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7. Conclusion 
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Chapter 7 

Conclusion 
 

“In my end is my beginning.” 

Mary Stuart, Queen of Scotland 

The final chapter of this thesis begins with a brief reminder of the work presented in the 
preceding chapters.  Following this, the USS architecture is classified using the taxonomy 
presented earlier on and its most important features are highlighted.  A few specific research 
areas that are relevant to distributed VE systems are also described, indicating the benefits 
they may provide.  Finally, the current trendy topics in the area of distributed VE systems are 
related to the work presented here. 

7.1 Thesis Review 
The introduction to this thesis gave a brief introduction to the area of VR, highlighted the 
emphasis on interactivity, and described the two cornerstones of a system that would support 
this: real-time and consistency.  The services of a real-time system enable the generation of 
real-time displays which are justified in chapter 3.  Consistency reflects the need to ensure that 
everything in the VE appears in the right place at the right time, to one or more users 
simultaneously. 

Chapter 2 began with an examination of the issues involved in the design of a system capable 
of distributing VEs.  The solutions used by existing systems that have attempted to tackle this 
complex area vary quite substantially.  In order to provide a way of comparing such systems a 
classification scheme was derived which strove to categorise each system on the basis of: real-
time support, communications, data management, computation management, VE modeling, 
time management, fault tolerance and security.  There is an intricate web of inter-
dependencies connecting many of these categories which often makes examination of one 
difficult without referring to another, e.g. data and computation management working together 
to provide consistency.  However, the author believes that this taxonomy is a good starting 
point and was applied to the seven distinct systems that were reviewed.  The results of 
applying the classification scheme proposed in this thesis to the USS are presented later in 
section 7.2. 
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Chapter 3 questions the current way that VEs are modeled and highlights a particular aspect of 
human-computer interaction that is not addressed in most systems.  To better understand how 
to model a VE, the structure of the natural environment was examined and several taxonomies 
of varying levels of detail were presented.  Based on these attempts to classify natural and 
virtual environments, the author presented a suitable definition and abstract model for a VE.  
Essentially, current modeling practices take one perspective on the thing being modeled and 
concentrate on one medium, usually visuals.  With this approach the model will function 
adequately until such time as another medium is considered, e.g. sound, or a different 
perspective has to be taken, e.g. infra-red instead of natural light.  At this point the model will 
falter because some (or all) of the information that is now needed to simulate this 
perspective/medium will be missing.  If a more ecological approach had been taken to 
modeling, then sufficient information would have been modeled initially such that similar 
changes would not require extra work.  There are obviously practical limits to the amount of 
information that can be modeled at one time and these are discussed with relation to the 
modeling process as a whole.  When looking at the design process it was noted that an 
integrated modeling and simulation system would enable development, experimentation and 
evolution.  The ability to develop a simulation on-line provides much greater flexibility than is 
available with current systems and also a reduced development time cycle.  These features 
will hopefully also encourage the VE designer to explore the different forms the model can 
take.  Finally, evolution referred to the ability of each entity in the simulation to make changes 
to the model and create other entities. 

Related to the issue of modeling a VE is its display.  The purpose of a display is to take raw 
information from the environment, process it, interpret its meaning, and then present it in a 
form that enables the viewer to extract some meaning.  A good display will permit the natural 
processing of the presented information and allow the participant to concentrate on the task at 
hand.  A bad display will require the participant to expend extra effort and will probably 
degrade their performance.  The second part of chapter 3 describes how variable-rate visual 
displays cause problems when judging time to contact with a virtual object.  The example 
given is catching a virtual ball, but it could equally be braking in a virtual car to avoid a 
collision on a virtual motorway, or attempting to perform in-flight refuelling in a flight 
simulator.  Essentially any task that requires the user to make judgements based on velocity 
and acceleration/deceleration can be affected if a constant-rate display is not used.  Two 
methods of achieving such a display were presented: one requires special OS support, the 
other will work on normal operating systems. 

