
Improving Distributed Service Management
Using Service Modeling Language (SML)

Robert Adams

System Technology Lab
Intel – Oregon, USA

robert.adams@intel.com

Ricardo Rivaldo1
Information Technology
Department – QI College

Gravatai, Brazil
ricardo_rivaldo@gmail.com

Guilherme Germoglio,
Flávio Santos

HP Brazil
Porto Alegre, Brazil

germoglio@gmail.com,
flavio.barata@gmail.com

Yuan Chen,
Dejan S Milojicic

HP Labs
Palo Alto, USA

yuan.chen@hp.com,
dejan.milojicic@hp.com

Abstract—Automatic service and application deployment and
management is becoming possible through the use of service and
infrastructure discovery and policy systems. But using the
infrastructure optimally requires intimate knowledge of the
hardware and the interaction of its components in order to make
optimal allocation of shared resources. This paper proposes an
architecture where the hardware infrastructure not only makes
operational parameters available (disk size, network bandwidth)
but also presents to the service management components,
relationships and constraints between the hardware components.
We present an implementation which uses the Service Modeling
Language, SML, to communicate this information and show how
this architecture saves service management from knowing
intimate knowledge of the hardware. This enhances optimal
service deployment and management in a heterogeneous
hardware environment and is a step toward autonomic
computing.

Keywords-model based management; Service Modeling
Language (SML); hardware/software management integration1

I. INTRODUCTION
Modern data center service scheduling is becoming more

automated. Technologies are being developed for discoverable
service interfaces (SOAP [14], WSDL [4], UDDI [19]), service
configuration (CDDLM [2]), infrastructure configuration (CIM
[5]) and common data representation (XML [20]). These
technologies allow management programs to programmatically
configure and allocate services onto an infrastructure with the
goal of creating a ‘hands-off’, automatically managed system.

Current systems, though, tend to take a fairly simple and
centralized view of the service and infrastructure. Such systems
have a service manager that collects the requirements and
configuration of the services and the resource infrastructure,
calculates the correct deployment of the service onto the
infrastructure and then causes the service to be deployed. The
service manager then monitors the operation of the service and
the infrastructure and reallocates resources and redeploys
services to account for changes in resource availability,
workload changes and other such dynamic changes.

A service manager, to calculate the mapping of services
onto infrastructure resources, must have the knowledge of

1 Work completed while employed at HP.

detailed resource interrelationships in order to do correct
scheduling. Traditional solution is to implement this intimate
resource interrelationship knowledge into the service manager.
This implementation would be different for every piece of
infrastructure and, as described above, is closely tied to the
design of the hardware resources.

We propose an architecture where the underlying
infrastructure communicates upward its dependencies and
configuration. In order to calculate the correct (or optimal)
deployment of the service onto its infrastructure this
information is combined with its downward set of
dependencies and configuration.

We present an implementation of this architecture using
SML to add the additional constraint formation to the basic
XML structure data. We also show the bottlenecks and
opportunities for distribution and parallelization of the optimal
mapping of services onto the infrastructure.

II. SERVICE MANAGEMENT
The class of workloads we manage in this paper are ones

that consist of several services which are each built from
multiple instances. The best state for a particular service is
when its required number of instances is running. A service
could be, for example, a tier in a multi-tier web service: one
service is N instances of HTTP processor, another service is M
instances of scripting engines and another service is Q
instances of database engines. There exists a service manager
responsible for creating the proper number of instances of each
service.

We represent the structure of our system with Service
Modeling Language (SML)[17][15]. SML extends XML
schema validation with rules (Schematron [16]) which specify
constraints between values that may appear in the instance
document. An SML model consists of two classes of
documents: definition documents which provide the description
of how the instance documents should be structured and
multiple instance documents which contain data for individual
instances.

The definition documents contain constraints that are applied to
the instance documents to verify they are valid. Constraints are
captured in two ways: Schemata are constraints over the
structure of data in a model and Rules are constraints authored

863978-1-4244-2066-7/08/$25.00 ©2008 IEEE

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 18:01:19 EST from IEEE Xplore. Restrictions apply.

as Boolean expressions on top of the data in a model. SML
uses a profile of XML Schema 1.0 as the schema language.
The definition document rules are XPath expressions [3] which
create assertions on the values in the instance documents.

