

6

2. Design Issues for Distributed Virtual
Environment Systems

7

Chapter 2

Design Issues for Distributed Virtual
Environment Systems

“640K ought to be enough for anybody.”

Bill Gates

When looking at existing systems we are interested in their solutions to two problems: how
they tackle the problem of VE modeling and how they “execute” a given VE. The former is a
much more abstract area and in theory may be independent of the underlying mechanism of
distribution and VE support software. However, in reality this is rarely the case. Sometimes
the implementation drives the modeling system used and vice-versa. Whilst treating these
aspects separately is desirable, it is also very difficult since describing one aspect cannot be
done without referral to features of the other. This chapter examines the issues that must be
addressed when designing a VE system. Existing distributed simulation systems solutions are
analysed with reference to the outlined issues and comparisons are drawn.

The term “distributed simulation” is very general and is open to many interpretations.
“Simulations” can be broadly classified as either off-line/computationally intensive or
interactive/low fidelity. The first class is the type of simulation that is often called discrete
event simulation whereas driving and flight simulators would fall into the second class. A
similar decomposition of “distribution” may also be attempted. It can be used to describe a
simulation that is distributed over a number of tightly-coupled computational nodes with the
intention to speed up the calculations. This fits well with the first class of simulation and
when considering VR and interactive simulations this definition is also valid. However, the
emphasis is more on the distribution of the simulation over some geographical distance such
that multiple people may interact. Each of these types have their own requirements and hence
their solutions cannot necessarily be applied to each other's problems. For example, the fact
that there is a human being interacting with the simulation brings onboard a number of new
requirements or, more realistically, constraints on how the simulation may behave.

8

2.1 Discrete Event Simulation Heritage
Before re-inventing the wheel it is beneficial to look at the historically largest form of
simulation: discrete event simulation. There are two approaches for ensuring the correctness
of a distributed simulation1: optimistic and conservative.

2.1.1 Optimistic versus Conservative

Initially, all simulations used a conservative solution to control their progression. Each
simulation consists of a certain number of processes. Only when all processes have
completed their work will simulation time increase and the next cycle commence. The
obvious disadvantage to this approach is that those processes that take significantly less time
to complete their work will be forced to wait. If each process was allocated to a physical
processor then this would result in a considerable waste of the computational resources.

To overcome this weakness a different approach was sought. The optimistic solution permits
each process to progress at their own rate. This would work fine if all processes were
independent of one another. Unfortunately this is often not true and a situation may arise
where a slow process communicates with a faster process indicating that their previous work
was in error. Since all of the fast process’ subsequent work was based on an invalid state, this
must be abandoned and recalculated using the correct state. The method to restore this state is
known as rollback. This solution is called optimistic because it works on the assumption that
the situations requiring rollbacks rarely occur.

2.1.2 Time Warp

Time Warp (TW) is an optimistic policy simulation model that is structured as a number of
processes that each maintain a Local Virtual Time (LVT) (Jefferson and Sowizral, 1985).
Each process may progress at its own rate, advancing LVT as necessary. Each message that is
sent between processes indicates the LVT of the sender and is used to decide whether a
rollback is required of the receiver. Keeping a list of what has happened in the past soon eats
into the resources of each process, so a mechanism for collecting old data has been provided.

At periodic intervals, the operating system interrogates each process for their LVT. Then the
system's Global Virtual Time (GVT) is updated to show the progression of the simulation,
taking into consideration the slowest process. When GVT is updated, any data previous to
this time may be discarded since rollback may not occur before GVT. The choice of
algorithm to calculate GVT is crucial to system performance and can make the difference
between running or not running a simulation if large state lists are required (Bellenot, 1990;
D’Souza et al., 1994).

Further optimisation may be made by finding a way to reduce the amount of state saved in
these lists. A basic mechanism would save the complete process state, however this is
expensive both in terms of time taken to save the state and the time taken to perform a
rollback. By performing incremental state saving (Cleary et al., 1994), i.e. only saving the

1 In discrete event simulation, distribution is almost always used just to increase the simulation's speed.

9

state that has changed, it is possible to improve efficiency. An alternative approach, called
adaptive checkpointing, is to adjust the rate at which the process state is saved based upon the
rollback behaviour (Rönngren and Ayani, 1994).

2.1.3 Discrete Event Simulation Summary

TW works well in discrete-event simulations and is a very popular model, but there are a
number of problems. TW was not designed to be used for interactive applications which rely
on completing all computations in a very small amount of time (~33 ms to achieve a 30 Hz
update rate). In order to ensure that these strict deadlines are met, some notion of
predictability must be provided. Rollback is a result of processes being allowed to continue at
their own rate and can be seen as self defeating since the rate of progress is not controlled and
the occurrences of rollbacks are unpredictable. In addition, one rollback may trigger another
rollback in another process and so on until, potentially, each process has been rolled back to
GVT.

However, there has been some recent work on the application of TW to real-time simulations
resulting in the development of a Parallel Optimistic Real-Time Simulator (PORTS - Ghosh et
al., 1994). In PORTS, GVT is calculated continuously, i.e. after each event in the simulation,
in order to speed the commitment of I/O operations. Incremental state saving is shown to be
unpredictable and one proposed solution is to save the complete state every n events (where n
is a constant for a particular simulation) in a similar way to adaptive checkpointing. This
enables a bounded value for state saving and state restoration, thereby having predictable
properties in the simulator. Deadline scheduling is also simplified because there is no event-
migration or explicit load balancing and is done on a per-processor basis.

Despite this encouraging work, the application of PORTS to interactive simulations is
unlikely. Take the case of a driving simulator where the driver is monitoring the environment
and taking actions accordingly. Any rollbacks could interrupt the flow of time and would
make it seem as though they are being controlled like a video recorder - pause, rewind, fast-
forward and play - clearly defeating the goal of realism. In short, you cannot rollback a
human being.

Conservative solutions ensure that situations that would require a rollback do not happen at all
by, what proponents of optimistic policy would see as, restricting the progress of the
simulation. This has the potential to under-utilise the available resources, but with a good
load-balancing algorithm the impact of such an approach can be reduced. The perceived
advantage of an optimistic mechanism is that if a process requires very little interaction with
other processes in the simulation, faster progression may be made if it is allowed to go at its
own rate (Lipton and Mizell, 1990). This may also be perceived as a waste of resources that
may be better allocated to other processes in the simulation.

Therefore, since there may be many humans interacting with the simulations of VEs, a
conservative system is the only workable solution. This will also aid predictability and
scheduling to meet the real-time deadlines that are required of a VE system (discussed in
section 3.3).

10

2.2 Issues
There are many problem areas to consider when building a VE system and there are even
more implications. There is no established classification scheme available with which these
areas can be examined and different solutions compared, so an attempt has been made to
construct one. Separating one area from another was more difficult in some cases than others.
Not breaking a problem area down into separate issues would make comparison difficult, on
the other hand, splitting the area into too many issues would provide a distorted
representation. There are a lot of interdependencies between these issues, but it is hoped that
the divisions made will aid comparison rather than hinder comprehension. This section looks
at each issue in turn and assesses the impact they have on system design.

2.2.1 Real-time

The largest single constraint on an interactive simulation is that it must operate in real-time.
As described in section 1.4, a real-time system permits the generation of real-time displays
which are updated fast enough to allow the participant to effectively interact with the
simulation and other participants. How fast may vary depending upon the exact nature of the
simulation, but the goal is to reduce the delays between human action and simulation reaction
to an imperceptible constant duration.

A simulation is composed of a sequence of discrete time steps in between which the
calculations to update the environment must be completed. Failure to achieve this could
result in a breakdown of realism (if that is being striven for) or, at the very least, a reduction in
the efficiency of the participant to interact with the simulation. While it is true that simulation
time may continue at any rate if there is no human or time-dependent device involved in the
loop, we are primarily interested in interactive simulations and therefore the actual time
between each simulation time step must be constant. We live in a constant world and to
require us to interact with anything other than this is contrary to all our natural skills and will
present us with corresponding difficulties (Hawkes et al., 1995). This is discussed further in
section 3.3.

If these stringent deadlines are to be met then there must be a degree of predictability in the
simulation's execution. An optimistic solution, as discussed earlier, is not very predictable
whilst a conservative approach may be seen as a good basis to build upon. The design
implications of real-time systems are discussed in section 4.3.

2.2.2 Communications

The structure of the communications subsystem is usually the most inflexible component of
any system. The choice of platform and its location dictate what communications hardware is
available. Consequently, the technique used to manage data is often directly influenced by
this component.

11

2.2.2.1 Point-to-point

A point-to-point2 transfer of information may be achieved by either establishing a link
between sender and receiver at every transmission, or creating a permanent connection which
is destroyed when there will be no more communications. Connection-oriented protocols
such as Transmission Control Protocol/Internet Protocol (TCP/IP) are commonly used and
provide a reliable service. Unfortunately, ensuring that the receiver gets all the information
and in the right order generates a fair amount of overhead. Furthermore, each receiver must
acknowledge receipt of the transmission.

2.2.2.2 Broadcast

One alternative is to “broadcast” the information on the network and hope that anyone
interested in that information will hear the broadcast and pick it up. This is the exact opposite
of the point-to-point mechanism and is supported in the User Datagram Protocol (UDP). This
connectionless protocol uses self contained, addressed packets (or datagrams) which puts the
onus on the application to ensure that the data is processed in the correct order. The major
advantage of this method is that there is no need to maintain a large number of connections.
Apart from being unreliable, its main disadvantage is that it is possible to flood a network
with broadcast messages which are of no interest to other connected systems and thus degrade
performance.

2.2.2.3 Multicast

An improvement on broadcasting is multicasting. This works in the same way except that the
packets are only sent to a subset of the network rather than the whole. Nodes may belong to
one or more multicast groups and hence will only receive transmissions that are intended for
them. It was originally available on LANs such as Ethernet and Fibre Distributed Data
Interface (FDDI) but is now available at the network layer through the Multicast Backbone
(MBONE - Macedonia et al., 1994). MBONE is a virtual network which runs on the same
physical media as the Internet, but encapsulates multicast packets in normal IP packets and
uses routers to forward them to their correct destinations. Multicast has yet to be standardised
and consequently few implementations are available. More importantly, multicast per se is
unreliable, although some research has been done on providing a reliable multicast service
(Talpede and Ammar, 1995; Veríssimo and Marques, 1990). However, unless otherwise
stated, any reference to multicast in this thesis is intended to describe the more common
unreliable mechanism.