Chapter 4 starts with the presentation of the requirements for a USS, a set of realistic design 
restrictions, and a little more detail on key aspects, e.g. distributed real-time systems.  Having 
settled on a modeling process using specialisation through inheritance in chapter 2, a suitable 
representation of the VE abstract model is presented.  Since the abstract model is derived from 
our universe, an appropriate naming scheme was adopted based around “universal”.  A 
number of existing languages were examined before it was decided that none of them satisfied 
(or could be modified to satisfy) the requirements of a VE modeling language.  The proposed 
language, UML, can be broken into two halves: data definition and instruction code.  The 
structure of UML is important since it is an integral part of the USS architecture.  Although 
UML code can be passed between USS processes, it could have any syntax or grammar.  The 
data definition, however, influenced the mechanisms used to manage state within the 
architecture and vice versa.  The design is dissected in section 7.2. 
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After outlining the USS design, a prototype implementation was described in chapter 5.  Key 
to the system is a real-time distributed deadline scheduler which is difficult to implement with 
current hardware/software technology.  The author had, prior to USS development, 
implemented a far less complex worst-case scheduler at the application level to help enforce a 
constant-rate graphical display.  It was the author’s experience that, even with a special-
purpose operating system, use of such a scheduler was problematic due to the difficulty in 
accommodating actions beyond the application’s control, e.g. network and disk access.  
Therefore the architecture’s key elements were implemented without the scheduling 
functionality.  The PML is used to provide a common interface to the various OS services that 
the USS processes require - mainly message passing.  Following details of the PML, the 
structure of the UML interpreter was described, including a detailed explanation of the 
complex data structure used to hold the model description and its instance data.  The 
remainder of the chapter dealt with each major software component in turn, starting with the 
UM, and highlighted key aspects of their implementation. 

The implementation was evaluated in chapter 6 which started with a characterisation of the 
platforms used for testing.  This was followed by a detailed examination of the UML 
interpreter, its performance and memory requirements.  The impact inter-process 
communications have on performance was analysed in the section dealing with the PML.  The 
rest of the chapter examined the simulation performance of the system as a whole, in single 
node, two node and three node configurations.  In addition the process migration mechanism 
was demonstrated using the two and three node configurations.  A number of enhancements 
that could be made to the design and implementation in order to improve the prototype’s 
performance were also described.  The chapter concluded with a discussion of the factors 
affecting the performance of the prototype and a number of general observations. 

7.2 USS Classification 
Table 7.1 replicates part of Table 2.3 in order to provide some basis for comparison of USS’s 
features.  USS is the only distributed VE system architecture out of those reviewed that has 
pursued the goal of interactivity through real-time displays and the application of real-time 
systems techniques. 

7.2.1 Communications 

Currently only point-to-point communications are used but there is scope for the utilisation of 
reliable multicast once it becomes available.  Although USS was not designed with a specific 
bandwidth in mind, it is clear from the results presented in chapter 6 that anything below 10 
Mbps would be unsatisfactory due to the associated latencies.  Two communication structures 
have been adopted by USS.  Firstly, a client/server paradigm is used between processes within 
the same node, but the communication paths are heavily influenced by a hierarchical 
organisation, e.g. messages to other nodes are routed through the UM.  Secondly, 
communication between nodes is strictly hierarchical. 
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7.2.2 Data and Computation Management 

The method of monitoring state updates which are only sent by the owner when changes are 
made can be classified as passive partial replication.  This technique is used between USS 
nodes but all data is replicated in each system, with only system-unique data being transmitted 
between them.  Localisation, which also has implications for computation management, is 
supported through the use of constraint functions in the UM.  Complementing the choices of 
data management is the complete distribution of computation between processes within a 
system.  Rather than distribute computation between systems, it is completely replicated in 
every system.  Process migration is supported, thus increasing the scheduling options and 
hopefully efficiency.  As discussed in section 4.5.4.10, arguments can be made for the use of 

Feature  dVS AVIARY USS 
Real-time 
Constraints 

Supported? No No Yes 

Communications Transport 
Mechanism(s) 

Point-to-Point Point-to-Point 
and Multicast 

Point-to-Point 
(+ Reliable Multicast?) 

