life
simulation and entities.

2. An entity’s code may be replaced at run-time and there is nothing to
prevent the replacement code being generated by another entity.

3. In the same way, one entity may spawn another and define its behaviour
through UML code generation.

222

The simulation would still operate within fixed deadlines but the update frequency could be
reduced to sub-interactive rates. There may well be more efficient task-specific methods for
the other types of simulation but USS at least provides a platform for testing ideas before
developing the project further.

7.4 Areas for Investigation
A few improvements to the prototype were presented at the ends of chapters 5 and 6, but there
are a number of areas encroached upon by distributed VE systems in general that the author
feels need further attention.

7.4.1 Reliable Multicast

As a distributed system is scaled up, so the feasibility of using point-to-point communication
links rapidly disappears. Multicast communications present the only practical solution: the
overhead of a single transmission is incurred despite sending to multiple destinations.
Unfortunately, the multicast systems that are becoming available now are, like their
predecessors, unreliable. For data such as audio streams the occasional loss of a packet is
acceptable. However, if state or event data is lost making its way from one machine to
another then this will affect the state of the simulation. The consequences of this range from
an event occurring on one node and not another, to users making a decision based on incorrect
information. At the operating system level the consequences could be more severe, e.g.
invalidation of a fault tolerance redundancy mechanism. Research into reliable multicast
protocols is underway and the author believes that this work should be encouraged.

7.4.2 Guaranteed Bandwidth

Distribution over large areas not only increases communications latency between system
components, but the latency also varies by greater amounts. Although it is impossible to
totally eliminate latency, steps can be taken to account for it, but only if sensible estimates can
be made. Fortunately, ATM permits the reservation of channels of fixed bandwidth between
the communication’s endpoints. Adoption of a technology that provides this kind of service at
all levels, from LANs through to WANs, would also seem to be an essential component of
future large-scale distributed VE systems.

7.4.3 Time Synchronisation

In order to synchronise time between machines there would appear to be two basic options:
use a software protocol, such as NTP, or a satellite-based system such as SPS. If
synchronisation over many hours is unacceptable, then the accuracy obtained using software
protocols is quite low: within a few seconds. If simulation protocols can be developed that
cope with this level of accuracy then this is sufficient. However, the author believes that the
same amount of care given to estimating communications latency should be applied to that of
time synchronisation. There is a solution available in the form of SPS which is currently
prohibitively expensive (section 4.5.5.2) but, given a mass market and a little time, there is no

223

reason why this technology would not become cheap enough to incorporate into every
machine.

7.4.4 Real-Time Operating Systems

At the time of writing there are very few operating systems that can be used for real-time
applications and are therefore expensive in comparison to the plethora of general-purpose
operating systems. There are even fewer that support deadline scheduling and address the
problems of distributed scheduling. The popularity of real-time systems research has risen
somewhat since the widespread availability of multimedia workstations, but significantly
more work is needed in this area before they may be effectively utilised for interactive real-
time VE simulation.

7.4.5 Shadowing the User

There comes a point when latency is so great that simply reflecting every single change in a
user’s state to all other machines becomes impractical. A solution is to only transmit actions
between machines and let the user’s shadow processes effect these changes in the mirrored
environments. This presents three problems that must be resolved. Firstly, how these actions
are recognised; secondly, how they can be described in a form suitable for transmission and,
thirdly, how these actions are interpreted. The first and last problems will be heavily
influenced by the type of simulation in that the nature of the actions exhibited will vary. For
example, parameterised actions in a networked driving simulator may be reduced to
accelerate, decelerate, turn left, turn right, navigate roundabout, park, etc. Whereas a
Computer Supported Cooperative Work (CSCW) application might involve more intimate
interactions between users. Consequently actions may even be required to mimic human
gestures and facial expressions, e.g. approval, disapproval, happy, sad, etc. The format used
for transmission of these actions may be as simple as executing a parameterised function
remotely, or something more complex.

The choice of technique has implications for maintaining the integrity of the simulated
environment. Consequently, more work is needed to assess the additional system
functionality required to aid action recognition, representation and interpretation.

7.5 Outlook
The USS architecture has been dealt with in a rather isolated manner over the past few
chapters. This section attempts to relate it to a few of the current popular topics in the area of
VE systems.

7.5.1 Internet

The work in this thesis is not applicable to the Internet as it stands today: variable delays are
experienced between communication endpoints and the available bandwidth may vary, to
name but two problems. IPng (or IPv6) is essentially IPv4 (the current version) with some
modifications (Bradner and Rankin, 1995). Aside from introducing techniques to reduce

224

message fragmentation, preallocation of network resources is supported, allowing
establishment of connections guaranteeing bandwidth and latency. Multicast has also been
added as a standard addressing option for IP datagrams; in fact it has replaced broadcast as the
base service abstraction, which is now a special case of multicast. Combined with a suitable
transport mechanism from desk to desk, such as ATM, it should be possible to apply the USS
architecture to the future Internet and certainly improve upon the prototype.

