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Chapter 4 

A Universal Simulation System 
 

“Everything should be made as simple as possible, but no simpler.” 

Albert Einstein 

Given a solution for distributing a VE at any level (near/tightly-coupled to far/loosely-
coupled), it is next to impossible for it to be successfully applied to the other levels without, at 
best, some loss in efficiency and, at worst, complete failure to meet the system requirements.  
DIS, SIMNET, DIVE and MR Toolkit are all designed to operate at one level and hence do 
not scale well.  AVIARY has a more flexible design but little thought has been given to large-
scale distribution.  WAVES has been specifically targeted at low-end systems and has resulted 
in an architecture designed to compensate for a low bandwidth. 

The remainder of this thesis presents a system architecture which fits the many different 
combinations of computational power and bandwidth that may be found in networked 
simulation systems.  This is not done by applying one solution at all levels, but by a number of 
solutions each best applied to a certain level, all of which share an underlying structure and 
philosophy.  Deciding how the architecture is applied to a particular configuration will be the 
responsibility of the system designer/administrator.  Enforcing a strict organisation would 
present problems considering the diversity of hardware that may be used.  It is possible, 
however, to derive a set of guidelines which can be used to aid this decision process. 

There are some tasks that do not distribute well.  Take, for example, image generation which, 
if it is to be distributed at all, must be done over a tightly-coupled network (with current 
technology) due to the high update rate that is necessary and the large volume of data that is 
generated.  Similar arguments may be made for acoustic rendering and other local phenomena.  
It is no coincidence that these tasks are all to do with input and output.  As section 3.3 
showed, a high fidelity VE can be made or broken through the participant’s view of the 
environment.  Introducing lags and hence loss of fidelity by distributing these tasks will work 
against the intended goal.  On the other hand, rendering the environment (let alone simulating 
it) can be a large computational burden.  Therefore there is a clear need for local distribution 
of the simulation so that larger computational resources may be accessed whilst maintaining 
the fidelity of the simulation. 

Some tasks, however, do distribute well.  In fact their distribution is the key to their success 
such as a simulation with a very large number of entities.  For example, 100,000 entities and 
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upwards cannot possibly be simulated locally (with reasonable expense) and requires a larger 
set of resources to complete the task.  The ability for simulations to operate over large 
distances is a natural progression and applications are easy to foresee, but the implications of 
such geographically dispersed distribution are many and substantial.  The delays introduced by 
bandwidth limitations, switching stations, routers and protocol overheads can severely affect 
interactivity. 

This chapter presents the design for the Universal Simulation System (USS).  First of all, the 
system requirements are described, followed by a summary of some design restrictions with 
regards to real-time and distributed systems in general.  Before describing the system 
components that constitute the USS, the Universal Modeling Language (UML) is presented: a 
representation of the abstract model presented in chapter 3.  If a USS is likened to a house, the 
system’s components are the bricks and the modeling language is the cement that binds them 
and permits them to function together.  The reader should note that use of the term 
“Universal” reflects the abstract model around which the VE is structured, i.e. our Universe.  
Its use is not intended to convey the impression of a solution that may be used for all types of 
simulations/modeling tasks. 

4.1 System Requirements 
Before proceeding further, let us first state the requirements that must be fulfilled by the USS: 

1. Real-time constraints.  The simulation must maintain a level of integrity that matches 
its application.  For example, a simulation which must support human interaction, 
e.g. a driving simulator, must provide a high, constant environmental update rate.  
When modeling a complex system that exceeds the computational limits of the 
hardware, much lower constraints may be set that, although not interactive, must still 
be met. 

2. Scaleable from small to large scale simulations.  It should be possible to take the 
same simulation model and distribute it at all levels with the minimum of effort, 
preferably transparently. 

3. Multiple human participants.  Man-in-the-loop simulations introduce new 
restrictions on the simulation system, e.g. large lags are unacceptable.  Multiple 
people interacting within the same VE increases the complexity of executing the 
simulation proportionally. 

4. Applicable to a wide range of simulation applications.  Rather than concentrate on 
one class of simulation, the system should provide sufficient generality in its 
structure such that it may be applied to many different types of simulation. 

5. Flexible distribution.  There should be no enforced structure for distributing the 
simulation and the resources.  The system should adapt around the simulation and not 
vice versa. 

6. Resource optimisation.  To maximise the use of available resources the simulation 
workload must be capable of being redistributed where possible. 
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7. Fault tolerant.  A minimum of degree-3 fault tolerance should be supported with as 
little impact on performance as possible. 

8. Secure.  Steps must be taken to ensure that each system component cannot be 
violated thus compromising system security. 

4.2 Design Restrictions 
There are also several limiting factors that must be addressed when considering system 
solutions. 

4.2.1 Finite Memory 

Whether we talk in terms of physical memory or virtual memory there is still a finite amount 
that can be used before performance suffers.  At the time of writing, a typical IBM PC has on 
average 4-8 Mbytes of memory.  This is often increased for specialist applications such as 3D 
modeling but this is uncommon.  By contrast, a middle-range SGI Onyx will come with 64 
Mbytes as standard.  Memory is often the most expensive component of any system and 
therefore physical memory should be seen as a precious resource. 

4.2.2 Finite Computational Power 

Some of the systems reviewed used total replication of the VE on each node as a solution to 
some of the issues presented.  However, a node can only process so much and that limit may 
easily be exceeded when simulating larger VEs.  Excessive demands can be placed on the 
CPU if it also has to process network packets.  On faster networks or in a large simulation, 
this can become a bottleneck when the CPU fails to keep up with the traffic.  This problem 
may be alleviated if the node has the luxury of multiple processors but such systems are more 
expensive and thus less common. 

Even if a CPU was dedicated to communications it would be a wasteful use of resources if a 
change in protocol resulted in much lower traffic.  If this was the case then it would permit the 
savings to be applied to the simulation.  Regardless, maximum use should be made of all 
available computational resources, whether they are on the same node or over a network. 

4.2.3 Finite Communications Bandwidth 

Table 4.1 shows a summary of the more popular systems for forming networks, their target 
network class, bandwidth and the physical medium used for connecting the nodes.  At first 
glance it might seem that the larger the geographical distance between nodes, the higher the 
bandwidth available to the node.  This is a false picture because the number of nodes 
connected typically increases as we move from LAN through to WAN technology.  Therefore, 
in general, the longer the distance covered by a network, the smaller the effective bandwidth 
available to each node.  If a VE system designed for a LAN saturates the bandwidth then this 
in itself will be enough to cause problems when it is expanded to cover a larger geographical 
area. 
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The actual bandwidth available will vary depending on the protocol used across these 
mediums and the amount of traffic, with the exception of Frame Relay and ATM.  These two 
systems permit channels of a specified bandwidth to be allocated and hence bandwidth is 
guaranteed during the existence of that channel. 

4.2.4 Limited Transport Mechanisms 

Since the architecture will be applied to diverse hardware/software platforms no assumptions 
may be made about the type of communications supported.  Some may provide proprietary 
messaging systems, others may use TCP or UDP.  Point-to-point communications are fairly 
standard although their implementation may not be readily conceptualised as message-
passing: a multi-processor system may use shared memory and semaphores. 

Broadcast facilities are quite specialised and dependent on the transport medium - multicast is 
even more rare.  If these forms were available, the issue of reliability must still be dealt with. 

4.3 Distributed Real-Time System Implications 
A typical real-time system consists of many processes, each of which has a very specific task.  
Usually a process is dedicated to waiting for a specific event to occur, e.g. an interrupt, and 
then performs some work when it is triggered.  There are two types of real-time systems: soft 
and hard.  In a soft real-time system each process performs its work as fast as possible and if 
it misses its deadline for completion nothing catastrophic will happen.  Hard real-time 
systems, on the other hand, require that each process must complete their work before the 
deadline.  Exceeding the prescribed finish time is a system failure and can result in disastrous 

System Theoretical 
Bandwidth 

Class Medium† 

V.34 Modem 28.8 Kbps Dedicated link Copper telephone line 
ISDN 64 Kbps per channel Dedicated link Copper telephone line 

Frame Relay 56 Kbps - 1.98 Mbps WAN Coaxial 
Ethernet 10 Mbps LAN Coaxial or twisted-pair 

Fast-Ethernet 100 Mbps LAN Coaxial or twisted-pair  
CDDI 100 Mbps LAN Twisted-pair 
FDDI 100 Mbps LAN - MAN Fibre-optic 
ATM 155 Mbps+ LAN - WAN Fibre-optic 

 
LAN Local Area Network ATM Asynchronous Transfer Mode 
MAN Metropolitan Area Network CDDI Copper Distributed Data Interface 
WAN Wide Area Network FDDI Fibre Distributed Data Interface 
  ISDN Integrated Digital Service Network 
 

†This is the medium used to connect the node, it does not reflect the national backbone which would 
likely be fibre-optic. 

Table 4.1 Networking medium properties. 
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consequences, e.g. the fly-by-wire systems found in high-performance aircraft have hard 
constraints. 

4.3.1 Computation Management 

Section 3.3 discussed a specific problem with current VE systems which may be placed in the 
soft real-time category.  We shall therefore only concern ourselves with hard real-time 
systems.  Cheng (1988) presents a review of the key scheduling algorithms and their 
application to distributed systems.  A more detailed taxonomy can be found in Rotithor (1994) 
but Cheng’s taxonomy will suffice for this section (Figure 4.1). 

4.3.1.1 Static 

Static scheduling relies on the knowledge that the number of tasks and their characteristics 
will not change at run-time.  This permits off-line scheduling to be performed and tested until 
a suitable schedule is found.  One such tool for this is generalised rate monotonic scheduling 

theory (Sha and Sathaye, 1995).  The CPU is allocated to the highest-level priority process 
which preempts execution of lower-level priority processes when needed.  Their priorities are 
fixed and changing them can be a costly process.  This process is therefore usually undertaken 
at the system design stage or when considering changes to an established system 

In a VE system, entities may be created and destroyed at run-time and the complexity of 
calculations performed may vary, e.g. collision detection.  It is also possible that the 
communication paths between entities will not be static: depending on system design, each 
process may be able to communicate directly with each other.  These three points defy the 
application of static scheduling. 

4.3.1.2 Dynamic 

The dynamic method schedules processes at run-time and permits more processes to be added 
to the schedule and others to be removed.  Although dynamic schedulers incur higher 
overheads compared to static schedulers, they are the only type applicable to VE systems.  A 
process may be characterised by its timing constraints, precedence constraints and its resource 
requirements.  Timing constraints can be described by the four parameters: 

• Arrival Time: the time at which the process is invoked in the system. 

Dynamic

DistributedCentralised

Static

Centralised Distributed

HardSoft

Real-Time

 

Figure 4.1  A taxonomy of real-time scheduling algorithms. 
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• Ready Time: the earliest time at which a process can be executed. 
• Worst Case Computation Time: 

 the execution time of the process is always less than this. 
• Deadline: the time by which the process must finish. 

Processes may be periodic or non-periodic (aperiodic).  A periodic process executes once per 
time period whereas a non-periodic process executes only once and whose arrival time and 
deadline are unknown until run-time.  In a simulation a large percentage of events will be the 
same for each time step, e.g. sending update messages, updating displays, etc.  These events 
are periodic processes (although computational work may still vary) and the remaining 
unpredictable events likened to aperiodic processes. 

Precedence constraints represent the order in which the processes must execute and may be 
described as an acyclic directed graph.  This graph may change as new processes arrive.  An 
added restriction is whether a given process is preemptable or non-preemptable.  That is, can 
it be interrupted after it has started execution and resumed afterwards or must it run to 
completion unhindered?   

The success of a dynamic scheduling policy can be measured by its guarantee ratio which is 
the total number of processes guaranteed to meet their deadline versus the total number of 
processes that arrive. 

4.3.1.3 Centralised 

Cheng’s centralised classification refers to systems where the processors are tightly-coupled 
and the cost of Inter Process Communication, IPC, is negligible.  A number of algorithms 
have been proposed to solve the problem of dynamic scheduling in a centralised system 
(Locke et al., 1985), the most popular and proven of which is earliest deadline first.  As the 
name suggests, the process that needs to finish next is executed first.  A detailed evaluation of 
this algorithm can be found in Halang (1992). 

4.3.1.4 Distributed 

The distributed classification refers to systems which use loosely-coupled processors and IPC 
overheads can no longer be dismissed.  Scheduling on one node is quite different from 
scheduling a distributed system.  When this step is taken two fundamental changes take place: 

1. All resource requests are no longer known to the centralised scheduler. 

2. Communications latency means that events may be delayed and/or not appear 
in time. 

The transmission delay must be incorporated into the process’ schedule to ensure that its 
deadline is still valid.  Also, the propagation delay may exceed transmission time on larger 
networks, so both must be accounted for. 