 Targeted 
Bandwidth 

10 Mbps + 10 Mbps + 10 Mbps+ 

 Structure(s) Client/Server Client/Server Client/Server & 
Hierarchical 

Data 
Management 

Organisation Passive Partial 
Replication 

Complete 
Distribution 

Passive Partial 
Replication 

(within USS) & 
Total Replication 
(between systems) 

 Localisation 
Support? 

No Yes Yes 

Computation 
Management 

Organisation Partial 
Distribution 

Complete 
Distribution 

Complete Distribution 
(within USS) & 

Complete Replication 
(between systems) 

 Behaviour Level 0 0 0, 1, 2 
VE Modeling Environment 

Management 
Parallel Multiple Multiple 

 User Support Multiple, 
Decoupled with 
Representation 

Multiple, 
Decoupled 

Multiple, 
Integrated or 
Decoupled 

Time 
Management 

Progression 
Method 

None Implicit Implicit 
(within USS) & 

Explicit 
(between systems) 

 Node 
Synchronisation 

None None NTP 
(SPS Idealised) 

Fault Tolerance Degree 0 0 2 through 4 
Security Method(s) 

Employed 
None Object Interface 

Level 
Basic Access Control 

 
Table 7.1  Comparison of distributed VE feature classifications including USS.  
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all 3 levels of behaviour distribution.  Most of the systems reviewed supported the 
transmission of an entity’s state variables, whether continuously, by request, or only when a 
change of value has occurred.  Level 1 distribution (commonly called dead-reckoning) was 
used exclusively by WAVES and DIS.  Despite the potential display side-effects of this 
technique it is quite effective in reducing bandwidth consumption.  If necessary, it is possible 
to implement dead-reckoning with USS on top of the basic state management system. 

7.2.2.1 Dead-Reckoning 

Given an entity whose definition consists of a position vector and a velocity vector, a manager 
would monitor the velocity vector rather than the position.  This would mean that rather than 
sending continuous position updates as the entity moved, the manager could extrapolate a 
position from the velocity vector.  If velocity was constantly changing then this technique 
would give little improvement.  However, if two velocity vectors were maintained by the 
entity then even this can be accommodated.  One vector would be used internally for the 
entity’s own calculations and the second vector would be its exported property - monitored by 
the manager.  The exported version would fuel its own approximated behaviour model (the 
same as the manager’s) and updated only when its approximated behaviour differed 
significantly from its actual behaviour.  This now replicates the same functionality that 
conventional dead-reckoning systems have. 

7.2.2.2 High-Level Behaviour 

Level 2 behaviour distribution can also be supported through another basic USS mechanism, 
that of remote UML function invocation.  A number of functions would be defined to achieve 
some high-level tasks, such as driving around a corner, and then executed at the appropriate 
time.  This technique can be used to control a user’s shadow on a remote system (section 
7.4.5). 

7.2.3 VE Modeling 

Multiple universes may be simulated simultaneously by a USS, although the prototype only 
supports one.  There can be many users interacting in a simulation and within a system there is 
no special distinction made between an entity representing a user and an automated entity.  
Input devices are sampled from within the user entity, however, whether this is mapped into a 
direct device access or through a server process is an implementation decision. 

7.2.4 Time Management 

Both forms of time management are utilised by USS.  Explicit time progression is almost a 
by-product when a distributed deadline scheduler is used to coordinate the simulation.  To 
ensure synchronicity between individual systems, an implicit progression model is used so 
that behavioural information generated by one system is valid in another. 
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7.2.5 Fault Tolerance 

Fault tolerance is an expensive goal, best achieved by duplicating hardware and software 
components.  However, there are a number of features of USS that lend themselves to at least 
a little reliability and recoverability - at a cost.  The state held by a manager or entity may be 
reconstituted gradually through state updates or explicitly by request to the UM.  If not enough 
information is held within a system to reconstruct the process, then it may be obtained from 
another system which is also simulating the same universe.  If there is a problem with a 
particular node then entities can be migrated to another node.  Alternatively, their state can be 
obtained from another system and started locally on another node. 