There exists a validation operation which takes instance
documents and validates them against the schema and rules of
the definition document. If the assertion fails, a diagnostic
message that is supplied by the author of the schema can be
displayed.

We implement the SML validation as the front end of an
ECA policy engine. The policy and selection operations of the
service manager are created from input for the hardware and
infrastructure resources as well as the overall, authored service
policy. The details of this solution are described in later
sections.

A. Hardware Characterization
One of the principal operations of a service manager is

selecting the correct resources for the service. To make a
reasonably optimal resource selection, knowledge of the
hardware and software infrastructure is necessary.

The problem for a service manager designer is to include
the logic for all these cases into the policy statements for
service management. Because of the difficulty of the task, the
common solution is to take an easy course and ignore the
potential optimizations and code in a “fudge factor”. The
problem with including any of the hardware information
mentioned above is several fold: first the target hardware
environment is usually heterogeneous meaning there are many
different hardware servers from different manufactures;
second, the service policy author usually does not have
intimate knowledge of the internal architecture of the
hardware; third, the service policy author usually does not have
intimate knowledge of the interactions of hardware resources;
and finally, even if the service manager captures all of the
above, the hardware manufacturer will release a newer version
of the hardware with different and subtler interactions.

To simplify this task in our architecture, the hardware and
software infrastructure itself provides the equations for the
interactions of the hardware resources. These equations for
relationships are described as SML definition documents
supplied by the hardware resources themselves. In this way, the
service policy writer merely includes these equations into the
service policy selecting, for instance, memory bandwidth
capabilities of a hardware platform when placing a service
instance.

III. IMPLEMENTATION
In this section we describe our implementation of a

managed service which uses execution platform information in
its management policy.

A. Infrastructure and Monitoring
The PlanetLab [12] test bed is a collection of several

hundred computers (“nodes”) hosted at companies and
universities around the world. Each of these computers can
create virtual machines for an application on request. All of

these nodes are used by many researchers for distributed
application research. Thus, it is easy to create an execution
environment on any PlanetLab node, but one must contend
with a computer which is being utilized by other services.

A service was added to each PlanetLab node to collect data
on the node and all the running virtual machines. This
information is collected by the NodeMonitor application which
distributes the information on the Planetary Scale Event
Propagation and Router (“PsEPR” pronounced “pepper”)[1].
This is a publish/subscribe event system which routes XML
messages. A centralized application (toRepos) subscribes to
these monitoring events and stores them in the repository. This
is shown graphically in Figure 1.

Administration

Operation

VMM

Service
Instance

Node
Monitor Infrastructure

Constraints
(genic)

Service
Constraints

(genic)

Service
Parameters

(phenic)

toRepos

SMLEngine

Event bus (PsEPR)

Service Control

Constraints
and
Metrics

Assertion
events

Infrastructure/service
comands

Figure 1: Block diagram showing the server instances running in
multiple virtual machines, metrics information being sent over the
event bus and being stored in the SML repository system. The dotted
lines show the flow of validation and inferencing events to control the
service instances and the infrastructure.

The definition documents for the hardware are also sent
over PsEPR to the SML repository. Additionally, the service
definition and instance XML documents are stored into the
SML repository.

B. SML Validator Architecture and Design
Our service management implementation provides the

following services: Storage, Validation, Inferencing, and Event
notification. This is the central architectural component which
collects all of the service specification documents (definition
SML documents), the current system state (instance SML
documents) and validates the current state to generate actions.

The Storage Layer stores both the definition and instance
documents. This provides the place for the fusion of all of the
policy definitions and the system state. SML does have syntax
for external document references, but the referenced documents
must also be pulled and be available to complete evaluation.

The Validation and Inferencing Layers operate on all of
the data in the Storage Layer and output validation (schema)
and inferencing (rules) results.

The Publish-Subscribe Layer is responsible for
application subscription solicitations and notification of those
applications when those models change.

864

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 18:01:19 EST from IEEE Xplore. Restrictions apply.

The Engine Core Layer is the “glue” that makes all the
layers works together, taking care of communication and
management of shared resources and others specific
implementation details.

 The Web Services Layer is a web service stack compatible
with WS-Addressing specification [21]. This layer is the front-
end for the engine.