2.2.2.4 Bandwidth

The amount of data that may be transmitted in a given period of time has more impact on
system design than any of these other factors. If only one network medium is being used then
the task of designing an efficient protocol is relatively straightforward (but not simple).
However, if multiple mediums are being catered for the problem becomes considerably more
complex. A fast modem can manage approximately 28 Kbps, Ethernet has a bandwidth of 10

2 Also known as unicast.

12

Mbps whilst FDDI and Fast Ethernet can offer 100 Mbps. It is quite common for this
bandwidth to be shared amongst many other nodes thus reducing the effective data bandwidth
considerably. There is also no way to guarantee a fraction of this bandwidth which adds to
the problems. The evolving Asynchronous Transfer Mode (ATM) technology permits
bandwidth to be reserved (channels), but this is currently even less available than multicast
technology (Boisseau et al., 1995).

2.2.2.5 Latency

Communications latency is related to bandwidth and geographical distance. No matter what
technological improvements are made, the speed of light will limit the transmission speed
such that a latency of ~3 ms will be introduced for every 900 Km covered3. Thus design
decisions are often based on the geographical distance over which the system will have to
operate.

2.2.2.6 Shared Memory

This is a valid way of communicating between processes on the same node and the analogy
can even be extended to operate over networks: distributed shared memory. However,
underlying such functionality is always some form of message passing. Bandwidth and
latency can still be applied to shared memory. Whereas a message-passing system has built-in
concurrency control, a shared memory system must add this itself, usually in the form of
semaphores.

2.2.2.7 Structure

There are three commonly used models for communication in distributed VR systems:
client/server, peer and hierarchical. In a client/server model one or more physical processes
are designated as a server whose responsibility is to receive and process requests from clients
for any of its published services. A client of one process can also be a server to another. This
model works well for operating system resources, e.g. the filing system, network manager and
process manager, where there is a limited number of potential clients and the client and server
are tightly-coupled. If the number of clients gets too high, however, the server soon becomes
a bottleneck.

The peer model essentially makes every process in the system equal in terms of functionality.
This does not mean that there is any duplication of work between peers although this is quite
common.

The hierarchical model uses a system whereby processes communicate with other processes in
the hierarchy by sending the message to their parent process. The parent checks the address
on the message and either sends it to one of its other children or to its parent process. This
repeats until the message has arrived at its destination. Messages entering the hierarchy from
outside are sent to the root (master) process which forwards the message as per normal. As

3 This calculation does not take into consideration the extra distance incurred as the light bounces off the interior
of the optical fibre.

13

with the client/server model, this master process may become a bottleneck if the number of
child processes increases too far, or there is a large amount of communication with other
process hierarchies.

2.2.3 Data Management

If the whole VE was managed by one machine then data management is straightforward, every
process has direct access to the information they need with little overhead. If the VE is
distributed across more than one machine then the situation becomes more complex and
requires a different solution. The overriding concern is to ensure that the integrity of the data
is maintained at all times with minimal overhead. Other factors that affect solution selection
are bandwidth and fault tolerance.

The nature of the target system and the geographical dispersion of the network dictates the
type of management commonly used. All of the solutions currently offered fall within one of
the categories shown in Table 2.1. Although general comparisons can be made between them,
only those systems in the same category can be compared point for point.

2.2.3.1 Localisation

When the amount of data is small it is preferable that every process should have direct access
to it. As the volume of data increases so does the burden on resources; memory and backing
storage diminish rapidly and the amount of computation required to process the data rises
dramatically. In a distributed system there is also an increase in network traffic as the data is

moved around from one node to another.

It is therefore desirable to segment the data in some logical way such that any given process is
only interested in one segment at a time (mostly). One common criteria used for segmentation
is that of space. When the VE covers a large (virtual) distance it is broken up into a number
of areas which are often allocated by and under the control of an Area Manager. The size of
the areas can depend on many things, such as visibility, memory, speed of movement through
the VE, etc., and upon the media, e.g. visual, aural, etc. The shape of each area is often kept
uniform for simplicity’s sake. Rectangular areas are often favoured although some work has
been done with hexagonal areas (Macedonia et al., 1995). However, some research has

 Tightly-Coupled Loosely-Coupled
Near Parallel Processing

High Speed LAN
Distributed Processing

LAN
Far Impossible? Distributed Access

WAN

LAN: Local Area Network
WAN: Wide Area Network

Table 2.1 Kleinrock distribution classification scheme.

14

examined the subdivision of model space based on visibility alone (Airey et al., 1990). When
applied to architectural models, the resulting binary space subdivision algorithm creates cells
which are bounded by a number of splitting planes and can therefore be irregularly shaped.

2.2.3.2 Complete Distribution

This approach distributes the complete VE state between every node in the network. There is
no duplication of information and any intention to change part of the VE state not under the
control of a given process must be communicated to the process managing that data. Unless
the state of the VE is distributed amongst all the nodes in the network sensibly, it is possible
that such an arrangement could be detrimental to performance.

Since a given piece of data is only held in one place this solution is susceptible to machine
failure or breaks in the communication paths. Such a technique can be applied at the
near/tightly-coupled level and, perhaps, at the near/loosely-coupled level.

2.2.3.3 Partial Replication

When using partial replication only the parts of the VE state that will be modified by a given
process will be held locally and only when needed. There are two sub-categories of partial
replication: active and passive.

Active replication is where the process wishing to make the state change initiates the request
for a local copy of the state. Modifications are made locally and the updated state is sent back
to the originator.

Passive, or demand replication (Broll, 1995), requires an initial registration of interest in part
(or all) of the VE state when the process is created. From that moment on it is sent copies of
that subset of state when it has been modified by one of the other processes. Changes may be
made locally and sent back or, alternatively, the owner is informed of the desired changes and
then makes them itself. A variation on this method is that the remote process receives updates
of the object’s exported behavioural model (section 2.2.4.5). In which case the remote
process is not expected to want to modify the object’s state, just monitor it.

If changes are made locally it would be possible for multiple copies to be taken from multiple
processes, altered and submitted simultaneously, therefore resulting in an inconsistent state.
To prevent this from happening a system of read/write locks may be employed. Before
obtaining a local copy of the state for modification, a write lock is requested. This will be
granted once any outstanding write locks are relinquished. Either the requester must block
until the lock is granted, or a time-out can be specified which will permit the requester to
continue with other work. On submitting the changes the modifications are made and the
write lock released. If multiple locks need to be acquired before proceeding then the problem
of deadlock also arises. There are several variations on this approach but all are equally
complex. However, if all changes are made by the owner there is no need for this complex
system and the modification process is a lot more predictable. This technique is most
commonly used at the near/loosely-coupled level, although it could be applied at the
far/loosely-coupled level if bandwidth was high enough.

15

2.2.3.4 Total Replication

This solution requires the complete VE state (or the essence of it) to be held at each node in
the network. The two possible reasons for storing the complete VE state are, firstly, that the
node's calculations are based upon most or all of that information or, secondly, the distance
between nodes is so great that latency has become a real problem (far/loosely-coupled). This
method does not scale well since every node must keep each other informed of updates which
soon consumes bandwidth. The allocation of locks is infeasible so passive replication must be
used to receive continuous updates on each other’s local VE state modifications.

2.2.4 Computation Management

Just as data is distributed, so can the computation. By computation we mean any work
involving a specific object, whether it is an operation within or upon that object. Fortunately
we can use similar categories to explore the options.

2.2.4.1 Complete Distribution

All operations on an object are performed on the same node that holds the object’s data. If
one process wishes to perform an operation on another then it must send a message to the
other process. The allocation of processes to nodes may be optimised by enlisting the help of
a load-balancing algorithm (section 4.3.1.4). By monitoring resource consumption and
communication patterns the optimum allocation may be derived. This would permit most
objects that often communicate with one another to be located on the same node - the
movement of processes is commonly known as migration.

Such an approach works well on near/tightly-coupled systems but the latency and low
bandwidth found in loosely-coupled systems can reduce its efficiency.

2.2.4.2 Partial Distribution

This method is similar to complete distribution except that the object’s state is usually
acquired using one of the passive or active partial data replication techniques and the changes
made locally. There is, however, no duplication of computational effort.

2.2.4.3 Partial Replication

To compensate for slower communications links, e.g. near/loosely-coupled, it is possible to
replicate some of the state computation on some or all of the nodes. These “ghost” or proxy
processes are typically used to approximate the object’s behaviour using a method called
dead-reckoning (section 2.2.4.5). The process that performs the full simulation of that object
also runs this model in parallel and when the two differ by a pre-defined amount, a copy of the
real object’s state variables is sent to all of the ghost processes. Subsequent approximations
are then based on the latest update.

Dead-reckoning uses a simplified model of the object’s behaviour. Typical key state variables
used in this model are position and velocity which may be linearly extrapolated to provide a

16

low fidelity approximation. Higher fidelity may be achieved by incorporating other variables,
such as linear acceleration and angular velocity, which are often needed by objects with highly
dynamic behaviour, e.g. aircraft (Harvey et al., 1991; Le Saché and de Medeuil, 1993;
McCarty et al., 1994).

This technique is very effective in reducing the amount of bandwidth required but the object
behaviour produced in the ghost object can be sufficiently different from the normal to attract
attention. This may, of course, be improved by increasing the complexity of the
approximation, but there is a need to strike a careful balance between full and approximate
simulation.

2.2.4.4 Total Replication

Simulating each object on each node may be required if the simulation is running over a very
large distance (far/loosely-coupled). Receiving periodic updates from other processes when
using partial replication is not practical when bandwidth is at a premium. Instead, only
information that changes the behaviour of the mirrored objects is sent, thus permitting all
calculations to be performed locally. Behaviour therefore appears correct everywhere
(although maybe not at exactly the same moment in time) but at the cost of duplicated
calculations.

2.2.4.5 Behaviour

What constitutes object “behaviour” and what form this takes is currently a topic of debate. In
the strict object-oriented sense the data are the attributes, and the methods manipulate the
attributes in a pre-defined way, e.g. modifying position over time. Therefore combining data
and methods gives us the impression of behaviour. However, the computational load required
to support this object behaviour can be quite high, e.g. flight dynamics for an aircraft.

It is possible to classify object behaviour as either deterministic or non-deterministic. In
general, objects that do not sample input devices are deterministic, whilst those objects that
do, including those under the control of humans, are non-deterministic. For example, the
decisions made by a robot car can be determined in advance whereas the behaviour of a
virtual car being driven by a human in a driving simulator cannot be predicted (Hawkes,
1993). The ability to predict behaviour means that it is possible to overcome communication
and system latency.

Roehl (1995) has suggested a refined classification scheme whereby deterministic behaviour
is split into two sub-categories: static and animated. Similarly, non-deterministic behaviour
can be Newtonian or intelligent. The state of a static object is constant and therefore 100%
predictable for any give time; an animated object changes state over time but this is still
predictable. A Newtonian object interacts with its environment but does so in a
straightforward manner, whilst an intelligent object can have a complex behaviour and may be
as unpredictable as a human.