7.2.6 Security 

Security is another feature that can generally only be realised at a computational price.  This 
aspect was not fully investigated because security measures can often hinder evaluation of 
other system features.  However, there is basic access control support in that a process may 
locate the originator of any service request and the UML interpreter can limit access to OS 
services. 

7.3 Important Features 
The proposed architecture deals with a number of issues but there are a few aspects which are 
either worthy of note or unique to this solution. 

7.3.1 Real-Time 

A distributed real-time system forms the basis upon which the USS architecture is built.  In 
order for the participants to efficiently interact with the environment and each other, it is 
important that they are provided with real-time displays.  To keep in step with the constant 
update rate of the displays, it is necessary to ensure that all entities are also updated at a 
constant rate.  Failure to meet this hard deadline is a system failure.  If all updates are 
guaranteed to happen within a given time frame it is possible to start accommodating for lags 
in the system by performing predictive calculations.  When the simulation is distributed over a 
number of machines the network must also have deterministic properties if it is not to upset 
the processing deadlines.  Predictability at this level also presents the opportunity to 
compensate for communications latency.  It is likely, however, that determinism will be 
realised at the cost of performance and the under-utilisation of resources - a matter of concern 
to the designers of ATM switches where guaranteed bandwidth and bounded latency are 
primary requirements. 

7.3.2 Scaleability 

All of the distributed VE systems reviewed chose one mechanism for handling computation 
and one mechanism for handling data within the system.  It is not possible to scale the system 
up or down without affecting the performance of such mechanisms.  DIS, for example, 
replicates the data making up the VE on each node and partially replicates computation on 
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each node through the use of dead-reckoning algorithms.  Therefore if the VE has 10,000 
entities, then each node must handle data and computation for each entity.  Initially, when the 
number of entities in the simulation was in their low hundreds, this was not a problem.  It was 
only when larger simulations were attempted that the idea of using localisation to reduce the 
workload of each node was suggested (section 2.3.3.1).  In a similar vein, AVIARY uses a 
system model that works well when on a tightly-coupled network of workstations but will 
require some modifications if it is to support larger simulations.  A similar story can be told 
for the other systems. 

Adapting a design after the fact is always undesirable, because the end result is less attractive 
than it could have been if the design had taken a broader perspective to begin with.  The 
architecture presented in this thesis is by no means perfect, but it does attempt to define a 
system that may be scaled from tightly-coupled multiprocessors through to large scale 
networking of machines over large geographical distances. 

The decision of when to network a machine as a USN in a larger USS or as a separate system 
requires further investigation.  It is clear, though, that there comes a point when the network 
bandwidth between two clusters of machines can no longer handle the amount of traffic 
generated within a system.  In order for users on either end of this connection to participate in 
the same simulation, two systems must be configured from these nodes that are capable of 
replicating each other’s simulation workload. 

7.3.3 Bandwidth Reduction 

A great deal of effort has gone into reducing the amount of bandwidth used between processes 
and nodes, thus increasing the number of nodes it is practical to have in a system.  Only those 
portions of an entity’s state information that are of interest to managers are transmitted and 
only when a change in this information has occurred.  Managers may also specify constraint 
functions that are applied to the state data the entities transmit to their UM.  These functions 
can filter out unwanted data before it is sent to managers resulting in unnecessary computation 
and, more importantly, sent over lower bandwidth communication links to other nodes.  
Further savings could be made if a multicast protocol was available. 

7.3.4 Modeling 

The premise with which the process of VE modeling was approached in this thesis was that 
the development of VEs should not be constrained by past technological standards. 