Communications delays also mean that any central scheduling algorithm would be working on 
out-of-date information about each node.  For this reason distributed systems usually have two 
scheduling components: a local scheduling algorithm and a distributed scheduling algorithm.  
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The local algorithm determines whether the process can be executed locally and, if not, the 
distributed component determines where in the system it should run.  Centralised scheduling 
policies may be used as local algorithms but new solutions must be used for global 
scheduling. 

When allocating a process to a node, the target may be selected either by choosing the node 
with the lowest load (focused addressing) or through a bidding process whereby each node 
bids for the task.  The former uses out-of-date information but communication latency is low, 
whereas the latter uses accurate node information but incurs high communications latency.  
Stankovic  et al. (1985) present an algorithm that combines both of these techniques, 
including the overheads due to scheduling and the communication delays between nodes.  To 
reduce the amount of computation required to find an optimum schedule, heuristics and 
estimation techniques are used. 

Many distributed systems employ load-balancing algorithms (Boutaba and Folliot, 1993; 
Gavish and Sridhar, 1994).  However, these deal only with workload management and do not 
consider timing constraints.  They may, therefore, be seen as a simple case of the general 
distributed scheduling problem. 

Some algorithms are static in that once a process has been allocated to a node, it remains there 
for the duration of its execution.  Dynamic algorithms impose no such restriction and permit a 
process to move from one node to another, a technique often called process migration.  
Naturally, there are reasons for moving a process which are not based merely on node loading.  
Migration may be used to great effect if a process begins to perform an intensive task over a 
network link that may be best performed local to the resources it needs1.  For example, a 
process interrogating a large database of information stored on disk would take much longer 
and consume large amounts of communications bandwidth unless it was located on the node 
with the actual disk.  Fault tolerance also provides an incentive for migration (section 4.3.5). 

4.3.1.5 Service Degradation 

Ensuring that the VE appears to be behaving correctly to the participants requires that all 
visible entities and dependent system processes meet their deadlines.  In a large VE this may 
be a small subset of the total entities which opens the possibility of enhancing the scheduling.  
If a process was designed to provide different levels of accuracy, e.g. loss of calculation 
accuracy traded for speed, then the guarantee ratio could be increased by using lower accuracy 
on those processes that are currently less important to the success of the simulation. 

4.3.2 Memory Management 

This is of special concern to real-time systems because memory management can be a costly 
venture.  Virtual Memory (VM) is not used in strict real-time systems because it introduces a 
certain amount of unpredictability into the system.  VM also requires an often significant 
amount of disk space to be put aside to hold any internal data structures that are generated at 
run-time.  This does, of course, permit the execution of large processes but the overheads 
                                                           
1 If a process uses a resource intensively throughout its lifetime then it should be allocated to the node local to 
that resource from the start. 
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incurred usually degrade system performance too much.  Whilst there are compromises, such 
as the use of overlays which the application has control over, they are rarely used because disk 
accesses must still be scheduled. 

4.3.3 Locating Resources 

In a distributed system it is necessary to provide a mechanism through which a process may 
locate a resource that it requires during execution.  This resource may reside on the same node 
as the process or on another node in the system.  The solution is a directory of service 
providers and their location.  Any process may then interrogate the directory using, for 
example, the name of the service and retrieve the actual address of the service which is then 
used to communicate with them.  Such name servers may be either integrated into the 
operating system kernel or run as separate processes (Bowman et al., 1990).  So that all 
system-wide location registrations are recorded they must be communicated to the name 
server.  If this service is embedded in the operating system kernel then extra name server 
functionality must be added.  A separate name server process does not increase kernel 
complexity whilst achieving the same end result. 

If only one name server exists then it is a weak point in the system and its failure (or loss of 
communication with it) could render the system helpless.  It is common, therefore, to enlist 
multiple name servers which keep each other informed of registrations (QNX, 1993).  Apart 
from increasing fault tolerance, multiple servers also increase the service response time for 
registration and location requests. 

4.3.4 Location of Backing Store 

No assumptions about the location of backing storage can be made in a distributed system.  
Diskless workstations are still widely used where all programs and data must be sent back and 
forth along the network link to a central server complex.  Typically the operating system 
makes this difference transparent to both the user and the applications by providing a local 
virtual filesystem (QNX, 1993).  Therefore any system design should bear in mind that this 
resource may not be readily available.  In addition, dependency on backing storage will slow 
any process down and increases scheduling complexity. 

4.3.5 Fault Tolerance 

The type of fault-tolerance required in a distributed system is influenced by the form of data 
and computation distribution employed (as discussed in section 2.4.6).  Complete and partial 
distribution require full redundancy, i.e. a total duplication of the computation and/or the data.  
Failure to communicate with a given process must either result in communication with a 
backup copy of this process or waiting for access to that process to be restored.  The same is 
true for partial data distribution.  Partial computation replication inherently provides a certain 
degree of fault-tolerance because the high fidelity calculations are approximated on every 
node with interest in that process’ work.  Total replication, of course, already provides full 
redundancy. 
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Token fault tolerance may be achieved by duplicating the key system components such as the 
name server discussed in the previous section.  To prevent such an approach having a large 
detrimental effect on performance it requires a low-overhead synchronisation method to keep 
each duplicate up-to-date.  Such a suitable mechanism would be the use of multicast 
communications between duplicates. 

Failure of all the hardware on one node is quite uncommon, a more realistic scenario would be 
for an individual hardware component to fail.  If another functionally identical piece of 
hardware exists on another node then there is the possibility of moving the process dependent 
on this hardware to the other node.  Process migration driven by hardware failure is a special 
case of the general load balancing task.  In order to repair the hardware component it is 
possible that the node must first be powered down, e.g. replacing an integrated component 
rather than a device hooked up to an external I/O port.  In this case all processes would have 
to be migrated to another node until the problem was fixed and then the current system load 
re-distributed.  The same reasoning can also be extended to failure of key software 
components.  Except in this case the faulty application could likely be fixed without taking the 
whole system down. 

Unsuccessful attempts to communicate with a hardware or software component can be used as 
an indication of a fault.  Alternatively, a failure may result in a partial or reduced quality 
service in which case it would be possible for a component to explicitly indicate failure. 

4.3.6 Summary 

A distributed real-time VE system is best equipped with a dynamic deadline scheduler.  Most 
processes in such a system will be preemptable due to system call usage such as message 
passing.  Two scheduling policies are best employed to work at different levels: local and 
global.  The earliest deadline first algorithm provides a proven local scheduling policy whilst 
an effective global policy combines both dictation and volunteering techniques. 

Memory is a finite resource and any design should treat it as such whilst system-wide 
resources may be brokered using a number of mirrored name servers.  Access to any such 
resource, including backing store, must be carefully scheduled.  Finally, the form of data and 
computation distribution used has a direct impact on the degree of fault-tolerance a system can 
support.  The remainder of this chapter presents a system design driven by these observations, 
starting with the design of a modeling language. 

4.4 A Universal Modeling Language 
The UML is the representation of the abstraction of our universe.  It is a description of the 
universe based on the framework defined in section 3.1.5, but imposing no restraints on what 
information should appear and where.  Interpretation of UML and the subsequent execution of 
the model it represents provides us with an implementation of our model.  Description of the 
system architecture would be impossible without referring to UML because it is integral to the 
system’s design, thus it is presented first. 
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4.4.1 Language Requirements 

Based on the analysis of modeling techniques in chapter 3, the design issues (chapter 2) and 
implications presented in this chapter, the requirements for UML are: 

• Structure based around the abstract model of our universe. 
• Easy data modeling. 
• Easy to learn and familiar in structure. 
• Fast incorporation of changes into the model. 
• Portable across many hardware/software platforms to support process migration. 
• Low resource overheads, e.g. memory, computation, etc. 
• Co-operative with the implementation language. 

Fortunately, the abstract model that has been proposed (also) strongly resembles that of an 
object-oriented model.  The universe corresponds (using C++ terminology) to the class, the 
constants and properties to the member variables, the laws correspond roughly to member 
functions and entities would be the objects instanced from the class. 

The remaining requirements make the choice of language a little more tricky.  To enable easy 
modeling of the VE the language must be concise, unambiguous and high level.  These 
criteria help narrow the search as does the requirement that the language is easily learnt and 
intuitive. 

On a practical note, in order to promote use of the language, it should be accessible by as wide 
an audience as possible and hence procedural as opposed to functional.  Whereas functional 
languages have been used for Virtual Reality “programming languages” (Coco, 1992), they 
are not widely accepted and are often difficult to read.  An object-oriented based procedural 
language would therefore seem a fair compromise. 

To aid in development, debugging and provide run-time flexibility, it should be possible to 
make changes to the representation at any time.  The ability to add properties to an object (or 
remove them), redefine the laws governing the properties and possibly even changing the 
value of (the somewhat inaccurately named) constants is potentially immensely powerful.  In 
theory, it could be possible for the complete simulation to be re-designed on-line.  The 
implications of such an ability are mainly the concern of the implementation but it is evident 
that the language must have a clear structure and well-defined rules to minimise the confusion 
this could cause. 

4.4.1.1 Compiled 

Permitting the representation to change during run-time gives us two alternatives.  Firstly, to 
use a compiled language that permits dynamic loading and secondly, an interpreter.  
Normally, a compiled language takes a number of compiled language files (object files) and 
links them together to produce one executable.  Dynamic loading refers to the ability to take 
an object file and link it into the process’ executable image whilst that process is running.  
Asides from the considerable problems preserving access to the program data, there are two 
problems with this solution.  To create the object file a compiler must be used which can be 
quite expensive with regards to how much of the computer’s resources it uses, e.g. a C++ 
compiler performs many optimisations and is often dependent on many header files, can 
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generate large temporary files, and so on.  In fact the presence of local backing storage and 
sufficient memory to run a compiler is by no means certain.  Secondly, the process of dynamic 
loading is operating system specific and is rarely done in the same way each time.  Notably, 
under real-time operating systems dynamic loading is not available at all since it is 
undeterministic and hence undesirable.  As far as process migration is concerned, some 
additional mechanism must be devised such that the modified code may be transmitted to the 
destination machine. 

4.4.1.2 Interpreted 

The second alternative is not without its negative points either.  An interpreted language is 
often slow to execute in comparison to the fast-as-possible execution of a precompiled 
language.  It is slow because the program is usually translated into an internal code, in which 
each instruction corresponds to a number of native machine code instructions.  This weakness 
is also an interpreter’s strength since the language is inherently portable across different 
architectures.  If each machine was provided with a copy of the interpreter, the same program 
can run unchanged and execution speed may be improved by pre-translating frequently used 
routines (in a library for example) into the internal code which is then stored for later 
execution.  Any further optimisation would require the coding of commonly used routines in 
the implementation language (IL) and compiled into the native machine code. 

4.4.1.3 Resource Implications 

If each entity is to be described using an interpreted language then it is essential that the 
amount of resources consumed by the interpreter is kept at a minimum.  For example, in a 
simulation where hundreds or thousands of separate entities are being simulated, the 
overheads per entity soon become a real issue.  Ideally, the language will be compact, concise 
and execute quickly.  Unfortunately, this requirement conflicts with the ability to make 
modifications to the data description and the code at run-time.  Such a flexible system will 
inevitably require more memory for the dynamic data structures and more processing time to 
administer them. 

Even in the best case that we can hope for, the interpreted language will still run slower than a 
compiled language, or will take more memory or any number of other disadvantages.  It is 
therefore desirable to code the frequently used or critical routines in the IL.  In other words the 
interpreted language will be embedded and therefore some way of sharing code and data 
structures between the languages must be provided.  It could be arranged such that the 
presence of compiled routines would override the interpreted definitions and hence this would 
not affect portability of the program, only speed. 

4.4.2 Candidate Languages 

The features we are therefore looking for in our potential candidates are: 

• Interpreted. 
• Procedural. 
• Object-oriented (at least some form of inheritance). 
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• Extensible. 
• Fast execution. 
• Compact. 
• Embedded. 
• Available at no financial cost on many platforms. 

Availability of the language at no cost on disparate platforms is essential and, if modifications 
are to be made, the source code is also required.  A number of existing languages were 
evaluated to varying levels for their suitability:  Bob, Glish, ICI, Lua, and Python.  Other 
potential candidates were ruled out at an early stage due to lack of features, e.g. Application 
Executive (Bliss, 1991), or availability.  Java (Gosling and McGilton, 1995) was released in 
late 1995 at which time software development for this thesis had ceased.  Smalltalk is a 
financially expensive language that shares many features with Java such as supporting run-
time code changes, but not run-time class structure changes.  Since classes would be used to 
structure the model, this also rules out Smalltalk and Java as candidates. 