In a similar manner, Roehl presents 4 levels of behaviour which may be used to classify the
type of distribution used:

0. Direct modification of an object’s attributes (static).

17

1. Change in an object’s attributes over time (animated).
2. Series of calls to level 1 behaviours to achieve a task (Newtonian).
3. Top-level decision making (intelligent).

The most basic form of behaviour distribution takes place between levels 0 and 1, when
information such as position and orientation are transmitted at every simulation update.
Dead-reckoning falls between level 1 and 2. Attempting to distribute behaviour any higher is
problematic unless the state of the simulation at each node is guaranteed to be exactly the
same at any given time. Indeed, levels 2 and 3 may not even be implemented in software, they
could be provided by human interaction.

An example of a level 2 behaviour system is the Two-Point Paradigm (Bryson, 1991). It is
based on interaction in classical physics which may be taken as due to the forces that act pair-
wise between physical objects. While many forces may act on objects simultaneously, the net
action of these forces may be represented as the sum of the individual forces on that object
from the other objects. To keep track of all these interactions an Interaction Matrix is used
whereby each row and column represents an object and the entries are lists of interactions
between the objects for that row and column. For example, Figure 2.1 shows the simple case
of a bouncing ball. The ball is acted on by the floor in two ways: gravity pulling it down and
bouncing which reverses the z component of the velocity. The floor is not acted upon by the
ball. The ball's cross-reference entry (bottom right) updates its velocity from its acceleration
and its position from its velocity.

This technique can be extended to include other types of interaction including those with the
user. With regards to distribution, it is only necessary to send changes in the interactions
between objects and details of any new objects from one node to another. Each node can then
calculate the evolution of the VE on its own, which reduces the network bandwidth required
per object.

2.2.5 VE Modeling

The issue of modeling the VE will be fully discussed in the next chapter, however there are
two aspects which can be usefully addressed beforehand. Firstly, whether the system can
support more than one VE simultaneously and/or how multiple VEs are structured. Secondly,
if any special provisions are made for users or participants in the VE.

floor

ballnull

null
Integrate

Equations of
Motion

Gravity

bounce

Object 1 Object 2
(floor) (ball)

Object 1
(floor)

Object 2
(ball)

Figure 2.1 Example interaction matrix.

18

2.2.5.1 Multiple VEs

Support for multiple VEs means that the system is effectively running parallel simulations
using the same or different VE model. By using the same VE it could be possible to
maximise the use of specific objects or areas of the VE (Roehl, 1995). For example, a virtual
town hall could be used for meetings by different groups of people simultaneously.

If multiple, different VEs are supported then there is an opportunity to maximise the system's
resources. Such an ability does, however, raise extra problems regarding scheduling, load
balancing, etc. If the concurrent execution of VEs is available then a decision must be made
as to whether an object may move from one environment to another and, if so, how this
should be achieved.

Another possible use for multiple VEs is in the modeling process, where some or all of the
properties of one VE are used to help speed development of another. The nature of the
relationship between environments is important, as is the structure formed. One possible
organisational technique is that of object-oriented inheritance where the attributes of one
environment are inherited and augmented/extended by another environment.

2.2.5.2 Users

Typically, either the user is treated as a separate object or they are an integral part of the
system. Also of interest, is whether multiple users can be supported or if only one may be
present in a VE at a time.

Representing the user as an object has the advantage that it implicitly means that multiple
users are supported, provided that there are enough input and output devices available. Added
flexibility is provided if devices are not integrated into the user code directly, but exist as
objects in their own right. The price of this object-oriented structure is, of course,
performance - the extra communications overhead increases system latency.

Either the user’s representation can be described in the same manner as every other object or
some extra functionality is provided for just this purpose. The latter case is usually used when
the user is integrated into the system or a part thereof.

2.2.6 Time Management

The relationship between simulation time and real clock time may be any function as long as
it is constant. The simulation clock is used as the basis for synchronisation of the VE either
explicitly or implicitly. Implicit progression is when simulation time is related to real clock
time: as the system clock changes, so does simulation time. Explicit progression is change
through notification from a remote source, e.g. a message timestamp or a special message that
only occurs at the beginning of each time step.

An additional requirement in a distributed system when using implicit progression is to ensure
that the real-time clocks on each node are synchronised. One possible option is the use of a
Global Positioning System (GPS) receiver built into each node. A version of GPS was
developed by the military - Precision Position System (PPS) - for keeping track of friendly
forces. It works by sending a signal to 4 out of 21 active satellites which send back

19

information from which both positional and time information may be extrapolated. A
commercial version is available, Standard Positioning System (SPS), with reduced positional
accuracy - 100m horizontally instead of 17m, etc. Time accuracy with PPS is 100
nanoseconds (ns) and 167 ns with SPS. Detailed information can be found in Dana (1995).

Alternatively, a software algorithm can be used such as the one presented by Le Saché and de
Medeuil (1993) where a client requests the time from a central source. The client
synchronises itself on the time at this central source via a couple of timestamped messages.
The synchronisation formula is shown in Figure 2.2. After clock synchronisation, delays can
be measured as the difference between the send and receipt times of any given message.

The problem of clock synchronisation is also of interest to the Internet community. The
Network Time Protocol (NTP) is an extension of the client/server approach such that it may
be applied in very large networks world-wide. For an in-depth description of the protocol the
reader should refer to Mills (1992). On the general subject of clock synchronisation, Mills
notes that the accuracy achieved is directly dependent on the time taken to achieve it. In other
words, a few measurements will suffice for accuracy with a second or so, whilst dozens of
measurements over many hours will be required to achieve millisecond accuracy. The number
and frequency of these measurements is, however, perceived to be relatively low and
unobtrusive to normal network operations.

However, Liskov (1993) notes that clock synchronisation algorithms are based upon
assumptions about clock rate and message delay. Clocks are, therefore, only synchronised
with some probability, albeit very high. Subsequently, she also states that algorithms should
preferably depend on clocks for performance and not for correctness.

2.2.7 Fault Tolerance

Kim (1995) describes a fault tolerant computer system as “... a system which can continue to
operate reliably by producing acceptable outputs in spite of occasional occurrences of
component failures, including those of both hardware and software components”. Fault-
tolerance comes from reliability and availability (Milenkovic, 1992). System reliability can
be provided by partial replication of important data and duplication of key hardware, whilst
the availability of the system is ensured by keeping multiple copies of the system’s resources.
Furthermore, a system may be deemed recoverable if it can revert to a previous state and
robust if it is capable of surviving a hardware failure. However, one does not imply the other.

t = t2 - t0 + t1
2

t : new time for client
t0: send time of request time message (client clock)
t1: send time of response message (server clock)
t2: reception time of response message (client clock)

Figure 2.2 A Clock Synchronisation Formula

20

Five degrees of fault-tolerance have been proposed by Kim which are reproduced in Table 2.2.
Degree-4 is the highest level of fault tolerance (reliability) and ensures that all actions are
completed successfully regardless of fault occurrences. It is possible that recovery from a
fault may take so long that there is no choice but to abandon execution of visible action(s),
restore the system to a previous state and then start again. Degree-3 caters for this case whilst
degree-2 provides service degradation when some less-critical components fail and cannot be
recovered. In the worst case, only the minimum critical services can be recovered and
maintained which gives us degree-1 fault tolerance. If even this last stand is not possible then
it is not a fault tolerant system.

A common way of providing fault tolerance is redundancy which may be applied to both
hardware and software components. For the purposes of this thesis we are primarily interested
in software components. The availability of broadcast communications on networks has been
a great boon to the implementation of redundancy. One solution is to have a node which
eavesdrops all inter-node communications to keep an up-to-date copy of each node’s state.
This means that if a node should fail (or a process on that node) then its state may be rebuilt
quickly without replaying all the messages.

In distributed real-time systems it is common for the physical network to be duplicated,
therefore providing a second physical communication path should the other fail. In such a
system there is also a need for deterministic and reliable delivery or messages, which has
provoked some researchers into investigating reliable multicast protocols (Grünsteidl and
Kopetz, 1991).

2.2.8 Security

Current efforts in this area have typically been limited to the encryption of the data stream
between nodes so that no unwanted party can listen in on the simulation. This could be done
in software at the communications level or utilise special hardware. The complexity of the
system protocol determines the degree to which security can be breached; a simple protocol
may even permit unauthorised objects or people to participate in the simulation.

On another level, security also deals with access to sensitive information. Certain system
services may need to be restricted, e.g. access to backing storage, or a group of objects may
wish to share information with each other and no one else.

Degree Assumable Damages Recovery Capabilities
4 No loss of visible actions (i.e. output

of actions or database update actions)
Action-level fault tolerance
(recovery of an interrupted visible action)

3 Loss of one or more visible actions Slow recovery of a service function
(no loss of hardware)

2 Loss of one or more service functions Partial recovery of hardware
(service degradation)

1 Loss of all but a core set of critical
service functions

Minimum recovery of core hardware
(minimum critical services)

0 Loss of critical service No fault tolerance

Table 2.2 Degrees of fault tolerance.

21

Obviously, such additions to the system architecture come at a price. Even data encryption
hardware increases latency and a software-implemented access control system can eat away at
CPU cycles.

2.2.9 Issues Summary

This section has presented a number of issues that must be addressed during the design
process. Some of these are given higher priority than others and as such may not be accounted
for in the final design. This is not because they are unimportant, merely because the field is
new and the problems presented by the few issues addressed are quite significant. The next
section looks at the current major system solutions.

2.3 Implementations
Ensuring a consistent and accurate environment must be the main goal of any human-in-the-
loop simulator. Progressing the simulation at a constant rate, fast enough so that the
participant may effectively interact with it, is the second goal. It is clear from the overview
presented in the previous section that many of the design issues are entwined with each other.
Deriving an architecture that correctly resolves each issue is a challenging task. This section
examines some of the existing distributed VE systems and describes their overall structure.

2.3.1 SIMulation NETworking System (SIMNET)

SIMNET was the first system to prototype and demonstrate the feasibility of a distributed
interactive simulation (Kanarick, 1991). It was initiated by the U.S. Defense Advanced
Research Projects Agency (DARPA) and funded by the U.S. Army. This project involved
many different companies but, to the author's knowledge, no academic institutions.

Some of the systems requirements were (Calvin et al., 1993):

• Capable of supporting 100s to 100,000s of entities.
• Entities are geographically distributed.
• Simulations are heterogeneous.
• Computations are distributed (no central site).
• Operates in real-time.
• Must be low cost.