The need to model a VE is relatively new and is presently more of an art than a scientific 
practice.  It is an exploratory process that often requires many changes before the model has 
reached a satisfactory state.  UML is integrated into the USS architecture in such a way that 
the initial VE model can be developed off-line and then modified on-line.  Any changes are 
reflected instantaneously throughout the simulation.  For example, a function describing the 
behaviour of an entity may be replaced by sending that entity a new UML definition for the 
relevant function(s).  It is also possible to add or delete parts of the UML definition without 
affecting the existing state information for the rest of the definition. 
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The ability to build upon existing VE models is a powerful tool which can save time and cut 
development costs.  Establishing a set of base environments with well defined core behaviours 
would ensure that VEs built by different designers would allow entities to move from one VE 
to another with reasonable ease.  Although the movement of entities between universes was 
not implemented in the prototype, the ability to preserve those parts of an entity’s state that are 
common in the source and destination universes is already in place. 

Different perspectives on the same environment may be supported through the use of 
managers that monitor different components of the universe definition and display the 
contents in the desired manner.  Alternatively, each manager may monitor the same 
information but only process those that meet certain criteria, probably with the aid of 
constraint functions to reduce bandwidth. 

Any type of information may be modeled, subsequently the system has no knowledge of space 
per se and there is no requirement for it to be modeled.  In fact, the UM and the core entity 
and manager libraries understand how information is structured, but do not expect any 
particular organisation, or look for any specific component in it.  Consequently, only when a 
suitably dimensioned property (such as position) is added to the universe definition will space 
be modeled.  Also, the relationship between simulation time and real clock time within the 
environment can be defined arbitrarily (section 4.5.5.1). 

7.3.5 Flexibility 

A minimal working system requires a RM, a UM and one or more ENT processes.  In this 
state it is possible to run any non-interactive simulation.  Although an entity may sample input 
devices, the user would not be able to see the consequences of their own or the simulation’s 
actions unless a manager was present, connected to a display.  A manager may be introduced 
to monitor state changes and generate a suitable display.  For VE simulations the two most 
commonly used managers would be VIS and AUR.  However, non-interactive simulation may 
simply require a text-based display of key simulation variables.  Managers are not only used 
for generating displays; for example, the SIM checks for violations of an entity’s space and 
informs the involved entities so they may resolve the situation. 

The design of USS was driven by the desire to simulate interactive VEs, but due to its flexible 
structure it may be applied to other types of simulation.  For example, artificial life simulators 
often use the model of a parallel processing, shared memory machine.  Each “entity” within 
the simulation is a program whose instructions may mutate or, through breeding, become 
merged with another entity’s code resulting in a hybrid.  This process continues over and over 
again.  USS lends itself well to this problem because: 

1. There is a direct comparison between the beings in the artificial life 
simulation and entities. 

2. An entity’s code may be replaced at run-time and there is nothing to 
prevent the replacement code being generated by another entity. 

3. In the same way, one entity may spawn another and define its behaviour 
through UML code generation. 
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The simulation would still operate within fixed deadlines but the update frequency could be 
reduced to sub-interactive rates.  There may well be more efficient task-specific methods for 
the other types of simulation but USS at least provides a platform for testing ideas before 
developing the project further. 

7.4 Areas for Investigation 
A few improvements to the prototype were presented at the ends of chapters 5 and 6, but there 
are a number of areas encroached upon by distributed VE systems in general that the author 
feels need further attention. 

7.4.1 Reliable Multicast 

As a distributed system is scaled up, so the feasibility of using point-to-point communication 
links rapidly disappears.  Multicast communications present the only practical solution: the 
overhead of a single transmission is incurred despite sending to multiple destinations.  
Unfortunately, the multicast systems that are becoming available now are, like their 
predecessors, unreliable.  For data such as audio streams the occasional loss of a packet is 
acceptable.  However, if state or event data is lost making its way from one machine to 
another then this will affect the state of the simulation.  The consequences of this range from 
an event occurring on one node and not another, to users making a decision based on incorrect 
information.  At the operating system level the consequences could be more severe, e.g. 
invalidation of a fault tolerance redundancy mechanism.  Research into reliable multicast 
protocols is underway and the author believes that this work should be encouraged. 