4.4.2.1 Bob 

Bob is an interpreter for a language with C-like syntax and a class system similar to C++, but 
without variable typing and mostly without declarations (Betz, 1991).   All class data 
members are protected by default and may only be modified through a member function.  
Single inheritance is supported (not multiple) and Bob preserves the concept of constructors 
which may, unusually, initialise objects already in existence.  Bob’s interpreter takes the 
source code and compiles it so that it may be interpreted using a stack-oriented byte-code 
machine.  This way, syntax analysis is performed only once (at compile time) and speeds up 
the execution considerably.  With a little effort it is possible to extend the language to include 
more built-in types and routines written in the implementation language: C.  The current 
implementation is written for MS-DOS but there is no reason why this language cannot be 
ported to other operating systems. 

4.4.2.2 Glish 

Glish is targeted at loosely-coupled distributed systems and the philosophy used is that 
individual programs in a system should be wholly modular, having no knowledge of other 
programs or data types that might exist (Paxson, 1993).  Programs may communicate without 
knowing about each other through events which are name/value pairs.  Glish has three main 
components: a scripting language for specifying what programs to run and how to 
interconnect them; a C++ class library so that programs can generate and receive events and 
manipulate data; an interpreter for executing the scripts.  The language is array-oriented and is 
geared towards the manipulation of data sent between programs.  By default all IPC is done 
through the interpreter which allows dynamic modification and re-routing of data but it is also 
possible to establish point-to-point links when performance is critical.  Glish is written in 
C++, uses TCP/IP for its IPC mechanism and is available on SunOS, Ultrix and other UNIX 
variants. 
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4.4.2.3 ICI 

ICI is an interpreted procedural language that represents C with extensions for built-in 
handling of arrays, structures and sets (Long, 1992).  Structures are a key element of ICI, 
especially the notion of super structures (analogous to parent classes).  If a reference to a 
member of a structure cannot be resolved then a search is made of that structure’s super 
structure (if it has one).  If the super structure does not contain the reference then the search 
proceeds to its super structure and so on.  Although ICI is not object-oriented this mechanism 
provides a method for supporting inheritance albeit for data only (functions may not be 
members of structures).  New data structures and functions may be defined at run-time but 
existing structures or functions cannot be modified. 

4.4.2.4 Lua 

Designed to be used for extending applications, Lua is a procedural language that makes 
heavy use of associative arrays that may be constructed and manipulated in many different 
ways (de Figueiredo et al., 1994a, 1994b).  Unlike ICI, Lua distinguishes the functions and 
data provided by the host application from the data and functions defined in the language 
itself.  The other built-in types are strings, floating-point numbers and nil - the type of the nil 
variable.  Only a small number of built-in functions are provided but embedding C routines 
from Lua is easily done and the Lua program may be extended at runtime.  The language itself 
has very few constructs yet proves to be quite expressive.  Rather uniquely, persistence of data 
may be provided by writing Lua code that writes Lua code that, when executed, restores the 
values of all global variables.  Using a byte-code interpreter similar to the one in Bob, it is 
feasible to pre-compile the programs into byte-code form to decrease loading time and reduce 
runtime support. 

4.4.2.5 Python 

The designer of Python describes it as “... a simple, yet powerful programming language that 
bridges the gap between C and shell programming, ...” which is a very fair evaluation (van 
Rossum, 1994c).  Python is rich with the familiar procedural programming constructs, 
provides exception handling as standard and comes with a large number of modules which 
provide interfaces to library routines varying from POSIX system calls to Silicon Graphics GL 
(van Rossum, 1994b).  Modules have generally been pre-compiled, which can also be done to 
user code.  A class mechanism has been added to the language since conception (with little 
trouble) and supports member variables, functions and multiple inheritance.  Writing C 
functions and using them from Python is not an easy task, most of the complexity is to due to 
the memory management system used.  To its credit, Python is the only language to support 
dynamic loading of extension modules (van Rossum, 1994a).  By only loading a module when 
it is needed the core interpreter can be reduced in size and overheads.  Unfortunately dynamic 
loading is currently only supported on some UNIX systems. 
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4.4.2.6 Interpreter Performance 

Glish, although ideally suited for the task it was designed for, is not really suitable for the task 
at hand.  Adding to the interpreted code at runtime is not possible as the package stands 
currently and it requires that all input/output is routed through the Glish interpreter - this is not 
desirable.  Each of the remaining languages, ICI, Bob, Lua and Python, fulfil most of the 
requirements.  To determine how they compare when memory and Central Processing Unit 
(CPU) usage is examined, a test benchmark was written in each of the languages and 
measurements taken.  The chosen benchmark was intended to test the speed of the interpreter 
with a typical task that would be easily represented in each language and not rely on the speed 
of built-in functions.  The task was to multiply a four-by-four matrix with a vector 10,000 
times (so as to average out the effects of variable lags in the operating system).  In Bob and 
Python, the matrix/vector data types and  manipulation functions were coded as a class, in Lua 
and ICI they were implemented as an Abstract Data Type (ADT) using normal functions and 
the relevant data structures.  The amount of memory used by the interpreter (with and without 
the loaded program) and the CPU usage were measured. 

On the whole there are little surprises in the results shown in Table 4.2.  Both Bob and Lua 
offer few features and hence the interpreter is relatively small in size.  ICI provides more 
elaborate data structures and language constructs and Python weighs in highest, not 
surprisingly due to its comprehensive range of features.  Each interpreter takes about the same 
amount of memory to hold the program (~120 Kbytes) with the exception of Lua which has a 
fixed amount of space allocated when compiling the interpreter (this may, of course, be 
changed).  The execution times are interesting in that all but Bob’s time are almost exactly the 
same.  These times do not include parsing overheads and so the efficiency of Bob’s byte-code 
interpreter must explain its result.  The figures for the same test written in C and compiled 
into machine code provide a good indication of how much time each interpreter really spends 
executing their translated code.  The large differences in execution speed between machine 
code and interpreted code are not surprising, the machine code is optimised for the CPU in 
question and, for this particular example, so as not to stall the CPU pipeline and thus 
maximise throughput.  Whereas the interpreters have to work through a considerable number 

Language Memory (Kbytes) Memory + 
Program (Kbytes) 

CPU 
Time (ms) ‡ 

Bob 224 340§ 7,197 
ICI 392 504 13,464 
Lua 264 264† 13,653 
Python 760 856 13,658 
Compiled C n/a 112 100 
 

§ The implementation used had a memory leak which made accurate 
measurement impossible (this is a “best guess”). 

† Stack, heap and code space is statically allocated when the interpreter is 
compiled. 

‡ 486DX 33MHz IBM PC Compatible running the QNX operating system. 
 

Table 4.2  Interpreter resource evaluation. 
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of other instructions in between each language instruction, making effective optimisation next 
to impossible. 

4.4.2.7 Language Selection 

Considering that there will be many processes in the VE system that will make use of the 
UML and hence the interpreter, the amount of memory used is a prime concern.  Multiple 
copies of the interpreter itself may be avoided by putting it into a shared library which will 
only be loaded once.  The amount of memory used to store the program is still an issue 
however, as is the amount of CPU consumed.  If the language is overly complex it can lead to 
increased memory for storage and longer execution times. 

Python suffers from difficult embedding and whilst, in an ideal world, its rich language would 
be very useful, the author believes that for the purposes of this thesis the overheads are too 
large.  Since this decision was made, Python has been chosen as the programming language 
for the Alice rapid-prototyping system (UVa, 1995).  Alice runs exclusively on SGI machines 
which offer greater CPU power, more memory and larger disk storage than is available on the 
average workstation.  Also, Alice does not have the same requirements as detailed in section 
4.4.1. 

ICI provides little more than multiple inheritance in the way of object-oriented features and 
execution times are too high.  Lua is impressive but has no object-oriented features 
whatsoever.  Bob is the most promising of the group, it has a small, useful set of features but 
lacks a robust implementation and documentation. 

One of the main requirements was the ability to modify code and data structures at run-time.  
None of the languages reviewed enable the data structure to be altered on-line and strictly 
speaking, none support code modification either.  However, it is conceivable that those 
languages supporting dynamic loading might permit the replacement of previously loaded 
modules.  Even then, this would be a heavy-handed approach and relatively very slow. 

There is also the issue of transforming the model into code.  Using a general-purpose language 
will unavoidably involve using different terminology and possibly a structure sufficiently 
different to cause confusion.  To ensure an easy transition from model abstraction to 
representation whilst reducing resource overheads, the author believes that a special, 
optimised language needs to be derived, learning from the languages reviewed. 

4.4.3 Proposed Language 

The features of the surveyed languages that should be kept are: 

• Simplicity of expression. 
• Compactness - both interpreter and intermediate code size. 
• Classes and inheritance. 
• Implementation language interface for embedding. 
• Modules. 
• Use of byte-codes and a byte-code machine for language execution. 

The negative aspects that will not be used are: 
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• Inability to alter structure of data and code at run-time. 
• Lack of code/data persistence. 
• Type-less variables/parameters. 

The Universal Modeling Language is a procedural language and possesses some object-
oriented properties, notably inheritance and operator overloading.  Multiple inheritance is not 
supported primarily because it complicates interpreter design2 (for a discussion on this topic 
see Swawe, 1989; Bretthauer et al., 1989).  Its appearance is a mix between C/C++ and 
Pascal.  Some of the expression notation has been taken from C++ to aid brevity whilst Pascal 
lends us clarity of description. 

UML can be split into two halves.  The statements that describe the data - its structure and 
content - and the code that manipulates that data.  The actual language statements used to 
represent these two components are almost completely unique to each component.  In other 
words, a UML description can be separated into two categories: data definition and instruction 
code. 

4.4.3.1 Data Definition 

There are two structural components: the UNIVERSE and the ELEMENT.  These are used 
together to form a hierarchical framework within which the other components may be placed: 
CONSTANTs, PROPERTYs, CONVERTERs, FUNCTIONs and other ELEMENTs.  A simple 
grammar representing the basic relationships between these components is given in Figure 
4.2. 

4.4.3.1.1 Universe 

The starting point of a representation is the definition of the universe which is assigned a 
name for reference purposes (Figure 4.3).  Within the universe, properties may be defined and 
                                                           
2 That is not to say that it would be inefficient (Templ, 1993). 

universe : UNIVERSE name { components }
;

components : components component
| component
;

component : constant
| element
| converter
| property
| function
;

element : ELEMENT name { components }
;

Figure 4.2    Backus-Naur Form description showing relationships between UML 
components. 
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grouped into elements for convenience, functions may be written to act on the properties of 
the universe and hence provide a behaviour.  The state of a universe is made up of entity 
instances (section 4.4.3.1.8).  Three functions are mandatory for each entity: Construct, 
Destruct and Update.  Construct is called when an entity is created (this is after all 
only a declaration, not an instance) and is typically used to give initial values to the entity’s 
properties.  The Destruct function is called when the instance is being deleted and may be 
used to perform any last actions.  The simulation is progressed through a series of discrete 
steps, each one beginning with the execution of the Update function.  It is also used as a 
focus for the synchronisation of the data within the simulation. 

4.4.3.1.2 Types and Constants 

Other components of the language will appear familiar, such as the built-in primitive types: 
REAL, INTEGER, STRING, and BOOLEAN.  Classical “user-defined” types are in fact 
supported through elements. 

The only data structure primitive is the list, which may be created from any type, built-in or 
element.  If a dimension is given when defined then the size of the list is fixed and may not be 
changed at run-time.  If no dimension is given, i.e. an empty pair of square brackets, then the 
list may grow and shrink.  Therefore, a fixed list may be likened to an array and a variable list 
compared to a linked-list. 

Constants may be declared at any level of scope within the universe but may only use built-in 
types. 

4.4.3.1.3  Elements 

While it is possible to embed the definition of elements and functions within the universe 
section, it can soon reduce readability as the number of properties and functions increases.  It 

UNIVERSE Base
{

ELEMENT Models
{

ELEMENT Visual;
ELEMENT Aural;
ELEMENT Tactile;

PROPERTY visual : Visual;
PROPERTY aural : Aural;
PROPERTY tactile : Tactile;

}

PROPERTY models : Models;
PROPERTY position : REAL[3];
FUNCTION time : REAL;

VFUNCTION Construct;
VFUNCTION Destruct;
VFUNCTION Update;

}

Figure 4.3 Example top-level UML description. 
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is therefore possible to merely give a stub declaration and provide a full definition later on.  
UML does not require that certain definitions are placed in specific files and as such, any 
completion of a stub declaration must qualify which stub it is satisfying.  In the example 
above, the Visual element was defined as a stub in the universe called Base.  A possible 
full definition is given in Figure 4.4 with the name of the element reflecting its origin.  This 
“dot” notation is used in any situation where a stub and a full definition need to be associated, 
i.e. elements, functions, etc.  It may also be used by the other component types, e.g. properties, 
to modify definitions when using the interpreter directives (section 4.4.3.1.9). 