In order to meet the last requirement SIMNET was based around an Ethernet network. The
maximum bandwidth of Ethernet is 10 Mbps and was one factor in the failure to support the
large numbers of entities originally specified. 250 of the original SIMNET simulators (nodes)
are currently in operation throughout the world although a node is capable of simulating more
than one entity. A good example of this was the provision for Semi-Automated Forces (SAFs)
which are semi-autonomous objects that have a certain behaviour and are directed from time
to time by a human operator. To make the most of the available bandwidth and reduce the
computational overhead of point-to-point links between nodes, messages are broadcast to all
nodes regardless of whether they require the information or not. The SIMNET protocol is

22

designed such that if a node should miss a message, it will temporarily hold out-of-date
information which will be amended upon the next transmission.

A host processor for a SIMNET node is typically an embedded single-board microprocessor-
based system, or a workstation. Usually Local Area Networks (LANs) are used to link nodes
within a single site and geographically dispersed sites are linked using Wide Area Networks
(WANs). Due to the real-time requirement, the WANs are either private lines or packet
networks with gateways that provide real-time allocation abilities. For example, the Defense
Simulation Internet (DSI), which spans the U.S.A, is a dedicated network that uses the TCP/IP
protocol but is not considered part of the Internet (Locke, 1992). The need to dedicate a
network to a simulation indicates the problems of geographically dispersed simulations.

2.3.2 Distributed Interactive Simulation (DIS)

The experiences with SIMNET led to DIS which, unlike SIMNET, is being developed as a
standard for networked, interactive simulation by a committee. An important distinction
between the two is that SIMNET is a working system, whereas DIS is only a protocol
definition with associated guidelines and does not specify how the implementation should be
structured. Even though its applications are subject to security, the standard is not; version
1.0 is now a published standard: IEEE 1278.

Version 2.0 of the standard (DIS, 1994) summarises the DIS concept as:

2.3.2.1 Basic Architecture

The DIS architecture shows its heritage through its basic concepts:

• No central computer controls the entire simulation exercise.
• Autonomous simulation applications are responsible for maintaining the

state of one or more simulation entities.
• A standard protocol is used for communicating “ground truth” data.
• Changes in the state of an entity are communicated by simulation applications.
• Perception of events or other entities is determined by the receiving application.
• Dead-reckoning algorithms are used to reduce communications processing.

When examining the communication services that DIS must provide (as dictated by the
standards document), we find that data must be transferred between simulations in one
operation, with or without first establishing a logical connection with the destination node.

“... a time and space coherent synthetic representation of world
environments designed for linking the interactive, free play activities of
people in operational exercises. The synthetic environment is created
through real-time exchange of data units between distributed,
computationally autonomous simulation applications in the form of
simulations, simulators, and instrumented equipment interconnected
through standard computer communicative services. The computational
simulation entities may be present in one location or may be distributed
geographically.”

23

Data may be sent using broadcast, multicast or point-to-point and, on the issue of unreliable
service, no acceptable limit is set on the amount of data that may be lost. As a comment on
the performance requirements of the communications architecture we are told that it “...should
provide a certain level of performance characterised in terms of throughput and delay. Both
network delay and network delay variance should be minimised”. Another document (DIWG,
1993) states that the total network delay for tightly-coupled simulators, such as high-
performance aircraft, should be less than 100 ms and less than 300 ms for other simulators,
e.g. ground vehicles.

Each message, or Protocol Data Unit (PDU), has a 32 bit timestamp which specifies the time
at which the contents of the PDU is valid as units of time past the current hour. This provides
an accuracy of 1.676 microseconds and the timestamps used depend on whether system clocks
are synchronised or not. If they are, then the timestamp is given in Universal Coordinated
Time (UTC), if not, then the time is relative to the simulation application that issued the PDU.

Each PDU has an exercise identity field in the header which is an unsigned 8 bit number. A
unique exercise identifier is assigned to each exercise occurring simultaneously on the same
communications medium. In essence, DIS can support up to 255 (a value of 0 is not valid)
parallel VEs.

2.3.2.2 Performance

The total number of entities that may be supported is not only a function of the
communications medium but the error thresholds which are an integral part of the dead-
reckoning algorithms. Katz (1994) provides us with a graph (Figure 2.3) showing how the
number of entities a medium may support can be reduced by decreasing the threshold (and

Bandwidth
(Kbits/sec)

100,000
FDDI

10,000
Ethernet

144
ISDN

56
modems

9.6

10 100 1000 10,000 100,000

Number of Entities

*

*

*

*

*

+
+

+

+

+

#
#

#

#

#

Key
1 meter threshold,
lots of action.

1 meter threshold,
average action.

10 meter threshold,
average action.

#

+

*

Figure 2.3 DIS performance with different dead-reckoning accuracies.

24

hence the computational load of the dead-reckoning algorithm) and increased by raising the
threshold (which increases computational load). The results shown are part empirical data
and part prediction based on those data.

A state-of-the-art DIS system is said to manage 8,000 entities on Ethernet (using a lax error
threshold) and that the most expensive dead-reckoning algorithm in use consumes around 100
FLoating-point Operations Per Second (FLOPS) per remote entity. Interestingly, it is
predicted that the original SIMNET goal of 100,000 entities will not even be reached using
DIS over an FDDI (100 Mbps) network. In fact, the Close Combat Tactical Trainer (CCTT),
which is being developed by the U.S. Army and Loral Federal Systems using DIS and FDDI,
expects to ultimately handle only 851 entities plus audio communication traffic (Mastaglio
and Callahan, 1995). All this assumes, of course, that the simulation node itself has enough
computational power to simulate 100,000 entities.

2.3.3 Naval Postgraduate School Networked Vehicle Simulator IV
(NPSNET-IV)

NPSNET is a research project in the Computer Science Department of the Naval Postgraduate
School. The project’s goal is “... to promote the use, understanding and appreciation of VR”
(NPSNET, 1995). NPSNET utilises SIMNET databases, both SIMNET and DIS networking
protocols and has a number of key functional components:

• Terrain database defining the 3D surface, e.g. ground or sea, and the various
features, e.g. roads.

• Static models such as buildings, trees, etc.
• Dynamic models such as vehicles, aircraft, etc.
• Display algorithms which perform geometrical and rendering calculations on the

complete VE from a given viewpoint.
• Environmental effects which included smoke, clouds, waves, etc.
• Heads-Up Display (HUD), a 2D overlay which may be used for superimposing

information on the 3D view of the VE.
• Networking component which supports both broadcast and multicast.
• Input options allowing the device(s) to be matched to the application.

Despite being DIS-compliant, NPSNET only implements a fraction of the DIS Protocol,
namely the Entity State, Fire and Detonation PDUs.

There are a number of software components unique to the NPSNET implementation (Zyda et
al., 1992b), notably the Physically Based Modeling package. The Physically Based Modeller
(NPSOFF PBM) models rigid-body dynamics using a Newtonian framework (Zyda et al.,
1992a). Properties may include linear and angular velocities, mass and centre of mass,
elasticity and location and orientation information.

2.3.3.1 Improving DIS

Macedonia, et al. (1995) correctly note that SIMNET was constructed for small unit training
and has passed on this heritage to DIS. For this reason simulations do not scale well and are
not currently suitable for large scale VEs. A number of problems are outlined:

25

• Bandwidth and computational requirements.
• Multiplexing media.
• Managing static objects.
• Database replication.

It is predicted that a VE with 100,000 players (entities) would require 375 Mbps of network
bandwidth to each computer participating in the simulation. Since each node needs to
maintain the state of every entity in the simulation (albeit using dead-reckoning models), they
will require an inordinate amount of processing power. “We conjecture that 1000 entities are
the limit to which a single host can realistically manage despite future advances in computer
and graphics architectures.” These figures are in line with the performance graph in Figure
2.3 and also means that a more powerful network medium than FDDI will be required.

DIS goes to great lengths to prevent packet fragmentation by requiring that each packet is
smaller than the maximum supported by the physical network. Unfortunately, this means that
video and audio must be treated in the same way rather than in their more natural continuous
forms. Support for these media at the transport or network layers, e.g. through the use of
MBONE, relieves the application from the overheads of multiplexing and de-multiplexing.

The simulations usually contain large amounts of static objects, e.g. buildings, that must
periodically send update messages even though their state has not changed, just in case
somebody missed the last message. The entire simulation database must also be replicated at
each node since there is no method of partitioning the database. These last two points show
the expense of the DIS protocol, both in bandwidth and computational terms.

The reasons offered for these problems are four fold:

• Event-State paradigm. Since the simulation is stateless (a basic requirement for
DIS) information has to be sent to every entity. This does not take into consideration
the fact that the simulated systems “sense” the environment in different ways and
therefore have different data requirements. Two geographically distant entities need
not know what each other are doing until they are in much closer proximity to one
another. By being stateless, the simulation is affected less by the unreliable
transmission medium being used (broadcast).

• Real-time trade-offs. A real-time environment should avoid point-to-point
communications between entities since this requires reliable communications such as
the acknowledgement scheme used in TCP. Centralised databases cause I/O
contention, so the only course left is to use a connectionless method of
communication such as UDP.

• Middleware. There is no software layer to mediate between the simulation and the
network. DIS must use bridges for large scale simulations which are an order of
magnitude slower to reconfigure than routers and the number of nodes is limited to
tens of thousands. A network using routers is limited only by the address space.

• Small scale origins. SIMNET and DIS were only used, until recently, for simulating
small scale environments. This shows in the choice of transmission protocol and
monolithic construction suitable for distribution over a single LAN. Past simulations
have been packed quite densely with respect to the size of the environment and this

26

influenced the assumptions made about rates of activity and inevitably the DIS
protocol itself.

Complete replication of the database is also grossly inefficient and some means of partitioning
information is required. The proposed solution to this problem is an Area of Interest Manager
(AOIM). The VE is split into a grid of hexagons - since they are regular in shape and have
uniform orientation and adjacency. The division of entities amongst the hexagons is not strict
and some entities may belong to more than one group at a time to avoid boundary and
temporal aliasing. As the user moves through the VE, the groups behind them are paged out
and more groups ahead of them are loaded in. The advantages of such a system include
reducing the bandwidth needed to maintain the simulation, the localisation of reliability
problems and the ability to make use of high speed networks such as ATM. ATM will
probably support multicasting and its high bandwidth might permit the dynamic paging in and
out of the hexagonal areas containing large amounts of simulation data.

2.3.3.2 VE Modeling

Since NPSNET is based on DIS there is little modeling infrastructure. The entities may be
simulated in full any way the designer sees fit, the only requirement is that its behaviour can
be approximated through a dead-reckoning algorithm. All nodes connected to the same
network simulate the same VE.

2.3.4 Minimal Reality (MR) Toolkit

This toolkit is aimed at supporting work involving user interface design and may be split into
three layers: low-level device support, data processing and high-level services (Figure 2.4).