7.4.2 Guaranteed Bandwidth 

Distribution over large areas not only increases communications latency between system 
components, but the latency also varies by greater amounts.  Although it is impossible to 
totally eliminate latency, steps can be taken to account for it, but only if sensible estimates can 
be made.  Fortunately, ATM permits the reservation of channels of fixed bandwidth between 
the communication’s endpoints.  Adoption of a technology that provides this kind of service at 
all levels, from LANs through to WANs, would also seem to be an essential component of 
future large-scale distributed VE systems. 

7.4.3 Time Synchronisation 

In order to synchronise time between machines there would appear to be two basic options: 
use a software protocol, such as NTP, or a satellite-based system such as SPS.  If 
synchronisation over many hours is unacceptable, then the accuracy obtained using software 
protocols is quite low: within a few seconds.  If simulation protocols can be developed that 
cope with this level of accuracy then this is sufficient.  However, the author believes that the 
same amount of care given to estimating communications latency should be applied to that of 
time synchronisation.  There is a solution available in the form of SPS which is currently 
prohibitively expensive (section 4.5.5.2) but, given a mass market and a little time, there is no 
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reason why this technology would not become cheap enough to incorporate into every 
machine. 

7.4.4 Real-Time Operating Systems 

At the time of writing there are very few operating systems that can be used for real-time 
applications and are therefore expensive in comparison to the plethora of general-purpose 
operating systems.  There are even fewer that support deadline scheduling and address the 
problems of distributed scheduling.  The popularity of real-time systems research has risen 
somewhat since the widespread availability of multimedia workstations, but significantly 
more work is needed in this area before they may be effectively utilised for interactive real-
time VE simulation. 

7.4.5 Shadowing the User 

There comes a point when latency is so great that simply reflecting every single change in a 
user’s state to all other machines becomes impractical.  A solution is to only transmit actions 
between machines and let the user’s shadow processes effect these changes in the mirrored 
environments.  This presents three problems that must be resolved.  Firstly, how these actions 
are recognised; secondly, how they can be described in a form suitable for transmission and, 
thirdly, how these actions are interpreted.  The first and last problems will be heavily 
influenced by the type of simulation in that the nature of the actions exhibited will vary.  For 
example, parameterised actions in a networked driving simulator may be reduced to 
accelerate, decelerate, turn left, turn right, navigate roundabout, park, etc.  Whereas a 
Computer Supported Cooperative Work (CSCW) application might involve more intimate 
interactions between users.  Consequently actions may even be required to mimic human 
gestures and facial expressions, e.g. approval, disapproval, happy, sad, etc.  The format used 
for transmission of these actions may be as simple as executing a parameterised function 
remotely, or something more complex. 

The choice of technique has implications for maintaining the integrity of the simulated 
environment.  Consequently, more work is needed to assess the additional system 
functionality required to aid action recognition, representation and interpretation. 

7.5 Outlook 
The USS architecture has been dealt with in a rather isolated manner over the past few 
chapters.  This section attempts to relate it to a few of the current popular topics in the area of 
VE systems. 

7.5.1 Internet 

The work in this thesis is not applicable to the Internet as it stands today: variable delays are 
experienced between communication endpoints and the available bandwidth may vary, to 
name but two problems.  IPng (or IPv6) is essentially IPv4 (the current version) with some 
modifications (Bradner and Rankin, 1995).  Aside from introducing techniques to reduce 
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message fragmentation, preallocation of network resources is supported, allowing 
establishment of connections guaranteeing bandwidth and latency.  Multicast has also been 
added as a standard addressing option for IP datagrams; in fact it has replaced broadcast as the 
base service abstraction, which is now a special case of multicast.  Combined with a suitable 
transport mechanism from desk to desk, such as ATM, it should be possible to apply the USS 
architecture to the future Internet and certainly improve upon the prototype. 