7.5.2 Virtual Reality Modeling Language

The Virtual Reality Modeling Language (VRML) is an attempt to bring interactive, 3D VEs to
the Internet via the WWW (SGI, 1996). From a modeling standpoint, VRML is a classic
example of a visual-centric approach. SGI’s Open Inventor was chosen as the starting point
for the format which, over the past two years, has been adapted to fit the role of a general
format for describing VEs. After reconciling the representation of visual information with the
need to model behaviour and the demands on the client browsers, it was decided to alter the
way that the Open Inventor scene graph is used. This has been just one of many changes to
the file format. Consequently, VRML has the same basic look as Open Inventor but is used in
a different way. Audio has been added to the language and at the time of writing the more
important problem of encapsulating behaviour is being addressed. Most people in the VRML
community are agreed upon the fact that some form of programming language is required to
describe object behaviour but no consensus has been reached on which language. The fact
that this debate is happening at all reflects the problems of completely isolating information
representation from simulation execution. It is exactly these problems that the USS
architecture seeks to relieve through integrating the modeling process with the system that will
execute the VE model.

7.5.3 Java

Java has been proposed as a language suitable for object behaviour representation within
VRML. Java is interpreted, platform independent and increasing in popularity every day.
Unfortunately for VRML browser writers, source code for a Java interpreter is not available
requiring a lot more development work just to simulate a VRML scene. On the positive side,
native translators are beginning to appear which greatly reduce the execution times of Java
code. However, although Java can load classes (in byte-code form) at run-time, existing
classes/functions cannot be redefined and there is no way of modifying data structures at run-
time. Without these abilities, the VEs modeled using VRML will be very static in nature and
require considerable amounts of time to develop and maintain. Specifically, if a VE is to be
“upgraded” then all users will have to disconnect whilst the new one is installed, possibly
followed by a conversion of old state data to the new format. Certainly not a quick or easy
procedure to schedule when the server is accessed by clients throughout the world.

7.5.4 Consequences

Some of the problems with the WWW and the Internet have already been described (section
6.7.1). In addition to these, VRML is being developed incrementally from a visual file format
with the intention that it should one day also guide how machines should be networked to
realise interactive VEs over the Internet. By approaching the problem in this way, the author

225

believes that, in its current form, VRML will not fulfil the expectations held by so many in the
VRML community. For example, moving entities from a VE served by one machine to a
different VE served by another is not possible unless some standardised structure for the
information has been adhered to. Currently this is not possible unless all the designers agree
to conform to a given structure and even then there is no way of enforcing such an agreement.
A modeling mechanism such as inheritance and a common set of base VEs would resolve this
problem.

The problems of distributed VEs are so many and varied that they must all be addressed
simultaneously to reach a well-rounded solution. Inevitably, however, the lessons learnt by
developing VRML will reinforce the validity of applying certain techniques to distributed VE
systems and may possibly even disprove others.

7.6 Summary
This thesis has attempted to fuse research in distributed systems, real-time systems, modeling,
languages and human-computer interaction into one system capable of distributing real-time
interactive simulations. Those issues examined (to varying degrees) just within the area of
distributed systems support were: message passing, marshalling and unmarshalling, naming
and name resolution, heterogeneous nodes, scheduling, process migration, configuration
management, performance management, time, synchronisation, security and persistence.

The problem domain is so complex that the exploration of the issues and their inter-
dependencies within the time permitted was relatively limited. Many decisions had to be
made during the design process, all of which were biased towards a system capable of
supporting multi-user, interactive, VE simulations. Interactivity demanded a real-time system
and multiple users required a distributed architecture with comprehensive techniques to
maintain the integrity of the shared VE. Of the requirements presented in section 4.2,
applicability was represented by the modeling language and its integration into the system,
whilst fault tolerance and security took a back seat.

The architecture’s structure is based upon the philosophy that the right tool is used for the
right job. The combination of different distribution techniques, integrated with an expressive,
flexible modeling language, has resulted in a scaleable system that can be used to both
develop and simulate VEs in a heterogeneous, distributed computing environment.

	Conclusion
	Thesis Review
	USS Classification
	Communications
	Data and Computation Management
	Dead-Reckoning
	High-Level Behaviour

	VE Modeling
	Time Management
	Fault Tolerance
	Security

	Important Features
	Real-Time
	Scaleability
	Bandwidth Reduction
	Modeling
	Flexibility

	Areas for Investigation
	Reliable Multicast
	Guaranteed Bandwidth
	Time Synchronisation
	Real-Time Operating Systems
	Shadowing the User

	Outlook
	Internet
	Virtual Reality Modeling Language
	Java
	Consequences

	Summary