2.3.4.1 Basic Structure

The device drivers are provided as a client/server pair, the server directly interfaces with the
device and the client provides library routines that communicate with the server. The second
level massages the data received from the device drivers into a more usable format as well as
providing data sharing services between workstations. Complex tasks that are often
performed have been encapsulated in a set of high-level functions to form the last layer.
These include system initialisation and data synchronisation. All communications on the
same machine uses TCP.

One application runs on a machine at a time. Each application has a master process that
initiates the execution of other programs in the application which are designated as either
slaves or computation. There may be many slave programs which perform simple tasks such
as rendering images. Computation processes perform compute intensive work and are usually
located on a dedicated machine connected to the master machine via a network.

27

2.3.4.2 Packages

To aid interface design a number of packages are provided to handle some of the more
complex functions. There are currently four packages: Workspace Mapping, Panel, Data
Sharing and Peer, but the latter two are of most interest in this context.

The data sharing package provides a way of managing a data structure that may be shared
between machines by periodically sending an update copy to the other machines. The
structure may be synchronous, in which case the receiving program controls its update, or
asynchronous where the receiver does not have control (the default).

The peer package is a recent extension to MR Toolkit and provides the functionality to allow
independent applications to communicate with each other via master processes (Shaw and
Green, 1993). The slaves receive data from their peers via their master, i.e. slaves do not
communicate directly with other slaves or computation processes. Application-specific
information may be shared between machines using UDP to send messages to specific
addresses. Each machine keeps a peer list which indicates their state, either active or inactive.
A peer may become inactive deliberately, with the intention to join in later or not (as the case
may be), or a peer may inadvertently become inactive. This happens when the local peer has
not received any messages from the remote peer in the last 10 seconds. At this point the local
peer attempts to re-establish communication. All peers are connected directly to one another
which requires a lot of network traffic to maintain and, as a result, more than five networked
machines is not recommended by MR Toolkit's authors.

Environment
Manager

Generates Virtual
Environments

Object Model Language

Specifications of geometric
modeling and behaviours for three-

dimensional objects used in VR

MR Toolkit and Peer Package

Supports common VR devices, numerous interaction
techniques, data distribution and connection level

communication facilities.

Description
File

The
Programmer

JDCAD+
Creates OML

Objects

Figure 2.4 MR Toolkit component structure.

28

2.3.4.3 VE Modeling

Platform independent object geometry and behaviour is described in a procedural
programming language called Object Modeling Language (OML). An OML object contains
code to generate the 3D geometry, controls how the object appears and code for implementing
behaviour. The OML compiler produces an intermediate code that is executed by the OML
interpreter which is embedded into the application program. An MR Toolkit program loads
compiled OML descriptions, initialises devices, coordinates between devices and the objects,
and calls the interpreter every graphical update. Therefore a program has to be written for
every VE built.

To save time, a generic VE application has recently been added to the suite of programs in the
form of the Environment Manager (EM). The EM is responsible for initialising the VE (using
a script file), running both single user and multi-user VEs, and also provides facilities for
monitoring the execution of the VE (Wang et al., 1995). Each user in a multi-user VE runs an
EM which handles calls to OML code. The distribution of the VE is transparent to the OML
objects which just see one unified VE. The objects may be classed as local - managed by one
EM only - or shared in which case other EMs may load them. To reduce bandwidth, only
those shared variables that have changed state are transmitted and the EM also supports dead-
reckoning by sending OML approximation functions to the other nodes. Unusually, it is
possible to disconnect from the shared environment, perform some work and then reconnect at
a later date.

The user is an integral part of MR Toolkit, in fact the whole system is built around the user. It
is possible for multiple users to interact within the same environment when machines are
connected using the peer package. Only one VE is simulated at a time.

2.3.4.4 Data and Computation Distribution

Two forms of concurrency control are supported through the use of ownership and access
permissions; the choice of scheme is left up to the designer. A shared state variable may be
owned by only one EM at a time and that ownership may, if needed, be transferred from one
EM to another at run-time. The solution to the case where the transfer message is lost during
transmission (possible when using UDP) is left up to the programmer to resolve. A shared
variable also has one of two possible access permissions: writable and readable. If the
variable is writable then EMs other than the owner, may write to that variable. If it is readable
then they may only hold a copy of its value and its owner will send out updates when
necessary.

Each EM has its own copy of the entire simulation including the shared variables. The
identity of the owner is broadcast to every EM whenever ownership changes. When a remote
EM wants to make a change, it requests ownership of the variable and then makes the change.
In other words, each machine in the network that has a user wanting to interact in the
simulation takes it in turns to run the simulation, whilst the others get the results and use
dead-reckoning.

OML descriptions may be created and manipulated using the Jiandong Liang Computer Aided
Design (JDCAD+) application which uses a hierarchical modeling system and a 6 degree of
freedom (d.o.f.) input device.

29

2.3.5 Distributed Interactive Virtual Environment (DIVE)

DIVE was developed at the Distributed Systems Laboratory, Swedish Institute of Computer
Science (SICS) to aid their research into the distribution, collaboration, interaction and multi-
user aspects of virtual reality (Carlsson and Hagsand, 1993).

2.3.5.1 Distribution

The distribution model used in DIVE v2.2 can be conceptualised as a memory that is shared
over a network. An old version of the ISIS Distribution Package (v2.1) is used to provide a
mechanism for data sharing between systems (Birman et al., 1987). Version 3.0 of DIVE was
in beta-testing at the time of writing and no longer uses ISIS4 which has been substituted for
the SICS Distribution Package (SID2 - Hagsand, 1995) that provides similar functionality.

The database, which is completely held in memory, is partitioned into worlds. Worlds are
implemented as ISIS process groups where each process actively manages its own replica of
the database. A DIVE process can only be a member of one world at a time although it may
travel between worlds. Each process consists of lightweight threads which are allocated a
specific task, e.g. rendering, input/output management or updating the database. The
consistency of the shared database is maintained by using mutually exclusive locks, multicast
transmissions within the process group and distributed object locks. DIVE supports
heterogeneous distribution and machines that are not equipped with graphics hardware can
still run non-rendering components of an application.

2.3.5.2 Applications

Applications may be created using the provided C libraries and then run on one or more
systems communicating over an Ethernet link using TCP/IP. Multiple applications
(implemented as a process) may run simultaneously, modifying the state of the world
database. The visualizer is a special application that uses selected input/output devices and
enables the user to interact with the VE.

Objects in DIVE are allocated a globally unique identifier, a name and a position in 3D space
amongst other information (Andersson et al., 1995). They may also have one or more
graphical representations. Composite objects are formed by grouping objects together
hierarchically. Objects are stored locally in main memory, e.g. during creation, and may be
shared over the network using a replication mechanism, i.e. after creation. Object information
specific to an application is maintained by the application itself and is not distributed to other
processes.

All DIVE processes communicate with messages which may change an object’s state, a
process’ state, or inform the recipient of a specific event. Applications may register call-backs
for these events which may be used to indicate errors or user interaction.

Behaviour in DIVE is implemented as a state machine with each arc referring to a particular
signal type. A signal may be generated when a collision is detected, some form of user

4 ISIS is now a commercial package and is no longer free to academic institutions.

30

interaction has occurred, on some input, or when an application wishes to trigger a behaviour
directly. A random signal is also available so that some form of random behaviour can be
simulated. Current supported behaviours are limited to manipulating the object’s visual
properties, spatial translation/orientation changes, generating a sound or triggering a
behaviour in another object.

2.3.5.3 Users

Each user has their own personalised body-icon which is used to represent them in the world.
The icon may be made of many parts, e.g. head, eyes, ears, hands and a visor. Each of these
components serves a purpose. For example, each eye specifies a viewpoint from which the
graphics display is generated and any object manipulated by the user is usually attached to one
of the hands.

Vehicles provide a translation between data from input devices to actions in the VE. Several
simple vehicles are provided with the system such as a mouse vehicle and one for monitoring
head and hand movement when using an HMD. New vehicles may be created using the DIVE
Application Programmer's Interface (API).

I/O handling and user representation is therefore integrated into the user object. Multiple
users are supported as are multiple worlds which may be entered through gateways. Since
each world possesses the same properties, there is no problem with object migration.

2.3.5.4 Time

Clocks in DIVE are not synchronised apart from system-level synchronisation using NTP and
it is assumed that clock rates are equal on all machines.

2.3.6 Distributed Virtual Environment System (dVS)

Division build their own parallel processing computers which are currently based around
INMOS Transputers, Intel i860 microprocessors and a number of ASICs. Their goal is to
provide a seamless software environment to the VE designer which has resulted in the
development of dVS (Grimsdale, 1993). Since its conception, dVS has been ported to Silicon
Graphics, Inc. (SGI), Hewlett Packard and IBM workstations.

dVS v2.0.4 augments existing operating systems to try and provide the best possible
performance over these platforms. It is organised into processes that perform certain tasks
called Actors. There are actors for generating visuals, producing audio, performing collision
detection, monitoring 6D trackers and many other tasks (Division, 1994). The user's
application is also built from user supplied actors.

31

The essential components of dVS are shown in Figure 2.5. At the core is a distributed
database (VL) which may be accessed by actors through the VL Library. The VC Toolkit
provides higher-level functionality for the manipulation of objects and makes calls to the VL
Library to achieve this task. The Agent is a special actor which handles updates to the local
database and informs remote systems of the changes. One agent assumes the role of the
Director and is responsible for coordinating all database updates. Communications between
agents are performed using the Division Session Network (dSN) software layer.

2.3.6.1 Database Structure

An object class in dVS is called an Element. An Instance of an element may be created and is
the unit of communication between actors. Before elements can be defined and instanced, an
Environment must be created. A root environment is always created by default when an
environment database is created (owned by the Director) and subsequent environments may be
arranged hierarchically. New environments may be created by any actor at any agent.
Containers can be defined which consist of one or more elements and are treated as an atomic
quantity. A new element definition is written using C-like syntax and passed through a pre-
processor which produces the relevant VL data structures and library routines as C source
code. These source code files are compiled and linked into the application executable.

2.3.6.2 Database Synchronisation

Actors hold an element and by extracting that element an actor may change the state and then
commit it using an update. Any actor holding the element will be informed of the change in
state through an event. An actor can register interest in (hold) either elements or instances, an
action that is environment specific, i.e. updates to sub-environments are not reported. This
process is complicated if the item of interest is part of a container. There are actually 3 cases
that must be catered for:

1. Interested in a container and a sub-element changes => the whole container is
reported as having changed.

Actor n+1Actor n

Agent

VC Toolkit
VL Library

VC Toolkit
VL Library

VL Library
VC Toolkit

Shared VL Database

dSN

Actor n+2

Agent

VC Toolkit
VL Library

VL Library
VC Toolkit

Shared VL Database

dSN

Figure 2.5 dVS system architecture.