The Visual element contains two further elements, one of which defines an element called 
Colour.  At this point no data is held within the Visual element since the colour element 
is only a declaration.  The Surface element has further elements nested within it - there is 
no limit to the level of nesting permitted.  The Vertex element declares two instances of 
previously defined elements: Vertex (local to Polygon) and Colour (local to Visual).  
Similar definitions may be made for Aural and Tactile. 

Elements may be treated similarly to classes in object-oriented languages - they can define 
data and code which operates on that data.  Even if the element does not define any properties, 
the element must be instanced before the element’s functions may be called. 

4.4.3.1.4 Properties 

ELEMENT Base.Models.Visual
{

ELEMENT Colour
{

PROPERTY components : REAL[3];

FUNCTION Set( triplet : REAL[3] );
FUNCTION Get( triplet : REAL[3] );

}

ELEMENT Surface
{

ELEMENT Polygon
{

ELEMENT Vertex
{

PROPERTY coord : Vector;
}

PROPERTY vertexList : Vertex[];
PROPERTY colour : Colour;

}

PROPERTY polygonList : Polygon[];
}

PROPERTY surfaceList : Surface[];

FUNCTION Read( filename : STRING ) : BOOLEAN;
FUNCTION Write( filename : STRING ) : BOOLEAN;

}

Figure 4.4  A possible definition for the Visual element. 
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A property is formed by two parts, the name of the instance and a description of its structure 
separated by a colon.  The property’s structure may be based on a built-in type or an element.  
Only elements that have already been declared may be used in property declarations.  A 
property declaration is an indication that the structure defined by an element or type should be 
instanced and hence take physical form. 

4.4.3.1.5 Functions 

A function is identified by its name (using dot notation if necessary), the parameters it 
requires (if any) and a possible return type.  All parameters referring to variables and 
properties are passed by reference whilst literals are passed by value.  By default a function 
does not have a return type.  The contents of the function are made up of one or more 
imperative statements.  A pure virtual function may also be declared using the VFUNCTION
keyword, which means that no definition is provided at that level but must be provided by any 
universe inherited from this base universe.  The Construct, Destruct and Update 
functions in this example are all virtual functions because the values of the properties are 
different for each instance, to provide default values only to be overridden by derived 
functions would be wasteful.  In Figure 4.4 two functions are defined within the Visual 
element to input and output visual representations. 

4.4.3.1.6 Inheritance 

Inheritance is used heavily within UML to specialise descriptions of the universe.  The 
example in Figure 4.5 shows that the universe PBM (Physically-Based Model) is derived from 
Base.  In addition to all the properties, elements, constants and functions defined in Base, 
the new universe defines extra properties and provides a definition for the virtual functions. 

UNIVERSE PBM : Base
{

CONSTANT Gravity : REAL[3] = [ 0.0, -10.0, 0.0 ];

PROPERTY mass : REAL;
PROPERTY velocity : REAL[3];

FUNCTION Construct
{

// Assign initial values for the inherited
// properties.

position = [ 0.0, 0.0, 0.0 ];

// Now assign values for the local properties.

mass = 0.0;
velocity = [ 0.0, 0.0, 0.0 ];

}

FUNCTION Update { ... }
FUNCTION Destruct { ... }

}

Figure 4.5  Defining a UNIVERSE by inheritance. 
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Inheritance is not limited to universe components, elements can also be derived from other 
elements providing that they have already been declared.  The parent element could be in the 
same scope level or even in an ancestor universe. 

4.4.3.1.7 Converters 

With the effective proliferation of a large number of elements (essentially types) it is often 
necessary to convert between one and another.  In some cases this may be trivial, e.g. 
converting a string into a real, an integer into a real, etc.  In other cases the transition may be 
less straight forward, e.g. converting from one colour model to another (Figure 4.6), changing 
a surface model description into a volumetric description, etc.  To handle these non-trivial 
conversions special functions may be defined within an element that identify the result of the 
conversion by giving the destination type as their function name.  Converters do not take 
parameters and do not return any value.  They may be implicitly invoked by the interpreter or 
explicitly by the programmer as shown in Figure 4.7. 

In the event that a converter could not be found, an exception would be raised during 
interpretation. 

4.4.3.1.8 Entities 

The entities are the physical embodiment of the universe.  An entity is created by specifying 
the universe in which it belongs and from this information it is furnished with a copy of the 
properties, elements, constants and functions defined for that universe.  The Construct 
function is then called to initialise the entity’s state.  Some of this initialisation code may be 

ELEMENT RGBColour : Colour
{

CONVERT HLSColour { ... } // Convert from RGB to HLS
}

ELEMENT HLSColour : Colour
{

CONVERT RGBColour { ... } // Convert from HLS to RGB
}

Figure 4.6  Inheriting from an element. 

FUNCTION Colours
{

PROPERTY rgb : RGBColour;
PROPERTY hls : HLSColour;

rgb.Set( 1.0, 0.0, 0.0 ); // Bright Red!
hls = rgb; // Interpreter invokes

// correct conversion
// function.

hls = HLSColour( rgb ); // Force conversion.
}

Figure 4.7  Explicit/implicit invocation of a converter. 
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found in the universe definition but usually this is appended to, if not completely specified, in 
the entity definition.  When an entity is destroyed its Destruct function is also called. 

In the example shown in Figure 4.8 the Construct function overrides the default values 
that were assigned in the Construct function of the PBM universe definition given earlier.  
The Update function represents the actions to be taken at each simulation step, thus defining 
the entity’s behaviour.  In this case the universal function time (defined in Base) is used as 
the basis for a calculation to determine the entity’s position after gravity has played its part. 

Entities may also declare their own functions locally without requiring a stub declaration in 
the universe they are derived from. 

4.4.3.1.9 Interpreter Directives 

An interpreter directive is a special command which may be inserted anywhere in the 
definition and affects what the interpreter does with the following statements.  There are 
currently only three directives which change the interpreter’s mode of operation: insert, 
replace and delete. 

Insert mode will add the component definition providing that a component with that name in 
that level of scope does not already exist.  If it does exist then the operation fails.  In replace 
mode the definition is always added, even when there is already a component with the same 
name.  In this case, the old definition is removed and the new one inserted.  When in delete 
mode the interpreter only uses the name of the component in order to locate it in the definition 
and remove it.  If the component does not exist then the operation fails and an exception is 
thrown.  The dot notation is used when specifying the component names so that they may be 
used to place/locate the component correctly. 

ENTITY Ball : PBM
{

FUNCTION Construct
{

mass = 10.0; // kg
velocity = [0.0, 1.0, 0.0]; // 1 m/s upwards
position = [0.0, 10.0, 0.0 ]; // 10m straight up

// Initialise models...
}

FUNCTION Update
{

VAR force : REAL[3];

force = Gravity / time();
velocity = velocity + force;
position = position + velocity;

}
}

Figure 4.8  Definition of an entity. 
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4.4.3.2 Instruction Code 

It was decided early in the design process that the instruction code aspect of UML would not 
be implemented (section 5.5.5).  Hence only unique features and those that have an impact on 
the interpreter design and implementation are presented here. 

4.4.3.2.1 Local Variables 

Variables may be declared at the element and function scope level or any level of scope 
therein.  The Update function in Figure 4.8 has a local variable which will be instanced each 
time the function is called, unlike property definitions which are instanced permanently for a 
given entity.  Variables may be declared as a built-in type or an instance of an element defined 
within the universe it is derived from.  In fact, a variable declaration is identical to that of a 
property with one exception: variables may be initialised on declaration with an expression as 
shown in Figure 4.12.  Properties may only be initialised with a literal or list of literals. 

4.4.3.2.2 Element Referencing 

When an element has been instanced, as either a property or a variable, then the contents may 
be accessed using the familiar dot notation as shown within function Scope in Figure 4.9.  If 
the element has a large structure then referencing the contents can become tedious and clouds 
the expression of logic.  UML provides a similar mechanism to Pascal by permitting a 
specified scope to be made temporarily local (using the WITH keyword) so the contents may 
be referenced as if they were declared locally. 

ELEMENT Outer
{

ELEMENT Inner
{

PROPERTY number : REAL;
PROPERTY text : STRING;

}

PROPERTY inner : Inner;
PROPERTY number : INTEGER;

}

FUNCTION Scope
{

VAR outer : Outer;

outer.inner.number = 1.0;

WITH outer.inner
{

number = 2.0;
text = "Hello World";

}
}

Figure 4.9  Methods for accessing member properties in elements. 
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If there should be a name clash when a scope is made local, such as that between the number 
property in the Inner element and the number property in the Outer element, then the 
former would be used.  Multiple scopes may be processed by presenting them as a parameter 
list, each name separated by a comma. 

4.4.3.2.3 Function Calls 

Figure 4.10 shows a call to the function that reads data into a Visual element.  The Read 
function only takes one parameter and returns a boolean value indicating success or failure.  If 
the function should fail then a special system function is called which places a message onto 
the current output stream and an Input/Output exception is generated. 

4.4.3.2.4 Exceptions 

Error handling is done almost completely by exceptions.  They may be thrown by the 
interpreter when a severe error occurs or by user-defined routines that wish to pass control 
(and error resolution) back to a previous level of execution.  If an exception handler does not 
exist around the call to the routine that generates it, then the next level is checked and so on 
back to the top level.  Failure to catch an exception will eventually end in a fatal error and the 
interpreter will stop executing the UML description. 

The code in Figure 4.11 manufactures an exception by attempting to convert a colour of type 
RGBColour to HSVColour when the latter provides no conversion function.  A number of 
exceptions are predefined by UML, the conversion exception that is shown in the figure is one 
such example. 

FUNCTION Construct
{

// Initialise the visual model associated
// with this entity.

if ( models.visual.Read( "plane" ) == FALSE )
{

system.Print( "can’t open file ’plane’" );
throw EXCEP_IO; // Fatal error.

}

// Rest of construction...
}

Figure 4.10  User and system function call execution. 
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4.4.3.2.5 State Indexing 

A state change occurs on completion of the Update function.  It is possible that we may wish 
to reference old values of particular properties when performing the current state calculations.  
Figure 4.12 shows how the time difference between successive simulation steps may be 
derived.  The number in the round brackets indicates which state should be accessed.  A value 
of zero would be the current state and is implicit, -1 would indicate the previous state, -2 the 
state before that and so on. 

Obviously storing a history for each property would be grossly inefficient and unnecessary.  It 
is for this reason that only literals may be used to reference states.  When interpreting the code 
it is possible to identify those properties that need to be stored and the length of the history 
list.  If variables were permitted to index states, the history list could be any length and would 
impose unattractive time and space overheads.  If a number of states (only known at run-time) 
do need to be referenced then conventional methods can still be used, e.g. storing them in a 
list.  In this example only one previous state needs to be kept for time. 

4.4.3.2.6 Modules 

Putting a complete universe definition in one file, complete with entity declarations, code, etc. 
is impractical.  Splitting a program into modules is a common practice in other languages and 
this same technique is applied in UML.  Each module is a file that contains syntactically and 
grammatically correct UML data definitions and/or instruction code.  It is quite common, 

ELEMENT HSVColour : Colour
{

// Definition without any converters...
}

try
{

PROPERTY rgb : RGBColour;
PROPERTY hsv : HSVColour;

rgb.Set( 1.0, 0.0, 0.0 ); // Bright Red!
hsv = rgb;

}
catch ( EXCEPT_CONVERTER )
{

// Resolve problem.
}

Figure 4.11  Attempting to convert an element without a converter. 

FUNCTION Construct
{

VAR dt : REAL = time - time(-1);

// Do something with dt...
}

Figure 4.12  Calculating a time delta using state indexing. 
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however, for the module to be contextually incorrect since it is only after inclusion into a 
larger UML definition that it will make sense.  For example, a module could contain the 
visual model definition given in Figure 4.4 which would be imported into the Base universe 
definition as shown in Figure 4.13.  Note that the name of the element in the visual.umm 
file is not actually valid because it is not satisfying a previous stub declaration.  Therefore, an 
attempt to parse this file on its own will result in an error.  However, when it is imported into 
the definition contained in base.uml the result is perfectly valid. 

The naming of files is left up to the discretion of the user.  However, in this example the 
.uml extension is used to indicate a valid UML description, whilst .umm is used to indicate a 
module with potentially contextually invalid contents. 

Code that is often re-used, in much the same way as traditional object-oriented classes, may be 
placed to best effect in modules.  These modules may also be imported and instanced in the 
same way.  A common use is the encapsulation of services, for example basic system calls.  
Rather than use two statements to import and instance the code, both may be done at once 
using, for example, IMPORT "visual.umm" WITH visual.  This takes the top-level 
element in the file, in this case Visual, and declares a property with its type. 

// Filename: visual.umm

ELEMENT Visual
{

// Element definitions...