C. Service and Hardware Model
To control the services that are instantiated on the hardware

resources, description of all the major components as SML
definition documents are used. These fall into four groups: the
Hardware Resources, the Service Model, the Service
Parameters and Current Meta state. For each of these, there are
definition documents that describe the potential values and
assertions for that component and instance documents that hold
the current parameter values.

For our implementation, the hardware resources are the
PlanetLab nodes and the virtual machines that are created on
them. The hardware capabilities are given by definition
documents which describe the free resources on the individual
nodes.

The base assertion of this paper is that the hardware
resources themselves can supply its constraints and capabilities
to the upper service manager. Since we did not have a test
platform that allows for low level hardware characterization
(power states, memory organization, etc) we implemented this
feature by having the nodes supply the rules for their suitability
for different types of services. For instance, a high load average
of a node could make a node unsuitable for a compute
intensive service.

We define four classes of nodes: COMPUTE1 which have
available compute resources, NETWORK1 which have
available network resources, RESPONSE1 which have better
than average network response times and COMPUTE2 which
have more compute resources than COMPUTE1.

The service instances specify which class they fit into and
the hardware resources provide the definition of what the
classes are computed. In this way, the service specification
does not need to comprehend all of the details of the actual
implementation of the capability.

SML, as defined, is not capable of being a general
constraint language – the definition documents operate on the
values of elements in instance documents and the expression in
the definition documents only fire test assertions which do not
generate new values for testing. This is the main problem we
needed to solve to use SML for our application – the need to
generate new, testable values. In our implementation, we
overcame this problem by having the SML assertions generate
new instance documents – the application that is calling the
Validator receives the body of the fired assertions and, if that
body, is an ‘event’, that event is placed into the repository This
allows calculated values to become available for other
assertions in other definition documents. Note that the
generation of intermediate instance documents is not the same
as the hardware devices performing the calculations internally
and merely making the final value available for testing. Since

the test expression is available in the policy engine, it can
include more variables than just the values in the local scope of
the hardware. That is, the service pertinent input can be
included in the calculation of the hardware capabilities. This
makes our solution more general while using emerging and
available standards.

IV. DEMONSTRATION
To demonstrate the operation of this architecture, we ran a

synthetic service on nodes with various capabilities and loads.
The characteristics of the resources (the assertions in the node
definition documents) and the characteristics and state of the
service are validated to drive service management actions such
as creating new instances for the service.

Figure 2 shows the nodes which fall into each node class as
collected over a period of time. The number of COMPUTE2
nodes is limited as seen in the graph. This covers a period of
three days and the variance is due to the changing workload
and network activity on every PlanetLab node (resource
contention).

0

200

400

600

800

1000

1200

1400

1600

1 41 81 121 161 201 241 281 321 361 401 441 481
Five minute intervals

N
od

es

RESPOND1
NETWORK1
COMPUTE2
COMPUTE1

Figure 2 Number of nodes fitting the various capability descriptions.
Figure 3 captures some of the parameters for the service
manager operation. The number of management actions is
initially high and tapers off as the number of nodes is assigned.
Notice, though, that the number of SML assertions and the
number of generated events does not taper off as the allocated
nodes reach equilibrium. This happens due to SML validation
step, which has to be executed whether the output of that
assertion is used or not. This demonstrates some of the
scalability problems inherent with using SML.

0

200

400

600

800

1000

1200

1400

1600

1 29 57 85 113 141 169 197 225 253 281 309 337 365 393 421 449 477 505
Five minute interval

No
de

s

Assertions Actions Events

Figure 3: Count of fired SML assertions and the number of management

actions taken as the characteristics of the nodes change.

865

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 18:01:19 EST from IEEE Xplore. Restrictions apply.

V. RELATED WORK
Model-based management is not a new concept. As the

services are becoming more complex, some efforts and
alternatives are appearing to manage these environments
[8][10][13][17]. The use of models to manage this complexity
is emergent and discernible in different areas of computer
science such as computer networks [6], distributed applications
[7], or web services [9]. The purpose of this work is addressing
service definitions and their relationship with network
provisioning [6]. The services and policies are modeled using
an XML-based language. However, de facto standards such
XML Schema or XPath are not leveraged. Actually, the models
in this language must be composed of specific primitives that
must be understood by the language evaluation engine.