32

2. Interested in a sub-element and the container changes => the sub-element is also
reported as having changed.

3. Interested in a sub-element which is subsequently changed => report a sub-element
change.

Application tasks have no direct access to VL to avoid contention when two applications try
and access the same information. All data accesses to the databases are therefore made by
copying. dVS provides a choice of three different synchronisation methods to help maintain
database integrity.

1. None. Updates are sent asynchronously and any duplicate events detected before the
event reaches its destination are folded into one, i.e. only the most recent update will
be processed.

2. Local. Locks the event and associated data until all destination actors within the
domain of the local environment database have processed the information. This
event is also propagated to remote databases if required.

3. Global. Similar to a local synchronisation event except the lock is performed across
all remote databases and as such can be time consuming when acquiring the
resources.

Synchronous updates are not supported by VL. These are viewed as expensive, used in only a
few special circumstances (although no examples are given) and not the way to maximise
performance (section 2.3.6.4).

The agent monitors changes to the local database and distributes these changes to other agents
on other machines if interest in those items has been previously registered. Only knowledge
about other agents and their current interests is maintained by any given agent, which means
updates are sent direct to the relevant agents thus avoiding the need for broadcast. Since only
objects that are being held are propagated to remote databases, it is possible for one such
object to reference another which does not exist locally. It is up to the application to ensure
that it has registered interest in all necessary objects. Agents are allocated a port number
which is held in a configuration file, allowing physical machines to connect or disconnect at
run-time.

2.3.6.3 VE Modeling

The VC Toolkit supports a number of specialised elements which it calls Virtual Objects. The
basic element is VCObject which may be decomposed further into other VCObjects and so
on. The other standard elements which are held within a VCObject are VCAudio,
VCBoundary, VCConstraints, VCLight and VCVisual. Each of these describes a certain
number of logically related attributes and are often associated with a particular actor, e.g.
VCAudio elements are monitored by the VSOUND actor.

The collision detection actor monitors VCBoundary elements and notifies the two relevant
parties when a collision has occurred. Whereas the VIZ (visualisation) actor is interested in
VCObject, VCLight and VCVisual elements.

33

Users are represented by a Body actor and therefore there may be multiple users in the same
environment. The body actor is also abstracted away from the necessary I/O devices which
exist as separate processes and can be assigned a special representation. It is unclear whether
an actor from one environment can move into another.

2.3.6.4 Synchronisation

When a network of machines starts up, the first node to complete initialisation sets the time on
the other machines to its own. No time synchronisation is performed thereafter. All messages
are timestamped but this information is used to discard tardy messages that have already been
superseded. dVS never waits for the arrival of a specific message and thus there is no lock-
step synchronisation between nodes.

2.3.7 Waterloo Virtual Environment System (WAVES)

WAVES was formerly known as Highly Interactive Distributed Real-Time Architecture
(HIDRA) and is targeted at low-cost platforms that use low-bandwidth media for
communications, e.g. telephone lines (Kazman, 1993c).

2.3.7.1 Basic Architecture

The basic components of the WAVES architecture are shown in Figure 2.6. Each Host
simulates a subset of objects and provides certain services to each object, e.g. collision
detection, rendering, etc. Whilst cyclically updating their set of objects, hosts periodically
broadcast the state of their local objects to other hosts. Major I/O events, e.g. user input, are
communicated each cycle to maximise fidelity. The communications between these hosts are
done over virtual connections, mediated by a number of Message Managers. Connections
may also be filtered so only messages of interest are sent to the hosts. The message managers

Host 1

Host 2

Host 3

Host n

Message
Manager

I/O Device

I/O Device

I/O Device

I/O Device

I/O Device

I/O Device

Key

Direct link

Network link

Figure 2.6 Basic WAVES architecture.

34

are also given the ability to delegate direct point-to-point links between hosts in special
circumstances, e.g. a line carrying a video signal. Under WAVES, a VE may be distributed
over a network of message managers, with the allocation of hosts to each manager being
determined by a dynamic clustering algorithm. Objects have explicit behaviour models which
aid load balancing, support dead-reckoning and may be used to predict an object’s state in
order to combat latency. The ghost objects that reside on a host are called clones in WAVES.
As with other dead-reckoning systems, some fault tolerance is provided in that if one host
should go down, then the others can carry on using their current behaviour models.

Load balancing is performed on each host based on several criteria: the host’s processing
power, the number of objects on the host and how closely related the objects are (Kazman,
1993b). The host sends its current load and their maximum possible load to their local
message manager. When the host detects its load has risen above its maximum, it sends
another message to the message manager indicating which object it would like to get rid of.
Another host is found for the object or, if no suitable host can be found, the transfer request is
refused.

Users should be representable as objects providing there are sufficient input/output devices on
a host and this would also imply that multiple users can be supported. It is unclear whether it
is possible to execute multiple environments.

2.3.7.2 Distribution of Responsibility

To solve the problem of area management, WAVES uses a special Area Manager which is
paired with a message manager (Kazman, 1993d). The area manager maintains a list of
viewable areas for a given viewpoint, one per host. When the list changes, the message
manager’s filtering criteria for a given host is changed so that only those objects in the host’s
viewable areas are sent to it. Since the area manager only changes message filters, it can be
added or removed from a WAVES system without disturbing anything else in the system. To
overcome rapid changes in area, WAVES proposes to use an object’s behaviour model to
anticipate the changes and send filter requests in advance. To avoid the problem of all users
occupying a small number of areas and causing a bottleneck, there may be many managers in
the system and they may balance their loads dynamically.

Interactions between objects are specified externally in interaction detection and resolution
(IDR) agents (Kazman, 1993a). The world view maintainer contains the description (world
attributes) of the environment that the objects operate in; a view controller which dynamically
manages the inventory of agents which may be interfacing, and an inventory of all the objects
which exist in the world (world objects). If IDR takes too long then the world may be broken
into a number of areas, each with their own IDR facility. Each IDR server contains a
production system, which allows the system designer to create arbitrary constraints on an
object's state in the form of rules that are evaluated each execution cycle. Each IDR server
contains a “theatre map” that plots the locations of all objects in the theatre and raises an
exception when two objects attempt to occupy the same space. IDR servers can be designed
to handle particular types of interactions: spatial, temporal or semantic. IDRs can therefore be
used to detect interactions within a spatial threshold as a sort of prediction mechanism to
accommodate lags in the system.

35

In summary, object behaviour is defined within the objects, interactions are defined within
IDR servers and the environment is defined within the world view.

2.3.8 AVIARY

In the AVIARY model a distinction is made between objects that are presented to the user
through different media: Demons are the pieces of software that implement an object and
Artifacts are the manifestation of the demon in the VE (Snowdon et al., 1993; Snowdon and
West, 1994; Snowdon, 1995).

2.3.8.1 Basic Architecture

A virtual world is seen as a container for artifacts and a set of constraints on those artifacts
and behaviour. The sole World Object represents a virtual world, acting as a container for
artifacts, storing the identities of demons, details on the objects providing other services, and
information shared by all objects. The actual artifact definitions are not held within the world
object, but since the artifacts may be accessed through it, this information can be obtained
indirectly.

The Environment Database (EDB) provides a spatial management service to other objects
(Figure 2.7). When a demon moves, it sends a message to the EDB, which prompts a
collision check for that object. The EDB then informs the relevant objects of the collision and
they may then react as they please. To prevent the EDB becoming a bottleneck, it may be split
into one or more new EDBs which share the existing workload (although this has not been
implemented yet). In addition, separate EDBs may be employed for different media and
therefore operate in parallel.

Communications
System

VEM
EDB

Renderer

Sound
Output

User
ObjectsObject

Servers

Speech

Data
Glove

Head
Tracker

Applications

Input Objects

Output Objects

Figure 2.7 AVIARY component schematic.

36

Object Servers provide an execution environment for demons, handling object
creation/destruction, messages from other objects, memory management and scheduling. Inter
Process Communication (IPC) between all types of objects is supported without restriction.
One object server is allocated to each processor. Security-wise, each object controls access to
its own data and may therefore protect any sensitive information.

Only one Virtual Environment Manager (VEM) is present in the whole system and provides
services to ensure that the integrity of the VE is always maintained. This includes the
assignment of identifiers to objects (aiding dynamic object creation) and also to classes and
messages. This last mechanism ensures that objects that understand the same messages but
have been implemented differently can still communicate with each other. Complementing
the VEM is the World Manager which maintains a list of all the available services provided
by objects. This enables any object to look for another object providing a service that it
requires, e.g. visual rendering or collision detection.

The issue of time synchronisation is resolved in AVIARY by making use of real-time clocks
on each node. Simulation or world-time can, however, be scaled relative to real clock time.

Both synchronous and asynchronous message passing is supported with both multicast and
point-to-point links used to transfer the message. To prevent deadlock, the object server is
multi-threaded so that it is always ready to respond to an external event.

2.3.8.2 VE Modeling

Behaviour of the artifacts is dictated by the methods defined for the creating demon which
actually consists of two parts: artifact-specific and world-specific. All features that are shared
by all objects in the world are held in the world-specific part and those unique to each class of
demon in the artifact-specific part. This separation of attributes aids migration from one
world to another. Demons can make use of services provided by any other kind of object and
can inherit classes or define existing classes to extend its capabilities.

Multiple worlds are an important part of AVIARY's design since each may require a different
interaction metaphor and it own laws and properties. The user is permitted to travel between
worlds by using Portal objects that may appear as artifacts in each virtual world. When a
demon moves between worlds the world-specific part of the demon is replaced by that of the
new world whilst the artifact-specific part remains unchanged.

A demon may represent an application or a user, either way it is likely to need access to input
and/or output devices. Input objects control input devices, sending data to all interested
objects only when there is something new to send. Output objects monitor a particular
location in the world and display a representation in the chosen media.

Users are represented by demons and are decoupled from the system and I/O devices.
Although there does seem to be provision to integrate I/O into the user demon if performance
dictates.

The current implementation is written in C with object-oriented features, including multiple
inheritance added through macros. These macros create an internal data structure of class
descriptions, object instances, etc. This data may be communicated to another machine thus

37

supporting object migration, although no load balancing checks are currently made to see
whether this is required.

2.4 Summary
All of the systems examined here are trying to achieve interactivity, but none are real-time in
the traditional sense and therefore do not support real-time displays. These are important
aspects of a VE system and the impact of supporting them is discussed in sections 3.3 and 4.3.
This classification has therefore been left out of the feature summary table (Table 2.3).