PROPERTY surfaceList : Surface[];

FUNCTION Read( filename : STRING ) : BOOLEAN;
FUNCTION Write( filename : STRING ) : BOOLEAN;

}

// Filename: base.uml

UNIVERSE Base
{

ELEMENT Models
{

IMPORT "visual.umm"

ELEMENT Aural;

PROPERTY visual : Visual;

// Etc...
}

// Rest of definition...
}

Figure 4.13  Importing a module. 
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4.4.4 Summary 

This section has presented an analysis of potential candidates for a modeling language.  Due 
to some unique requirements the existing languages were deemed inadequate and the most 
important features of a new language, UML, were presented.  UML is composed of a data 
definition language and an instruction code language.  For a complete and formal description 
of the UML data definition grammar, please refer to Appendix A.  An implementation of a 
UML interpreter is presented in chapter 5.  The rest of this chapter describes the remainder of 
the integrated modeling/simulation system. 

4.5 System Architecture 
This section describes the structure of the proposed solution to distributing the universe 
simulation.  A system overview is presented first, followed by a detailed description of the 
system’s operation and concludes by separately addressing a couple of the key design issues. 

4.5.1 Universal Simulation Node 

The proposed building block for the Universal Simulation System, USS, is the Universal 
Simulation Node (USN).  The USN has some important properties: 

• It is capable of managing a complete simulation on its own without the aid of other 
USNs. 

• Distribution falls within the near/tightly-coupled classification.  This may range from 
a tightly-coupled multiprocessor system within a single chassis or a fast LAN 
connecting otherwise independent resources. 

• The amount of bandwidth and computational power consumed by the simulation is at 
its highest at this level. 

• Participants in the universe simulation use a USN as their gateway into the 
simulation. 

Multiple USNs may be connected together to provide interoperability over near distances 
(Figure 4.14).  This may be used to distribute an intensive simulation or to provide access for 
multiple participants to a single simulation (one or more participants would be present at each 
USN).  The bandwidth used on the connections between USNs will be substantially less than 
at the USN level to reflect the (probable) change in network medium and nature of use.  Such 
a grouping of USNs gives us a complete USS.  In the remainder of this thesis whenever a 
node is discussed, it is actually referring to a USN and, similarly, a system corresponds to a 
single USS. 
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4.5.2 Universal Simulator System 

A USS may be built from just one USN but this is generally inefficient due to the number of 
tasks that a fully configured USS must perform and the overheads incurred by each task.  
Distributing the workload between several nodes is more efficient.  The tasks that a USS must 
perform are: 

• Managing local input/output devices, e.g. joysticks, 3D mice, image generators. 
• Handling communication with other USSs. 
• Executing the simulation. 

4.5.2.1 Essential Components 

These tasks are undertaken by a number of different software components which all have a 
defined role.  Each USN has a Resource Manager (RM) that is responsible for monitoring 
CPU usage, memory usage, controlling access to backing store and moderating the use of 
input/output devices to those processes that request them (Figure 4.15).  At any time the RM 
is capable of providing information on the loading of the node and processing requests for 
other services.  In essence, the RM contains the local scheduling functionality. 

The Universe Manager (UM) is present in one form or another on every USN in the system.  
The UM of one node in each system is designated master and is responsible for 
communicating with the UMs residing on the other nodes in the system and also between 
other master UMs on other systems. 

A universe consists of many autonomous entities (ENTs) which are implemented as separate 
processes.  Each entity falls under the control of the node’s UM (working in conjunction with 
the RM) which is responsible for scheduling the ENTs so that they are not starved of 
resources and can perform their work in time for the next simulation time step. 
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Figure 4.14  Example structure of a Universal Simulation System. 
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4.5.2.2 Optional Components 

The three components UM, RM and ENT are the minimum required to form a USN and 
therefore support a simulation.  Although entities may sample input devices, the simulation 
has no displays which makes this configuration of limited usefulness.  Typically a visual 
and/or aural representation is given to entities within the simulation and there must be some 
way of making use of a CIG or sound equipment.  This link between the output devices and 
the simulation comes in the form of special-purpose Managers.  A manager monitors the 
information flow in the simulation and takes actions according to its purpose.  The three 
managers described below are commonly used although others may be added without 
restriction. 

If the system requires the use of a CIG then a manager has to be present in order to control 
access to it.  One such manager is the Visual Manager (VIS) which runs on the node that the 
image generator is connected to.  VIS provides services for representing and managing any 
part of the visual representation of the universe. 
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Figure 4.15  Example organisation of a USS complete with populated USNs. 
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In the same way, the Aural Manager (AUR) is tied to a node with acoustic rendering 
equipment and provides services related to the aural representation of the universe. 

The Spatial Integrity Manager (SIM) monitors the state of the universe being handled by the 
USS and notifies the relevant entities when there has been a breach of their spatial integrity, 
i.e. a collision.  Response to these events are handled by the entities themselves. 

Each UM can also support a Console which is essentially the hybrid of a manager and an 
entity.  A console is forwarded the most important messages and provides a convenient way of 
collecting statistics.  It may also be used to trigger certain events in the system. 

4.5.3 System Organisation 

There are no restrictions imposed by this architecture on how these components should be 
organised.  Multiple specialised managers offering the same services can also be supported.  
The vast range of available processing power and communications bandwidth prevent the 
creation of a set of rules.  However, it is possible to speak in general terms and provide 
according guidelines: 

4.5.3.1 Near Tightly/Loosely-Coupled 

A real-time distributed simulation’s two enemies are the lack of bandwidth and 
communications latency.  When transmissions between system components occur within the 
same physical machine then a given set of protocols may be used to communicate between 
certain processes.  Assuming the configuration in Figure 4.15, this would mean that each USN 
could be attached to one processor, or maybe even a small farm of processors, communicating 
via a high-speed data bus.  Passive partial data replication and complete computational 
distribution are used at this level. 

As LANs increase in available bandwidth, it is possible to use these same protocols over a 
larger distance, latency permitting.  In such a case each USN may reside on a different 
physical machine using, for example, fibre-optic cable as a transport medium. 

4.5.3.2 Near/Far Loosely-coupled 

There comes a point, however, when either the bandwidth is too small or the latency too great.  
As latency increases, use of the original protocols typically becomes less and less practical.  
To overcome this problem, networked USSs are connected and information to maintain 
synchronicity between these isolated systems is sent between them.  An example of such 
information is that representing the interaction of participants at one system with other 
participants on another system and their influenced changes in the environment (section 
4.5.4.10).  In other words, total data and computational replication are used. 

4.5.3.3 USS Networking 

Those systems that use broadcast/multicast (section 2.4.4) have adopted a protocol that can 
compensate for the occasional missing packet.  Data is sent regularly and is sufficiently 
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detailed that the lost information may be reconstituted or replaced by the succeeding 
messages.  However, a lost message can result in temporary invalid behaviour which may 
have undesired side-effects. 

By restricting the information that needs to be sent between systems to the bare minimum, i.e. 
level 2 behaviour distribution, the bandwidth required between systems is reduced 
proportionally.  In an ideal world this information would be sent between systems using a 
low-overhead mechanism such as multicast.  However, unless a reliable datagram protocol is 
available a lost message could have a profound effect.  A message containing higher 
behavioural information is sent less frequently and failing to process it would effectively lead 
to that system running a different simulation to the others.  Therefore, in both cases, there is a 
need for a reliable message delivery service. 

Multicast is not widely available and the advent of reliable multicast services will take even 
longer to realise.  Therefore it was decided to investigate a solution using point-to-point links 
with a view to future reliable multicast availability.  If there are a large number of systems all 
participating in the same simulation, then the network of point-to-point connections between 
all of these systems would resemble a spider’s web (section 2.4.1).  To reduce communication 
overheads, a hierarchical network of systems may be constructed (Figure 4.16) such that any 
message to be sent outside a USS is sent to its parent and its children.  The parent and children 
then determine if the message should progress further. 

Since it is perceived that the information sent between systems is of relatively low bandwidth, 
the burden placed on each system for routing should be manageable.  Unfortunately the 
latency this introduces may be insurmountable if the number of systems arranged in the 
hierarchy becomes too large.  However, there is little alternative at this point in time.  
Interestingly, Bhagwat et al. (1994) have proposed a tree structure as the solution to scaling 
the error control mechanism used in reliable multicast for WAN usage.  Certain nodes in the 
tree are assigned the responsibility of distributing the data reliably to the sub-trees rooted at 
these nodes.  A tree structure is already used by the MBONE (Pullen, 1994), therefore there 
seems to be a need for a tree structure, regardless of the communication mechanism used, in 
order to cope with the transmission over long distances, reliable or not. 
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Figure 4.16  Hierarchical structuring of USSs. 
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The amount of data generated by continuous live streams of audio and video would put a 
significant burden on any such organisation using point-to-point links and software routing 
processes.  Fortunately, this is one type of information that can tolerate lost packets with few 
side-effects and therefore must be sent using conventional (unreliable) multicast techniques. 

4.5.4 System Operation 

Although each of the basic components (UM, RM, ENT) are separate processes, none can 
operate without the others and their functionality reflects the required interactions between 
them.  Therefore, rather than fully describe each process in turn, a more function-oriented 
approach has been taken in this section concluding with some information on the common 
special managers.  Implementation issues are discussed in the next chapter but a short note is 
provided in the following descriptions where there is an important decision to be made. 

4.5.4.1 System Initialisation 

The first USS started is at the root of the system hierarchy.  The first process started within 
any system is the master UM (MUM) which then waits for its child, or slave UMs (SUMs), to 
connect to it using activation messages3.  When all SUMs have connected to their MUM the 
system is ready to receive connections from its child systems in the system hierarchy (if any).  
Once these have been made it connects with its parent system unless, of course, it is the root 
system in which case the network of systems is deemed to be active.  All inter-system 
communications are performed via the MUMs in each system. 

Once a UM has connected with its parent, be it another UM or a USS, it starts its local RM 
and any other special managers configured to run on that node.  Once the managers have 
established a link with their UM they provide it with a service ID which represents the type of 
manager they are and the nature of their services.  The same service ID is shared by those 
managers providing an identical service (although their implementations may differ).  Apart 
from the RM which has a service ID of 0, the UM does not know what ID matches which 
service, nor does it need to (section 4.5.4.5). 

The next stage of the system initialisation is to parse the UML definition of the universe.  A 
copy of this definition is sent to each specialised manager and forwarded to slave UMs.  These 
managers then register interest in any parts of the definition that they wish to monitor with the 
UM (section 4.5.4.6).  At the same time the MUM completes the initial process creation stage. 

4.5.4.2 Universe Creation 

At this stage, the only processes left to create are ENTs.  The MUM processes each ENTITY 
definition in the UML description and starts an ENT process to represent that entity in the 
simulation.  The location of the ENT is determined in conjunction with each node’s RM as 
discussed in section 4.5.4.12.  The entity creation phase concludes with the execution of their 
Construct function. 
                                                           
3 In the following sections, description of the UM’s role will represent either a MUM or SUM unless stated 
otherwise. 
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4.5.4.3 Universe Simulation 

After the creation process has finished, the MUM is ready to start the simulation proper.  The 
beginning of each simulation step is marked by the transmission of an update notification 
message to each ENT, manager and SUM (Figure 4.17).  On receipt of this message, the 
SUMs forward the message to their local ENTs and special managers.  Each entity executes 
its Update function, sends any modified state back to its local UM and waits for the next 
update message. 

After receipt of an update notification message, each special manager waits for update 
messages to be forwarded to it via the UM.  Once all messages have been forwarded, the end 
of the simulation step is marked by an update complete message which is sent to the managers 
only.  When the managers have finished their work the update process begins again. 

4.5.4.4 Master/Slave UM Relationship 

Within a USS all information is completely distributed.  This means that any event which 
occurs on one USN which may effect the system state must be reflected on the other nodes in 
that system.  For example, if a manager on one node registers interest in a part of the UML 
definition with its local UM (section 4.5.4.6), that message must be communicated to the rest 
of the UMs on the other nodes.  Messages sent by local processes that are intended for remote 
nodes are sent to the UM which acts as a router and forwards them to the MUM; from here 
they are sent to the correct node.  Most messages are intended for all nodes rather than one-to-
one communications and this mechanism provides a convenient way of implementing a 
pseudo-multicast facility (Figure 4.18). 
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Figure 4.17  Order of events for a simulation update. 
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Each UM (and RM) maintains a list of managers and entities on its node but the MUM also 
keeps a running total of the number of entities active on each slave node.  Another difference 
between SUMs and the MUM is that the master node performs system-wide load balancing.  
In addition it manages the sole connection with the other systems.  Live audio and video 
streams are dealt with separately in that the data packets containing this information coexist 
with simulation traffic but are only processed by the intended recipient (probably a special 
manager). 

4.5.4.5 Locating Services 

All processes throughout the systems, including the UMs, have a unique address called a 
Universal Process IDentifier (UPID).  Examination of a UPID will describe the exact location 
of the process, its system, its node and its local address. 