7.5.2 Virtual Reality Modeling Language 

The Virtual Reality Modeling Language (VRML) is an attempt to bring interactive, 3D VEs to 
the Internet via the WWW (SGI, 1996).  From a modeling standpoint, VRML is a classic 
example of a visual-centric approach.  SGI’s Open Inventor was chosen as the starting point 
for the format which, over the past two years, has been adapted to fit the role of a general 
format for describing VEs.  After reconciling the representation of visual information with the 
need to model behaviour and the demands on the client browsers, it was decided to alter the 
way that the Open Inventor scene graph is used.  This has been just one of many changes to 
the file format.  Consequently, VRML has the same basic look as Open Inventor but is used in 
a different way.  Audio has been added to the language and at the time of writing the more 
important problem of encapsulating behaviour is being addressed.  Most people in the VRML 
community are agreed upon the fact that some form of programming language is required to 
describe object behaviour but no consensus has been reached on which language.  The fact 
that this debate is happening at all reflects the problems of completely isolating information 
representation from simulation execution.  It is exactly these problems that the USS 
architecture seeks to relieve through integrating the modeling process with the system that will 
execute the VE model. 

7.5.3 Java 

Java has been proposed as a language suitable for object behaviour representation within 
VRML.  Java is interpreted, platform independent and increasing in popularity every day.  
Unfortunately for VRML browser writers, source code for a Java interpreter is not available 
requiring a lot more development work just to simulate a VRML scene.  On the positive side, 
native translators are beginning to appear which greatly reduce the execution times of Java 
code.  However, although Java can load classes (in byte-code form) at run-time, existing 
classes/functions cannot be redefined and there is no way of modifying data structures at run-
time.  Without these abilities, the VEs modeled using VRML will be very static in nature and 
require considerable amounts of time to develop and maintain.  Specifically, if a VE is to be 
“upgraded” then all users will have to disconnect whilst the new one is installed, possibly 
followed by a conversion of old state data to the new format.  Certainly not a quick or easy 
procedure to schedule when the server is accessed by clients throughout the world. 

7.5.4 Consequences 

Some of the problems with the WWW and the Internet have already been described (section 
6.7.1).  In addition to these, VRML is being developed incrementally from a visual file format 
with the intention that it should one day also guide how machines should be networked to 
realise interactive VEs over the Internet.  By approaching the problem in this way, the author 
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believes that, in its current form, VRML will not fulfil the expectations held by so many in the 
VRML community.  For example, moving entities from a VE served by one machine to a 
different VE served by another is not possible unless some standardised structure for the 
information has been adhered to.  Currently this is not possible unless all the designers agree 
to conform to a given structure and even then there is no way of enforcing such an agreement.  
A modeling mechanism such as inheritance and a common set of base VEs would resolve this 
problem. 

The problems of distributed VEs are so many and varied that they must all be addressed 
simultaneously to reach a well-rounded solution.  Inevitably, however, the lessons learnt by 
developing VRML will reinforce the validity of applying certain techniques to distributed VE 
systems and may possibly even disprove others. 

7.6 Summary 
This thesis has attempted to fuse research in distributed systems, real-time systems, modeling, 
languages and human-computer interaction into one system capable of distributing real-time 
interactive simulations.  Those issues examined (to varying degrees) just within the area of 
distributed systems support were: message passing, marshalling and unmarshalling, naming 
and name resolution, heterogeneous nodes, scheduling, process migration, configuration 
management, performance management, time, synchronisation, security and persistence. 

The problem domain is so complex that the exploration of the issues and their inter-
dependencies within the time permitted was relatively limited.  Many decisions had to be 
made during the design process, all of which were biased towards a system capable of 
supporting multi-user, interactive, VE simulations.  Interactivity demanded a real-time system 
and multiple users required a distributed architecture with comprehensive techniques to 
maintain the integrity of the shared VE.  Of the requirements presented in section 4.2, 
applicability was represented by the modeling language and its integration into the system, 
whilst fault tolerance and security took a back seat. 

The architecture’s structure is based upon the philosophy that the right tool is used for the 
right job.  The combination of different distribution techniques, integrated with an expressive, 
flexible modeling language, has resulted in a scaleable system that can be used to both 
develop and simulate VEs in a heterogeneous, distributed computing environment. 
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