2.4.1 Communication Organisations

Typically there are n processes in a VE which need to communicate with each other. Using a
point-to-point communications system, a link must be established between every process or a
central server established, forming a hub. In the former case this will require n(n -1) links and
in the latter, n links, although total centralisation can place a burden on the central server
which can quickly become a performance bottleneck. Conversely, administrative processes
often need to monitor most (or all) transmissions and make according actions, e.g. dVS’s
Director and the Message Managers in WAVES.

Whilst broadcast relieves the overhead of maintaining links, it floods the network with
messages which are either an inconvenience (on shared networks), or wasteful (on dedicated
networks) because in large VEs not every process needs to know what all the others are doing.
Area management can be used to determine who needs to know what, but cannot use
broadcast as the transport mechanism. Maintaining a number of point-to-point links is one
solution but with the complications already outlined above. Multicast provides a way of
overcoming these disadvantages (as demonstrated by the AOIM in NPSNET) whilst still
retaining the low transmission overhead, but it is not widely available and is, like broadcast,
unreliable.

38

Fe
at

ur
e

D

IS
/S

IM
N

E
T

N

PS
N

E
T

M

R
 T

oo
lk

it
D

IV
E

dV

S
W

A
V

E
S

A
V

IA
R

Y

C
om

m
un

ic
at

io
n s

Tr
an

sp
or

t
M

ec
ha

ni
sm

(s
)

Po
in

t-t
o-

Po
in

t,
B

ro
ad

ca
st

,
or

 M
ul

tic
as

t

M
ul

tic
as

t
Po

in
t-t

o-
Po

in
t w

ith
in

no

de
 a

nd
 B

ro
ad

ca
st

be

tw
ee

n
no

de
s

M
ul

tic
as

t
Po

in
t-t

o-
Po

in
t

Po
in

t-t
o-

Po
in

t
Po

in
t-t

o-
Po

in
t a

nd

M
ul

tic
as

t

Ta

rg
et

ed

B
an

dw
id

th

U
ns

pe
ci

fie
d

10
 M

bp
s +

10

 M
bp

s +

10
 M

bp
s +

10

 M
bp

s +

14
 K

bp
s +

10

 M
bp

s +

St

ru
ct

ur
e(

s)

Pe
er

Pe

er

H
ie

ra
rc

hi
ca

l &

C
lie

nt
/S

er
ve

r
in

te
rn

al
ly

 a
nd

 P
ee

r
ex

te
rn

al
ly

Pe
er

C

lie
nt

/S
er

ve
r

C
lie

nt
/S

er
ve

r
C

lie
nt

/S
er

ve
r

D
at

a
M

an
ag

em
en

t
O

rg
an

is
at

io
n

To
ta

l R
ep

lic
at

io
n

To
ta

l R
ep

lic
at

io
n

A
ct

iv
e

&
 P

as
si

ve

Pa
rti

al
 R

ep
lic

at
io

n
To

ta
l R

ep
lic

at
io

n
Pa

ss
iv

e
Pa

rti
al

R

ep
lic

at
io

n
C

om
pl

et
e

D
is

tri
bu

tio
n

C
om

pl
et

e
D

is
tri

bu
tio

n

Lo

ca
lis

at
io

n
Su

pp
or

t?

N
o

Y
es

N

o
N

o
N

o
Y

es

Y
es

C
om

pu
ta

tio
n

M
an

ag
em

en
t

O
rg

an
is

at
io

n
Pa

rti
al

 R
ep

lic
at

io
n

Pa
rti

al
 R

ep
lic

at
io

n
To

ta
l/P

ar
tia

l
R

ep
lic

at
io

n
To

ta
l R

ep
lic

at
io

n
Pa

rti
al

 D
is

tri
bu

tio
n

Pa
rti

al
 &

 C
om

pl
et

e
D

is
tri

bu
tio

n
C

om
pl

et
e

D
is

tri
bu

tio
n

B

eh
av

io
ur

Le

ve
l

1
1

0/
1

0
0

1
0

V
E

M
od

el
in

g
En

vi
ro

nm
en

t
M

an
ag

em
en

t
Pa

ra
lle

l
Pa

ra
lle

l
Si

ng
le

M

ul
tip

le

Pa
ra

lle
l

U
nk

no
w

n
M

ul
tip

le

U

se
r S

up
po

rt
M

ul
tip

le

M
ul

tip
le

M

ul
tip

le
, I

nt
eg

ra
te

d
(p

os
si

bl
y)

M

ul
tip

le
, I

nt
eg

ra
te

d,

w
ith

 R
ep

re
se

nt
at

io
n

M
ul

tip
le

, D
ec

ou
pl

ed

w
ith

 R
ep

re
se

nt
at

io
n

M
ul

tip
le

, D
ec

ou
pl

ed

(p
ro

ba
bl

y)

M
ul

tip
le

, D
ec

ou
pl

ed

Ti
m

e
M

an
ag

em
en

t
Pr

og
re

ss
io

n
M

et
ho

d
Im

pl
ic

it
or

Ex

pl
ic

it
Im

pl
ic

it
or

 E
xp

lic
it

N
on

e
N

on
e

N
on

e
U

nk
no

w
n

Im
pl

ic
it

N

od
e

Sy
nc

hr
on

is
at

io
n

U
TC

 o
r N

on
e

U
TC

 o
r N

on
e

Pr
og

ra
m

m
er

N

on
e

N
on

e
U

nk
no

w
n

N
on

e

Fa
ul

t T
ol

er
an

ce

D
eg

re
e

3
3

3/
0

0
0

3/
0

0

Se
cu

rit
y

M
et

ho
d(

s)

Em
pl

oy
ed

N

on
e

N
on

e
N

on
e

N
on

e
N

on
e

N
on

e
O

bj
ec

t L
ev

el

In
te

rfa
ce

T

ab
le

 2
.3

 D
is

tr
ib

ut
ed

 V
E

 sy
st

em
 fe

at
ur

e
cl

as
si

fic
at

io
n

su
m

m
ar

y.

39

2.4.2 Transport Mechanisms

Deciding whether to use a reliable message delivery service or not is a key decision in the
design of a distributed VE system. NPSNET, MR Toolkit and other DIS-based systems use
UDP between machines. DIVE uses multicast exclusively and AVIARY uses it for messages
that need to be sent to many processes, but this is under the control of the application
programmer. The only two systems that use a reliable service exclusively are dVS and
WAVES. Both make use of a known network configuration and thus known addresses, to
distribute the messages. If an unreliable service is used then the software protocols must
reflect this decision and a degree of fault tolerance provided.

Even with the implementation of these two steps, loss of messages (or their delayed reception)
will, inevitably, have an affect on the user interface. The effect could be anything from a
slight glitch or jump in the display, to temporary loss of service. If these counter-measures are
not taken then the designer is relying on a large number of variables holding true to keep
things running, e.g. plenty of bandwidth available, network interfaces fast enough to capture
packets, etc. Of those systems reviewed that use multicast/broadcast, NPSNET and MR
Toolkit account for lost messages. Both use exported behavioural models but MR Toolkit
actively encourages a machine to disconnect and reconnect during a simulation by providing
appropriate API functionality. To the author's knowledge, DIVE and AVIARY do not make
any provisions for lost messages, the consequences of which are unknown for both systems.

2.4.3 Bandwidth Implications

All of the systems use common networking technology so it is unsurprising that most are
currently implemented using Ethernet. The DIS standard does not actually specify a
bandwidth but the author does not know of any implementation using anything less than 10
Mbps. WAVES’ target of 14 Kbps is laudable but there is precious little bandwidth to play
with. Without compression, 14.4 Kbps will support a data rate of approximately 1.31
Kbytes/second5. The compression supported by modern modems could improve on this if
there were repeating patterns in the data stream, like those found in ASCII text. However, the
likelihood is that the messages sent between nodes will contain extensive binary data and thus
compression will do little good. This figure does not, of course, include transport protocol
overheads which may reduce the data transfer rate substantially (section 4.2.3).

The fact that the available bandwidth for a given process will vary during execution is a
compounding factor. This affects both reliable and unreliable services and, depending on the
criticality of the system, can at the very least wreak havoc on system performance. The author
believes that the ability to allocate channels of fixed bandwidth for a fixed period (as
supported by ATM), is essential to the development of distributed VE systems. Only then
will communications become deterministic and thus release the designer to concentrate on
other issues.

5 14.4/ 11 = 1.309 Kbytes/second (assuming 8 data bits, 1 start bit, 2 stop bits and no parity).

40

2.4.4 Distribution & Scaleability

Communications latency affects all systems, regardless of architecture, however, it is the
largest enemy of scaleability. As the distance between nodes increases so will the latency and
unless the system protocol and structure is modified to account for this, performance will
degrade beyond acceptable levels.

Each of the current systems reviewed address one of Kleinrock’s classes with a possibility of
application in another if the conditions are right. None attempt to address more than two and
certainly no changes are made to the system architecture to help it adapt. Each form of data
and computation distribution has advantages and disadvantages. All can be applied
successfully in a near/tightly-coupled system but as we move through far/tightly-coupled into
the far/loosely-coupled classification, so the solution weaknesses become more apparent.

Complete distribution of both data and computation is a victim of increased latency since all
accesses and data modifications have to be communicated to their source. The worst-case
task would be the monitoring of a piece of information, performing an action when it reaches
a certain value and then modifying it. This would require a message to get the latest value and
possibly another to modify it every simulation step. If this task was performed on many
objects it could saturate the network. Both AVIARY and WAVES use this approach. Active
partial replication, as used partly by MR Toolkit, also has the same problem. Whereas data
would be accessed via an object interface with complete distribution, copies of whole chunks
of object state can be distributed with active replication.

Partial replication of data provides slight relief from this symptom by supplying a mechanism
that will send any interested party a copy of the relevant portion of state (or behavioural
model) only when it changes. Not only does this reduce bandwidth consumption, but also the
computational load because the task function is only executed when an update is received,
rather than at every simulation step. Modifications can be made by sending the instruction to
change data back to the source. A slight variation on this is partial computational distribution
where changes are made locally and communicated back to the owner, or, as in dVS,
committed to the shared database. If the latter method is used, locks must be used to preserve
data integrity. Lock acquisition and release can lead to deadlock (section 2.2.3.3) and are
inherently undeterministic and thus unsuitable for a real-time system.

Complete data distribution has the advantage that data is only stored in one place, while
partial data replication duplicates parts of the environment’s state, thus consuming more
resources (DIS/NPSNET). This pales into insignificance against total replication where the
complete environment state is duplicated. In a high bandwidth configuration this is a waste of
resources, but it is the only solution when the distance between nodes is large and latency is
high. The largest challenge in this case is to keep the replicated databases in synchrony.
Transmitting modified segments of environmental state between databases is not a viable
option. Partial computational replication would seem to be a possible solution.