Any entity or manager may issue a location request which is sent to the UM in order to locate 
a particular process.  The search may be restricted to the local node or permitted to extend 
throughout the system.  If the search target is an entity then its name is given whereas a 
service ID is used for a manager.  Should the service not exist locally and a system-wide 
search has been asked for, then the location request is forwarded to the MUM/SUMs.  A 
successful search results in the return of the target process’ UPID.  The decision of which 
manager to use is left up to the entity to negotiate.  Searches using a UPID as the key can also 
be performed and result in the return of either an entity name or a manager name and service 
ID.  If multiple managers offering the same service are located, then all of their addresses are 
returned.  Once a process’ address is known, messages may be sent to it either directly, if it is 
on the same node, or indirectly using the UMs as routers. 
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Figure 4.18  Possible communication path taken by a message sent from 
an entity to all managers. 
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4.5.4.6 State Monitoring 

The state of the simulation is represented entirely by the sum of all the individual entity states.  
The state of each entity is an instance of their local copy of the UML definition. 

When a manager registers interest in a particular component of the UML definition it is said to 
be monitoring its change in state.  After receiving the UML definition, a manager sends 
monitor request messages to its local UM which associates a dependency with the given UML 
component (Figure 4.19). 

4.5.4.6.1 Unique State Identifiers 

Somehow, the state sent by each entity to satisfy each dependency must be uniquely tagged 
such that each process throughout the whole system can identify it.  The size of this ID can be 
approximated by the following equation: 

Considering the potentially large number of entities system-wide and the number of 
dependencies that could be registered, this ID would have to be very big.  How the ID is 
derived is also problematic.  A centralised allocator could be used but this would not be very 
fault-tolerant.  A network of mirrored allocators would be better but many IDs will be 
allocated and discarded throughout the lifetime of the system.  The overhead incurred by 
interrogating such an allocator is too great for this to be a viable option.  Basing the ID on the 
location of the entity is also impractical because entity’s may migrate (section 4.5.4.12). 

The chosen solution uses an ID which is unique between the UM and the process in question, 
whether it is an entity, a manager or another UM.  As state updates are passed between 
processes, e.g. from an entity to interested managers, the UM inserts the correct ID for the 
communication.  This may seem like an expensive process but, as shown in section 5.6.3.2, 
this may incorporated into the state distribution mechanism with negligible overhead. 
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Figure 4.19  Procedure for registering interest in a UML component. 
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This ID, known as a monitor ID, is returned by the UM in a monitor acknowledge message 
and is used in further transactions regarding this component.  Multiple dependencies may exist 
for a given component, each one generated by a different manager - there is no point in a 
manager monitoring the same component more than once. 

4.5.4.6.2 Synchronisation 

If a given entity was created before monitoring of a particular component was registered (and 
it uses that component), then it will be sent a monitor notification message by its UM when 
that event occurs.  It too will be given a monitor ID to be used in further communications.  If a 
component has multiple monitors then only the first registration will generate a notification 
message.  Conversely, if the entity is created after monitor requests have been processed, then 
the UM will synchronise it with the other entities by sending a stream of monitor 
notifications.  Also, following entity migration the destination node’s UM synchronises the 
entity to establish new monitor IDs. 

4.5.4.6.3 Distributing Monitors 

A copy of any monitor request received by a UM is forwarded to its MUM or SUMs and a 
similar process is undertaken to allocate a unique monitor ID between UMs.  The remote UMs 
will then inform local entities as necessary.  In this way, an entity on one node will know to 
send state updates for a component that is being monitored on a remote node.  However, it 
does not know where the manager is, only that a manager is interested in its state. 

4.5.4.6.4 Construct, Update and Destruct 

At the end of the entity creation sequence, after all relevant data has been instanced, the 
entity’s Construct function is executed which, when completed, results in one or more 
construct messages sent to the UM (Figure 4.20).  Each message corresponds to a monitored 
component and holds the current state of that instanced component.  Upon receipt, the UM 
looks for any dependencies on this component and forwards the entire message to the 
interested managers (with one proviso detailed below).  At the end of the entity’s update 
phase, similar update messages are sent: upon entity termination, a single destruct message is 
sent.  Note that update messages are only transmitted if the entity has modified that part of its 
state since the last update notification was received. 

When a manager receives a construct message it instances the monitored component and 
copies the state contained within the message.  As update messages are received it updates its 
local copy of the state and deletes the instance if it should receive a destruct message.  Upon 
receipt of these message types a manager executes its own construct/update/destruct functions.  
These functions perform some action which is unique to each manager, e.g. the update 
function may wait for an entity position change so its visual representation may be moved.  At 
any time a manager may also get the current state of an entity’s component by sending a state 
request to the UM which is forwarded to the entity.  The state is returned in a message with 
the same structure as a normal update message. 
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As inferred in section 4.5.4.4, the local UM will send a copy of the relevant entity construct, 
update and destruct messages.  Obviously, if those nodes do not have any managers running 
on them, then there is no need to send these messages at all. 

4.5.4.6.5 Constraint Functions 

A manager can also supply a constraint function (written in UML) to be associated with each 
component it is monitoring.  Every time the UM receives a state update for a monitored 
component it executes the constraint functions (if they are present).  If the dependency is with 
a local manager and the constraints are met then the state is forwarded to the manager, 
otherwise no message is sent.  All dependencies with remote managers are represented locally 
as dependencies with other UMs and the evaluate-send sequence has two additional 
conditions.  Firstly, if multiple dependencies for a single component exist with remote 
managers on the same node, then each function is executed in turn until one succeeds or all 
have failed.  Secondly, if one or more of the dependencies for a given node do not have a 
constraint function attached, then the state is sent immediately without executing any of the 
functions.  Constraint functions may be updated or added at any time by the manager that 
owns the dependency. 

4.5.4.7 Localisation 

WAVES filters messages upon reception so that only those entities in a viewable area 
associated with a given host are sent to that host.  NPSNET splits the environment into a mesh 
of two dimensional hexagonal cells and uses multicast groups to ensure that only the entities 
within the local and neighbouring cells are processed.  AVIARY’s EDB provides a 
comprehensive range of services including collision detection and entity operations based 
upon volumes of space.  One such volumetric service is the monitoring of a specified region 
of space for a client.  When an entity enters, leaves, moves or changes whilst in that volume 
the client is notified and may take according action. 
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Figure 4.20  Sequence of events during entity construction. 
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A criticism that Snowdon (1995) makes of the approach taken by WAVES is that a lot of 
bandwidth may be consumed for no real reason since all messages are only filtered at the 
destination.  This is a valid point which USS does not suffer from.  By using constraint 
functions, filtering is done at source which, combined with state updates that are only sent 
when a change has occurred, reduces the required bandwidth to an absolute minimum. 

The localisation techniques used by both NPSNET and AVIARY “filter” based solely on 
position and volume.  NPSNET does this merely to reduce the amount of entities it needs to 
process whilst the EDB also performs collision detection.  However, in a USS a constraint 
function can be imposed on any component, not just one representing position.  As part of the 
basic services offered by a USS, the UM has no understanding of what the UML description 
means, just that it is composed of constants, elements, properties, etc.  Only the manager that 
specifies the constraint function needs to understand what it means.  By abstracting the 
filtering process in this way, it is just as easy to receive information about entities within a 
given volume as it is to restrict messages to changes in an entity’s colour.  If only position 
changes are wanted for red entities, for example, then it is necessary to encapsulate the 
position and colour properties in another such that the constraint function may compare them. 

Consider the common case of an entity moving through space, entering a volume monitored 
by a manager and passing through until it leaves at the other side.  When the manager starts 
receiving messages because the entity has entered the volume, it needs to know the current 
state of all the components it is monitoring, not just the one that has just changed, i.e. their 
position.  Similarly, when the constraint fails it needs to be informed so that the entity can be 
dropped from its calculations.  To resolve this problem a constraint function has the optional 
functionality to issue a state request to the entity on behalf of the manager.  When entering the 
volume one or more pseudo-construct messages are sent (one for each monitored component) 
and a pseudo-destruct message when leaving.  Although the entity is not actually constructing 
and destructing it is as far as the manager is concerned. 

4.5.4.8 Modifying the Universe Definition 

The strongest advantage of using an interpreted language for modeling was that it facilitated 
modifying the definition of the VE.  This may involve an addition to a given component, the 
deletion of part of its structure (or the whole component), or the definition of a new 
component (or part thereof).  Whenever a change happens, regardless of its nature, every 
process in the system must be informed (with the exception of the RM).  In addition, since this 
is a fundamental change in the simulation, it must be communicated to other systems 
simulating the same universe.  Such a change is introduced by an entity (probably initiated by 
a user) and sent to the MUM in a uml message.  The change is first parsed by the MUM and if 
this is successful a lock for the portions of the definition being modified is negotiated with the 
other systems.  The new definition is then forwarded to the MUM’s local entities, special 
managers, slave UMs and to any systems it is in contact with.  All modifications are made 
system-wide within one simulation step.  When the other systems have acknowledged that 
their modifications are complete, the lock is released.  To accommodate for lags in the system 
and between systems, changes may be queued and effected at a predetermined time.  This 
allows the changes to be transmitted to the furthest node/system and after all nodes/systems 
have the modification request in their position, the change is effected simultaneously. 
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If a component is extended then default values must be given to the newly added subsection.  
If part of an existing component is removed then accesses to this old information must also be 
removed.  Addition of a new component outside the scope of usage by any entity, or not 
within the components being monitored, does not have any side-effects.  These issues are 
dealt with further in section 5.5 which discusses the implementation of a UML interpreter. 

4.5.4.9 Multiple Universes 

The purpose of a UM is to manage the execution of simulations of universes described using 
UML.  Entities form logical groups reflecting the universes they belong to although they may 
still execute on the same node.  In order to support multiple universes, it is necessary to tag 
every message sent with a unique universe ID that must be processed every time a message is 
received by a UM or RM.  The UM vets messages for entities so that they are never sent a 
message originating from another universe.  It would be possible for managers to handle 
information from multiple universes simultaneously, but this might either be impractical, e.g. 
in the case of VIS, or inefficient, e.g. the SIM is a computationally expensive process.  On the 
positive side, having the relevant information for all universes in one place simplifies the 
process of entity migration (section 4.5.4.12).  Therefore, the designer of a special manager 
must make the decision to have one manager for all universes, or one manager per universe. 

When an entity moves from one universe to another a destruct message is issued.  The parts of 
its definition that it has in common with the destination universe are preserved (and their 
associated state) whereas the others are destructed as per usual.  The entity then constructs in 
the target universe, building upon the partial state it has retained from the source universe by 
instancing those properties that are new to the entity and assigning default values.  Finally the 
entity is moved from one universe group to the other.  Note that there is no need to terminate 
and recreate the ENT process, just alter its state. 

4.5.4.10 Multiple Users 

Users are represented by entities that read input devices and take actions accordingly.  
Multiple users can be supported within the same system without adding any extra 
functionality.  This is not true when users on different systems wish to interact.  Each USS is 
totally replicating the computation and data yet each system has what are, in effect, wildcards 
- users.  A user on one system must be represented on the others and their actions reflected, 
i.e. their behaviour must be modeled in some way.  This goal represents a level 3 distribution 
which, as discussed in section 2.2.4.5, is not feasible since the decision making process is too 
complicated. 

Consider the example of a user driving a virtual car.  Sending changes in the car’s position 
(level 0) over low bandwidth communications links is wasteful but highly accurate.  Level 1 
distribution can be achieved by approximating the dynamics of the car, i.e. a dead-reckoning 
model.  This is not very accurate and can result in sudden changes in the modeled variables as 
updated parameters are sent by the real entity.  Parameterising a user’s actions over time, such 
as turning the steering wheel or pressing the pedals is also feasible.  By triggering pre-
programmed control movements it is possible to achieve level 2 distribution and an 
approximate representation. 
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However, representing a user that is walking around the environment, moving their arms and 
legs is not as simple.  Limb positions could be approximated based on velocity but subtle 
movements would be lost.  Given a set of animated behaviours such as “move forward”, “turn 
left”, “pick object up”, etc., then level 2 distribution could be achieved.  But this solution 
shares the same problem with the previous example: how do you map the constantly changing 
data from the input devices into a series of pre-programmed movements? 

It appears, therefore, that the level of behaviour modeling required depends on the method of 
interaction and representation utilised by each user.  Since this is an area of research that 
requires a great deal of further work, USS does not impose one particular method. 

All messages sent by an entity representing a user are tagged accordingly.  They are processed 
in exactly the same way, except that when they reach the MUM they are also forwarded to any 
systems that are simulating the same universe.  When an entity construct is received by the 
MUM on another system, a new shadow entity is constructed and its state taken from the 
message.  This process functions in the simulation in the normal way until a destruct message 
is encountered.  These are the only two messages that are always sent, any other type of 
message to be sent to the entity’s shadow must be specifically indicated. 

By flagging update messages, all component updates made by the entity are forwarded to the 
shadow - use of this option is not recommended.  Preferably, when modeling the entity a 
number of UML functions can be written that, when executed, will perform an automated 
manipulation of the entity’s properties.  This could result in a position change or the triggering 
of a sound, etc.  By redefining the shadow’s update function to exclusively call this function, 
animated behaviour is possible.  Level 2 distribution may be accomplished by leaving the 
update function empty and remotely invoking these functions in a certain sequence to effect 
the desired result.  These last two methods merely use the uml message to send UML code to 
the shadow entities and are issued within the real entity’s Update function. 

4.5.4.11 Entity Lifetimes 

Most entities are created when the initial universe creation occurs but they may also be created 
at run-time.  An entity can only be created by a UM but creation requests can be made by 
other entities. 

Entities may terminate (abnormally or naturally) at run-time and new entities not originally 
specified in the universe definition may be created.  Notification of entity terminations are 
sent to all managers that were monitoring its state in process notification messages.  Entity 
creation follows the usual procedure and requires monitor dependency synchronisation. 

An entity may opt to save its current state to backing store before termination so that it may be 
loaded again when it re-enters the simulation.  This mechanism is often used by users since 
they are not always present in a simulation. 

4.5.4.12 Scheduling 

When a process (including the UM) is created, it is allocated a Resource Profile (RP) which 
holds information about which resources it needs, how much and (if possible) when.  A new 
process is given a default allocation of resources (or a hand-written specification) which is 
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modified and tuned during the execution of the simulation.  At the beginning of each 
simulation step, all the entities and managers within the simulation are given access to the 
resources through a dynamic deadline scheduler so that they may complete their calculations 
for the current step. 

Upon completion of each entity’s calculations, information regarding the amount of resources 
that they consumed is processed by the RM, so it may adjust their scheduling parameters, if 
necessary.  When a schedule entry is inserted, deleted or changed, some or all of the other 
entries must also be reallocated.  Resource contention is accounted for in the scheduling.  It is 
possible that a time will occur when completing all the calculations necessary within one time 
step is impossible.  At this point there are four choices: 

1. Flag that a fatal error has occurred and terminate the simulation. 

2. Degrade the number or accuracy of calculations currently performed so that the final 
deadline may be met. 

3. Degrade the simulation by extending the duration of the simulation period thus 
resulting in a lower simulation update rate. 

4. Migrate the offending process to another node. 

The first option is obviously highly undesirable, the second is fine in theory but implementing 
an entity with alternative computation paths based on complexity is more complex in itself 
and will require more memory to store them.  Whilst an attractive approach for a manager, 
e.g. varying the accuracy of collision detection based on the time available, this could lead to 
different outcomes on different systems and hence different simulations.  However, a slight 
variation on this technique would be to reduce the rate at which each process was updated.  If, 
for example, an entity represented a very slow moving entity then updating it at 30 Hz may be 
excessive if no noticeable difference is made at 5 Hz (Wloka, 1993).  Such functionality can 
be programmed into the entity without complicating the task of the UM further, i.e. an update 
is not returned until a pre-defined threshold is reached.  Extending the duration of the 
simulation step is a valid option but should only be used if the fourth and final option is not 
possible. 

By periodically interrogating each RM, the MUM can determine whether the workload on any 
node is too high and that an ENT should be moved to another node.  (The RM includes itself 
in the list of resource consumers when calculating the total utilisation for each resource.)  The 
actual entity is chosen by the RM and its current RP is sent to the MUM so that it may 
determine which node has the best chance of accommodating it.  If the chosen node cannot 
schedule the entity, e.g. due to resource constraints, it rejects the migration order and the 
MUM chooses another node.  Alternatively, if the RM determines that a particular ENT will 
exceed the available resources before the next load check, it may send a migration request to 
the MUM containing the entity’s RP.  Stankovic et al. use an algorithm whereby each node is 
responsible for finding a new home for a process (section 4.3.1.4); USS takes advantage of the 
fact that all inter-node communications are routed through the MUM.  It is only a small step 
from this position to delegating all responsibility for locating a new node to the MUM. 

Once a decision has been made to migrate an entity, an ENT process is created on the 
destination node.  The entity’s complete state is then packaged up (in the same way as smaller 
sections are for construct and update messages), sent to the newly created destination ENT 
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process in a migration state message and followed by its current RP.  After this transfer has 
been completed the old process is terminated.  The migration is scheduled to take place after 
the entity has completed its update so that the current simulation step is not affected.  All 
managers that are dependent on any part of the entity’s state are sent migration notification 
messages to inform them of the change.  Any other messages that should slip through this net, 
e.g. direct communications with another entity, are forwarded by the UM and the sender is 
notified of the move.  The MUM does not keep track where each entity is, only how many run 
on each node.  The only time location information is needed is during an entity migration, at 
which point an entry is added to the migration list.  This entry details the entity name, source 
node, target node and original address.  Once a migration has completed the entity’s entry is 
removed from the list. 

Managers may, of course, also consume more and more resources but it is neither feasible nor 
efficient to migrate them to another node.  Firstly, they possess a large amount of state 
information, albeit copies, and they may also be tied to specific hardware in that node.  
Finally, the time it takes to move a manager will by far exceed the time taken to move a single 
entity and may, in itself, cause problems with scheduling. 

The RPs for UMs reflect that they are more demanding than most of the other processes in the 
system.  In fact, the node holding the MUM will most likely have fewer managers and entities 
due to its increased administration responsibilities. 

4.5.4.13 Resource Profiles 

Process-specific resource consumption and scheduling requirements are held in an RP.  In 
fact, a process maintains a resource history which stores a copy of the previous RP, the 
current RP and a prediction of future resource requirements.  The RP also shows whether 
exclusive access is required to a resource or whether shared access is permissible. 

An RP is composed of the four basic resources that each node can possess:  computation, 
memory, backing storage and network.  The capacity of a given resource is measured in a 
different way each time.  In the same way, determining the utilisation is specific to the 
resource and is represented by a percentage.  In all cases, the limitations of the node’s physical 
architecture, such as internal bus speed, are incorporated into all of the ratings given. 

Computation is gauged by both an integer and a floating-point rating.  The CPU type and 
statistics are also held, possible CPU types are: Reduced Instruction Set Computer (RISC), 
Complex Instruction Set Computer (CISC), Vector, (specifying size of Data and Instruction 
Caches) and CPUs with specialised extensions.  The presence of a Floating Point Unit (FPU) 
is explicitly indicated since floating-point operations may be emulated in software.  If a FPU 
is not present then each rating represents the CPUs performance given only an integer or a 
floating-point workload.  The CPU statistics are, in general, only used for scheduling 
purposes. 

Memory is rated by its size in Megabytes (Mb) and its access time in nanoseconds (ns).  The 
total amount of memory being used is periodically recorded. 
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Backing storage is also rated by how large it is, its average access time in microseconds (µs) 
and cache size - these last two statistics are combined to provide a convenient rating.  A 
record is also made of how much disk space is being used.  This is the only optional resource. 

Network capacity is measured in Megabits per second (Mbps) after taking into consideration 
the protocol overheads.  Calculating its utilisation is somewhat tricky without operating 
system support but can be approximated based on the number of messages sent and their 
average size.  In order to support live audio and video feeds, it is necessary to include the 
bandwidth consumed by these transmissions when calculating the node’s total network 
utilisation.  This information is collated by the UM (through which all messages pass) and 
periodically communicated to the RM. 

Each resource is run at a percentage of its maximum to establish a threshold beyond which 
some load balancing action must be taken.  The threshold for each resource is set 
independently, each specified as a percentage of the resource’s maximum potential. The CPU 
has two thresholds, one each for integer and floating-point capacity.  To prevent a situation 
whereby the slightest change in resource consumption results in a migration request being sent 
to the MUM, a latency factor is associated with each resource.  If the resource should remain 
over-utilised for longer than the specified time, or there is a continuous dramatic increase, 
then action is taken. 

4.5.4.14 Input/Output Devices 

A node may have one or more peripherals attached to it, such as mice, joysticks, 6 d.o.f. 
tracking systems, a sound system, a CIG and so on.  All of these are classified as resources 
and access to them is monitored by the RM.  The capacity rating of each of these resources 
can differ by so much and can be measured in so many different ways that the RM does not 
attempt to hold this information.  Only a percentage utilisation is stored which is provided by 
each of the specific drivers for the given resources (as is their initial rating).  Such ratings are 
resource dependent and cannot be compared between different resources. 

The device drivers would be best organised as tasks within the RM itself but this can cause the 
RM to become a bottleneck within the system, therefore Device Drivers (DDs) have an 
identity of their own with the system (what form this takes depends on the implementation).  
All access to the devices is through these DDs who keep the RM informed on their utilisation.  
Common roles for DDs are providing access to serial and parallel ports, disk controllers, 
digital I/O, Analogue to Digital Converters (ADCs), etc.  Often DDs are provided with higher 
functionality such as a filing system, mouse drivers, joysticks, 6 d.o.f. trackers and so on. 

Implementation of the DDs may take the form of a separate process when the resource can 
support servicing multiple requests simultaneously, but more commonly it may be provided as 
a library which may be incorporated into a software component with a high level of 
functionality.  For example, VIS requires access to the CIG and having a separate process in 
between it and the CIG hardware will only cause a performance loss.  It is far more efficient to 
incorporate the DD into VIS and inform the RM that this resource is no longer available since 
VIS has exclusive access 
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4.5.4.15 Visual Manager 

The Visual Manager, VIS, provides a standardised interface to all CIGs.  These may be special 
hardware attached to the node either as an integral part of the node’s hardware or an extension 
to it.  Alternatively, VIS may incorporate a 3D software library which is capable of interactive 
performance such as RealityLab™ (Microsoft RenderMorphics Ltd., UK), Renderware™ 
(Criterion Software Ltd., UK) or BRender™ (Argonaut, Inc., USA).  The actual underlying 
technology used for image generation and their specific interfaces are hidden from the rest of 
the system.  In both cases, VIS requests exclusive access to the dedicated hardware or video 
card via the RM.  One of the many services that VIS offers is the ability to use more than one 
CIG channel, i.e. it can drive multiple instances of a given CIG and even many different 
makes of CIG simultaneously. 

The introduction of a special manager such as VIS necessitates the inclusion of a standardised 
UML definition to represent the information it needs.  For example, the property instance 
models.visual (Figure 4.3) of the Visual element (Figure 4.4) and the position 
property.  After creation, VIS would notify the UM of its wish to monitor all instances of 
these properties.  As each entity was constructed, so VIS would take the visual representation 
and construct a new visual object.  In most cases an entity would rarely modify its visual 
representation, so the following updates would usually only consist of position changes. 

Each VIS manager associates a viewpoint with one or more CIG channels.  For example, a 
non-frame sequential stereoscopic display would use two channels, one for each eye.  One 
viewpoint would be used, modified slightly to produce the correct projections for each eye.  It 
is likely that there will be more than one VIS manager in a given system, e.g. one per user, 
possibly more than one per node.  When an entity requests the location of a VIS manager from 
the UM it receives a list of the active VIS managers.  A manager may be assigned to an entity 
after which it will not be available for use by other entities until it is released.  Once service 
access has been restricted to one entity, that entity may manipulate the viewpoint’s 
parameters, such as position, orientation, aspect ratio, etc. 

To prevent itself from receiving information about every entity in the simulation, VIS 
associates a constraint function with the position property that specifies a volume around 
the current viewpoint.  As the viewpoint changes, the manager updates the constraint function 
associated with the component dependency held by the UM.  In order that the network is not 
flooded with constraint function updates, they are only sent when the distance of the 
viewpoint from the centre of the current volume reaches a certain threshold.  Upon entering 
the volume, an entity sends (pseudo-) construct messages which hold the entity’s current 
position and its visual representation.  When leaving the volume a single (pseudo-) destruct 
message is sent indicating that the entity should no longer be considered for rendering. 

To avoid the transmission of visual representations as each entity constructs, it would be 
desirable to provide a library of models, one of which would be referenced in the Visual 
element, thus superseding the detailed geometric description.  The library would be accessible 
by all VIS managers and common models could even be cached to reduce library access.  This 
technique makes it difficult for an entity to modify its representation at the vertex/polygon 
level and therefore should be provided as an option to the current method and not a 
replacement. 
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4.5.4.16 Aural Manager 

AUR gains exclusive access to the pertinent hardware for generating sounds via the RM.  
Copies of all information regarding the aural representation of the universe is held within 
AUR and changes to it are monitored by the manager.  In the same way that VIS provides a 
generic graphics interface, AUR provides a generic interface to generating sounds and thus 
may support many different hardware and software solutions.  Changes in information that 
affect how the sound is generated, e.g. movement of an entity, are sent automatically to AUR 
using the usual methods.  Constraint functions are used in the same way as VIS to restrict the 
number of entities that must be processed.  Typically the volume monitored by AUR will be 
different to that used by VIS.  For example, when sitting in a closed room with no windows 
one cannot see outside that room but it is probable that one will hear sounds originating 
outside. 