The usefulness of exporting behavioural models can be shown clearly by once again
considering the goal of distributed VEs over a 14.4 Kbps telephone line. A level 0 behaviour
system would likely send a position and orientation update for each simulation time step.
Assuming 6 x 32 bit floating-point numbers (3 for position and 3 for orientation) plus, say,
another 16 bits for an object identifier gives a total of 208 bits or 26 bytes. Using our
previously calculated data rate of 1340 bytes/second we can determine that 1340/26 = ~51.5

41

messages that can be sent per second. Assuming a modest 15 Hz update rate, this permits us
to send updates to ~3.4 objects. If more bandwidth is available initially then this is quite a
tempting, easy solution and is used by DIVE, MR Toolkit (at its lowest level), AVIARY and,
to a lesser extent, dVS. If a higher level behavioural model was supported, such as dead-
reckoning, then messages would be sent at a much lower rate (depending on the object’s
behaviour) thus permitting more objects to be supported.

However, level 1 behaviours still require messages to be sent quite often and it would be quite
easy for the databases to get out of synchrony considering the latency. Instead of informing
each other of deviations from the predicted behaviour, it would be more sensible to totally
replicate the computation and only inform each other of changes in object behaviour. This
could be an update of the behavioural description effected by software, e.g. level 2 behaviour,
or by a user, e.g. level 3. Bryson’s two-point paradigm (2.2.4.5) is representative of the kind
of information that could be sent.

Load balancing and process migration are best applied in a tightly-coupled system. There is
obvious application for these techniques when using complete computational distribution and
they can also be applied to systems using partial replication. With a large number of ghost
processes and area management there are likely to be those that are accessed more frequently
than others. Spreading the computational load evenly whilst minimising the distance between
communicating objects could greatly improve performance.

2.4.5 Time

Most of the systems reviewed do not seem to have any policy on time management. AVIARY
uses the implicit model for clock synchronisation which is less than full-proof. Clock
oscillators can drift (as any network administrator will testify) and need to be constantly
corrected. The most common method for doing this is NTP which is adequate for non-time-
critical work where second accuracy will suffice. When dealing with multiple updates per
second this clearly will not do. With extra effort over a longer period of time it is possible to
synchronise clocks to millisecond accuracy using NTP, but the author feels that this may be
inadequate when dealing with 33 ms time spans (for a 30 Hz update rate). Ideally, each node
would be equipped with a Standard Positioning System which would ensure that all machines
throughout the world were synchronised to within 167 ns. Unfortunately, the current cost of
this technology would probably be prohibitive so solutions like NTP are the best remaining
choice for systems using implicit time models. Indeed, if clock synchronisation is needed in
MR Toolkit or DIVE, the designers have assumed that NTP would be used.

The explicit time model uses timestamps in messages for various purposes such as informing
them of the send time, the time at which the message is valid, etc. DIS/NPSNET uses a
timestamp format which can specify a time up to an hour after the current hour, to within an
accuracy of 1.676 microseconds. However, there seems to be no suggested methodology of
ensuring that each node has the correct current time. In this instance there would seem to be a
requirement for both models to be used together to manage simulation time.

It might be possible to use explicit time progression exclusively within systems that use
complete/partial computational distribution or partial replication, but when total replication is
used a common reference is required.

42

2.4.6 Fault Tolerance

Those systems that export behavioural models (section 2.2.4.5) implicitly support a notion of
reliability (degree-3). Failure to receive an updated model, because the source host is down,
can be remedied when the host rejoins. DIS ensures this by requiring that no one machine
controls the simulation. MR Toolkit permits a node to leave and rejoin the simulation but this
does not really constitute robustness since leaving and rejoining relies on using the correct
protocol. WAVES does export behavioural models, but there is no mention in the available
documentation that states fault tolerance as a design goal.

None of the systems pursue the goal of availability through duplication of resources, probably
because they are at a premium. Total replication of both data and computation is done by
DIVE which would put it in the best position to provide fault tolerance, although this is not a
stated goal. When the faulty node recovers, another node in the simulation can send it a
complete copy of the current environment state. Recoverability is not supported by any of the
systems and the only true robust systems are those based on SIMNET/DIS.

If interaction is a high priority then degree-4 fault tolerance is the most desirable and may
even be considered as the only usable type. Any faults managed at a degree below this would
be reflected as a disconcerting change in the VE display. This may manifest itself as anything
from a small “jump” in continuity (degree-3) to a total loss of realism (degree-1).

Rather ironically, the least reliable transport mechanism - broadcast - is also the best way of
providing fault tolerance: through redundancy. The incorporation of a special process/node in
the network that listens into every message and maintains a state backup using point-to-point
links would place an unacceptable overhead on communications. It would require two
messages to be sent for every communication rather than just one. Fortunately the reliability
issue is being dealt with (sections 2.2.2.3, 2.2.7) which will remedy one of the weaknesses of
any system that uses broadcast techniques.

2.4.7 Security

This is an issue that none of the current systems fully address. This is not too surprising since
all of these systems are used as tools for researching the field and security can get in the way.
An encrypted data stream is not particularly helpful if you wish to monitor message passing,
nor is access control when you are experimenting with object interaction metaphors.
AVIARY makes a token gesture by putting each object in control of its own data. This is not
an added feature, this ability comes with the adoption of an object-oriented structure. An
object’s methods may be coded in such a way to vet access but AVIARY provides no built-
in/automatic security layer.

2.4.8 Modeling

With the exception of MR Toolkit and WAVES, all of the systems support the concept of
multiple VEs in one way or another. DIS supports multiple exercises which take place in the
same environment, whether these exercises can interact is not clear. DIVE assigns a multicast
group to each environment so messages are not processed unless the user is present in that
environment. dVS can support different environments but there is no evidence to suggest that

43

elements in one environment can move to another at run-time. All objects in AVIARY
occupy one of the available VEs which are designed as a hierarchy of worlds, each one
building on the properties of the parent. Objects may also migrate from one world to another,
a feature shared by DIVE. However, in AVIARY worlds may possess different properties
whereas DIVE worlds would need to be programmed identically to facilitate migration.

All the systems support multiple users in differing ways. MR Toolkit might support more
than one user if each had their own workstation and was sharing the same database. The
WAVES literature does not specifically state that it can support many users, but its general
structure of hosts and I/O devices infers that it does. In DIVE and MR Toolkit, the user is an
integral part of the system, in fact they are built around the user. DIS, dVS, WAVES and
AVIARY do not distinguish a user from any other object except that it may have various I/O
devices connected to it. All of these can be used to simulate VEs with no human participation
whatsoever. Despite this treatment, dVS does seem to emphasise the ability to specify a
special user representation in the VE in a manner similar to DIVE. The latter, however, also
uses this representation to configure the required I/O devices.

2.4.9 System Summaries

2.4.9.1 DIS-based Systems

DIS and SIMNET would have originally been classified as near/loosely-coupled but DIS is
now trying to move on towards far/loosely-coupled. The problems with such a move have
been discussed in this summary and in section 2.3.2. NPSNET is being used by the Naval
Postgraduate School as a testing ground for new ideas and concepts to help DIS make this
transition. Despite the DIS community’s advocation of the protocol's applicability to non-
military VEs, the author feels that it will always be of restricted use due to its constrictive
definition. All messages sent between objects have to be defined in advance and of the
dozens already defined only one of them is of general use: the Entity State PDU. The other
PDUs deal with explosions, logistics support, etc., which are inherently military-application
specific.

2.4.9.2 MR Toolkit

This system is used to aid research into user interfaces and is accordingly designed around the
user. It does its task well but its lack of generality limits its applications in the same way as
DIS-based systems.

2.4.9.3 DIVE

DIVE is more flexible than DIS and MR Toolkit, but its use of total replication and an
unreliable message delivery system make scaleability a real issue.

44

2.4.9.4 AVIARY

Of all the systems reviewed, AVIARY is the most flexible but shares another problem with
the others in that it will have problems scaling up to larger VEs. The use of complete
distribution has limits and must be supplemented with other forms of data/computation
management, requiring changes in the system’s architecture.

2.4.9.5 WAVES

There is only limited information available on this distributed model although the literature
states that a prototype implementation is being developed. The inclusion of low bandwidth
communications is cause for concern and catering for this could compromise the design

2.4.9.6 dVS

A restriction shared by all of the systems presented here is the difficulty with which the VE
definition is changed. dVS requires the basic components and structure of the environment to
be scripted off-line, pre-processed, compiled and linked in with the Actors.

Its exclusive use of point-to-point links may also prove to be detrimental to performance when
larger networks of dVS machines are attempted.

2.4.10 A New Architecture

From the analysis presented in this chapter, it is possible to extract those features that
effectively resolve the presented issues and derive a new architecture for distributed VE
systems. This is presented in chapter 4 following a closer look at a couple of aspects which
deserve more attention: modeling and displaying VEs.

	Design Issues for Distributed Virtual Environment Systems
	Discrete Event Simulation Heritage
	Optimistic versus Conservative
	Time Warp
	Discrete Event Simulation Summary

	Issues
	Real-time
	Communications
	Point-to-point
	Broadcast
	Multicast
	Bandwidth
	Latency
	Shared Memory
	Structure

	Data Management
	Localisation
	Complete Distribution
	Partial Replication
	Total Replication

	Computation Management
	Complete Distribution
	Partial Distribution
	Partial Replication
	Total Replication
	Behaviour

	VE Modeling
	Multiple VEs
	Users

	Time Management
	Fault Tolerance
	Security
	Issues Summary

	Implementations
	SIMulation NETworking System (SIMNET)
	Distributed Interactive Simulation (DIS)
	Basic Architecture
	Performance

	Naval Postgraduate School Networked Vehicle Simulator IV (NPSNET-IV)
	Improving DIS
	VE Modeling

	Minimal Reality (MR) Toolkit
	Basic Structure
	Packages
	VE Modeling
	Data and Computation Distribution

	Distributed Interactive Virtual Environment (DIVE)
	Distribution
	Applications
	Users
	Time

	Distributed Virtual Environment System (dVS)
	Database Structure
	Database Synchronisation
	VE Modeling
	Synchronisation

	Waterloo Virtual Environment System (WAVES)
	Basic Architecture
	Distribution of Responsibility

	AVIARY
	Basic Architecture
	VE Modeling

	Summary
	Communication Organisations
	Transport Mechanisms
	Bandwidth Implications
	Distribution & Scaleability
	Time
	Fault Tolerance
	Security
	Modeling
	System Summaries
	DIS-based Systems
	MR Toolkit
	DIVE
	AVIARY
	WAVES
	dVS

	A New Architecture