4.5.4.17 Spatial Integrity Manager 

For reasons of speed and efficiency, one of the most computationally expensive processes is 
implemented as an optional manager.  No particular method of intersection testing is 
advocated in USS since the methods available consume varying amounts of resources (Webb 
and Gigante, 1992; Bouma and Vanecek Jr., 1991; Cameron, 1990).  It is important, however, 
that the same method is used on all systems. 

At the minimum, details of the volume that an entity occupies are necessary along with 
position and orientation information, whilst a more ambitious SIM might require a velocity 
vector.  For more accurate determination of collisions a detailed geometrical description of the 
entities involved in the collision would also be needed so that the exact point of collision may 
be pinpointed (Zyda et al., 1993).  Utilisation of behavioural information for each entity is 
another possible approach and can be shown to reduce network traffic since only behaviours 
need be transmitted rather than continuous positional information.  Obviously the more 
accurate collision detection used, the more time and space the process requires.  By providing 
a generic interface, the type of collision detection method may be changed depending on the 
resources available, taking advantage of more powerful hardware.  Once a collision has been 
detected, each colliding entity is sent an entity interaction message which holds the UPIDs of 
the other involved entities.  The entity that caused the incident is nominated to co-ordinate the 
resolution process. 

The load placed upon the SIM may be relieved by using multiple co-ordinating managers in a 
manner similar to AVIARY’s EDB.  When the volume is split the original SIM modifies its 
existing constraint function whilst the new SIM lodges more monitor requests complete with 
its own constraint functions. 

4.5.4.18 Console 

Commands may be entered through a simple command-line interpreter.  These are mainly 
interrogative but a console may force the destruction or creation of entities at run-time.  Other 
manipulative operations include the purging of references to a given process from the UMs 
internal data structures (and those on other nodes) which is useful when a process has 
abnormally terminated.  However, the console does not actually take part in the simulation. 
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4.5.4.19 System/Node Lifetimes 

Nodes are users’ gateways into the simulation and it is probable that they will not be powered 
on all of the time.  Therefore a mechanism by which nodes may enter and leave the simulation 
is required.  When leaving the system, all entities related specifically to users on that node are 
terminated.  Once this is complete the remaining entities are migrated to other nodes and any 
special managers inform their clients that they are terminating.  Finally, when the only 
processes that remain are the RM and UM, a deactivation message is sent to the MUM and 
the node ceases activity. 

Re-entering the system is achieved by proceeding through the usual initialisation steps 
(section 4.5.4.1).  The MUM may then utilise the node’s resources for scheduling purposes, 
resulting in entity migrations. 

When a system leaves, it sends the master USS a deactivation message which is the cue to 
remove all processes representing users on the parting system from the simulation.  Joining a 
running simulation means that the current UML definition must be obtained from another 
USS, complete with current states for all entities.  For this reason, joining a established 
network of systems is only practical for very small simulations and, even then, not 
recommended. 

4.5.5 Time Management 

As conjectured in section 2.4.5, an explicit time progression model is used within a USS and 
an implicit time model is used to synchronise multiple systems. 

4.5.5.1 Explicit 

The explicit model takes the form of the update notification/complete message pair which are 
scheduled to occur at the same point in each simulation step.  This is not to say that the 
dependency on the system clock has been removed from the system.  In fact the opposite is 
true since all the scheduling is performed and monitored in relation to clock time.  However, 
there is no need to synchronise the clocks between nodes since the execution of the schedule 
for a node is done locally.  Each simulation step happens in a relatively small amount of time, 
especially for real-time simulations.  Therefore, at this level oscillator drift will not effect the 
timing of the schedule. 

There is no requirement that time is modeled in the VE but the usefulness of an environment 
that does not use time in some way is dubious.  The relationship between simulation time and 
real clock time can be modeled in a UML function, e.g. time() in Figure 4.3.  This function 
would use an expression based upon the current real clock time and the current step count.  
Using a function means that this relationship may be redefined at run-time by providing a new 
function definition.  This change would, of course, be sent to all other processes in the system. 

4.5.5.2 Implicit 

Synchronisation of time between systems is more problematic.  Each system uses total 
replication of computation and data, so it may seem that tight synchrony is not all that 
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important.  There is one important exception which is that the users are not replicated.  One 
user’s actions in one system must be reflected in the other systems through their shadow and 
vice versa.  In order to prevent lag from destroying effective interaction between these users, 
the systems must be synchronised to the same simulation update.  Only then is there a chance 
that behavioural information sent from one system to another can be incorporated into the 
current update. 

There currently seems to be no good solution to this problem.  SPS is perfect for the task, 
providing the ability to synchronise with 167 ns, but at the time of writing one receiver can 
cost upward of US$500 (Dana, 1995).  NTP is commonly used between systems using TCP/IP 
although this is not a requirement, but access to a machine that keeps accurate time is.  In fact, 
a number of the world-wide primary NTP reference sources use radio or wire to synchronise 
with national standard time.  Ensuring all systems world-wide have the same time would 
currently necessitate access to the Internet.  More importantly, the greater the synchronisation 
accuracy, the longer the period required to achieve it (a few hours) and the increased 
bandwidth. 

4.5.6 Fault Tolerance 

Problems can occur at different points in a system and in different components.  The policies 
used to handle these events are presented below. 

4.5.6.1 Software Component Failure 

If a manager has failed then it may be restarted on the same node and its state copies gradually 
reconstituted from the following update messages.  If this is not sufficient then a state request 
can be made to the UM for detailed state information from each entity. 

A restarted entity cannot be revived in the same way.  Either it must start with its original state 
or obtain the current state from one of its clones in another system. 

4.5.6.2 Hardware Component Failure 

Individual hardware component failure may be tolerated by migration of the dependent 
process to another node in the system.  If the failed component’s functionality is not 
duplicated anywhere in the system, then either the process must attempt to continue execution 
without it or be terminated. 

Should the replacement of the faulty hardware require the whole node to be shut down, then 
all processes must be redistributed to other nodes. 

4.5.6.3 Node Failure 

Loss of communications with a node requires the simulation to be frozen immediately.  There 
are then two options to choose between.  Firstly, simply wait until the node has been 
recovered and then continue the simulation.  Secondly, the MUM re-creates those processes 
that are on the failed node elsewhere in the system.  The current state of these entities can then 
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be acquired from another system running the same simulation.  Once state has been restored 
the simulation may continue again.  When the faulty node is restored its entities are removed 
and the system load re-distributed. 

4.5.6.4 System Failure 

Failure of a communication path with a system will not affect the other systems.  If only 
external communications have failed, then the simulation on the isolated system is frozen to 
prevent the users from making any changes to the environment that would have to be 
abandoned.  When the link has been re-established the system synchronises and enables the 
simulation again.  This synchronisation process can be quite lengthy: entity deaths and births 
must be checked, entity states updated from clones, user interactions on other systems 
reflected locally, etc.  In order not to overload any one system it would be possible to obtain 
this information from a number of systems throughout the network. 

4.5.6.5 Summary 

Application of those recovery techniques that require collaboration within another system is 
problematic.  Bandwidth between systems will be at a premium and the latency greater than 
node-to-node communications.  Therefore these procedures will undoubtedly be prolonged 
affairs but, unfortunately, there is little alternative.  Even those policies for recovering a single 
node or software process may take longer than a simulation step.  Thus the local simulation 
will suffer until recovery is completed. 

4.5.7 Access Control 

There is no access protocol built into the basic components of a USS.  However, there are a 
number of system features that provide some methods of restricting the options. 

4.5.7.1 Resources 

At the most basic level, all accesses to system resources are granted by the RM and it is not 
possible for a process to bypass this mechanism if it wishes to be scheduled for run-time.  
Access to specific devices can be pre-allocated to managers and restricted by location.  For 
example, a VIS manager is given dedicated access to a CIG and is required to run on the same 
node. 

4.5.7.2 Location 

Each message includes the UPID of the sender and therefore service requests can be rejected 
based on location, e.g. a VIS manager may only want to deal with requests from entities on its 
own node.  If an entity or a manager should be concerned about the sender’s identity then its 
full identity may be discovered by issuing a location request. 
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4.5.7.3 Snooping 

The worst security risk is that an unwanted process will examine an entity’s state by 
monitoring the state updates.  The only process that can do this is a manager and, unlike 
entities, these cannot be started at run-time.  Therefore, to introduce a bogus manager into the 
system would require the alteration of configuration files and a system reboot.  Neither of 
which would likely go ahead unnoticed. 

4.5.7.4 Insulation 

Since UML code may be introduced at run-time there is a potential for misuse, however, there 
is very limited access to the system services.  A typical entity will only require access to the 
system clock, location requests, sending and receiving UML code.  UML therefore acts as an 
insulating layer between deliberate or accidental intent and the low-level operation of a USS. 

4.5.8 Feature Summary 

A summary of the system architecture’s key aspects is given below. 

4.5.8.1 Structure 

A USS is made up of a network of USNs.  The decision of whether to have a group of nodes 
forming one system or a network of one node systems is based upon the computational power 
of each node, the bandwidth of the network and the distance between nodes, i.e. the length of 
the propagation delay.  Low computational power and high bandwidth lends itself towards a 
network of nodes whilst high computational power and low bandwidth is better suited by a 
network of systems.  Since there is no reliable multicast transport mechanism readily 
available, point-to-point communications are used to ensure 100% reliability. 

Passive partial data replication and complete computational distribution are used within a 
system.  A network of USSs use total data and computation replication. 

4.5.8.2 Services 

The UM and the RM provide the core services whilst ENTs are used to execute a universe 
simulation written in the modeling language UML.  Special managers such as VIS and SIM 
are not needed to run a simulation but are often used since they can encapsulate useful 
services, e.g. image generation and collision detection.  The UM understands how the 
information in a UML definition is structured but does not understand what it means.  Only 
ENT processes and special managers know what the data means and what to do with it. 

The UM is at the heart of the architecture, either in the shape of the MUM or a SUM.  The key 
services that a UM provides are: 

• Message routing between local processes and remote nodes. 
• Process/service location and identification. 
• Processing of monitor requests placed by managers and adhered to by entities. 
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• Managing the introduction of changes/additions to the VE description. 
• Managing migration of a local entity. 

Additional functionality unique to the MUM: 

• Managing node activation and deactivation. 
• Controlling initial simulation creation. 
• System-wide scheduling including the coordination of entity migrations.  
• Managing general communications with remote systems. 
• Forwarding of local user information to their shadows on remote systems. 

The RM works closely with the UM to provide an execution environment for the simulation.  
Services include: 

• Controlling access to the node’s resources. 
• Scheduling of all processes on a node such that they complete execution before the 

end of each simulation step. 
• Advising the local UM and the MUM on the node’s loading. 

4.5.8.3 State Management 

The instance data of a universe is the sum of all the states owned by each entity.  The owner is 
the only process that is allowed to modify the state.  Managers cannot modify any state 
information directly, they can only examine it.  A manager may, however, indirectly cause a 
change in the entity’s state through execution of one of the entity’s UML functions.  This job 
demarcation removes the need for any locking mechanisms. 

Managers register an interest in a particular component of the universe description.  Any 
changes made by an entity to their instance of that component are relayed to the managers via 
the UMs.  The information in the universe may be further filtered by specifying a constraint 
function which is applied to each update sent by the entity.  If the constraints are met then the 
message is sent to the manager. 

4.6 Summary 
This chapter has presented the requirements of a system capable of distributing and simulating 
a VE, its design restrictions, real-time issues and the implications of these features.  The 
proposed design begins with the presentation of the language used to model the VE which is 
based upon an interpreter to provide the utmost flexibility.  The presented system design 
exists to execute the simulation described by the modeling language whilst transparently 
distributing it over a network of machines (nodes).  Nodes are grouped into systems based on 
their ability to support complete computation and passive partial data distribution.  Clusters of 
these systems are consequently interconnected by lower bandwidth links and only information 
unique to any given system is communicated to the others.  A number of required software 
components run on each node to provide administrative functions and an execution 
framework.  Each entity within the simulation is embodied in a process that represents part of 
the universe’s state.  Managers provide specialised services to entities within the system by 
monitoring changes in portions of the entity’s state.  All work is scheduled using a local 
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scheduling policy and a system-wide policy, ensuring that the load across all nodes stays 
balanced through the use of process migration. 

Now that both the modeling and simulation execution aspects of the system architecture 
design have been presented we are ready to examine a prototype implementation.  Subsequent 
evaluation of the prototype will provide insight into the validity of this solution to the task of 
distributed, interactive, VE simulation.  
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