Compared with existing model based management, to our best
knowledge, our work is among the first efforts toward a SML-
model based management solution. The constructs and features
provided by SML enable us to model and manage large and
complex IT system with less effort. Inter-model reference
support to model widely dispersed resources in a federated
way. Further, the distinction of observed and desired states
provides a natural way to manage distributed services, i.e.,
validate actual state against desired state and change the
configuration through actions defined in policies if there is any
derivation.

VI. CONCLUSIONS
This paper set out to explore two topics: use of SML for

service management and improvements to that management
through the hardware infrastructure reporting capabilities up
using SML. The lessons learned from building such a system
showed several difficulties in building such a system.

The SML specification has several characteristics that
needed to be accommodated during the design phase. SML can
test the values within an instance document but it cannot
generate new values for later testing. Our implementation
solved this by generating events which, in turn, were stored as
new instance documents. Selection in SML is performed with
XPath expressions. These expressions are evaluated within the
SML Validator. This makes the expressions very hard to debug
because 1) the evaluation is in a context that cannot be single
stepped or easily observed, and 2) XPath ‘fails’ by quietly
selecting nothing. The latter feature means that the slightest
mis-coding will mean nothing happens (no selection means no
assertions) with no easy way to discover why. Debugging is
thus extremely difficult with no tools to help. SML also limits
XPath expressions to XPath 1.0. This means no date/time
operations. In our implementation, all times had to be kept as
long integers (UNIX epoch times) that could be compared with
regular arithmetic operations.

In addition to these design problems, many of the existing
SML implementations are constructed so they do not operate in
a real environment. In particular, ‘compiling’ implementations
which generate XSLT or Python code from the definition
documents makes real-time processing difficult and creates a
complex debugging situation. Future SML implementations
must take these real world requirements into consideration.

The concept of hardware characteristics and constraints
generated and provided by the hardware infrastructure in order
to reduce service management complexity was shown to be
possible. Systems like SML which allow several sources of
constraints to be merged together show promise and our future
work will extend our implementation to a specific hardware
and software system from the generalized environment
described in this paper.

REFERENCES
[1] Brett, P., et al., “A Shared Global Event Propagation System to Enable

Next Generation Distributed Services”, WORLDS'04: First Workshop
on Real, Large Distributed Systems, December 2004.

[2] CDDLM - Global Grid Forum CDDLM document,
<http://www.ggf.org/documents/GFD.51.pdf>

[3] Clark,J., DeRose,S. (editors), XML Path Language (XPath) Version 1.0
http://www.w3.org/TR/xpath

[4] Christensen,E., Curbera,F., Meredith,G., Weerawarana, S., Web
Services Description Language (WSDL) 1.1, W3C 15 March 2001,
<http://www.w3.org/TR/wsdl>

[5] Common Information Model ("CIM") Standard, Distributed
Management Task Force, Inc, http://www.dmtf.org/standards/cim/

[6] Copal, R., “Unifying Network Configuration and Service Assurance
with a Service Modeling Language.” IEEE NOMS, pp 711–725, '02.

[7] Dearle, A. et al. “A Framework for Constraint-Based Deployment and
Autonomic Management of Distributed Applications”. ICAC, 04.

[8] Eilam, T., Kalantar, M., Konstantinou, A., and Pacifici, G.. “Model-
based automation of service deployment in a constrained environment”.
Research report, IBM, 2004.

[9] Foster, H., et al.. “Model-based Verification of Web Service
Compositions.” IEEE ICASE, pp 152–161, 2003.

[10] Garschhammer, M., Hauck, R., Hegering, H.-G., Kempter, B., Radisic,
I., Rolle, H., Schmidt. H., Langer, A., and Nerb, M.. Towards generic
service management concepts - a service model based approach. In 2001
IEEE/IFIP International Symposium on Integrated Network
Management Proceedings, pages 719–732, 2001.

[11] Grid & Utility computing -
<http://devresource.hp.com/drc/topics/utility_comp.jsp>

[12] Peterson, L., et al, "A Blueprint for Introducing Disruptive Technology
into the Internet", Proceedings of the First ACM Workshop on Hot
Topics in Networking (HotNets), October 2002.

[13] Rodosek, G.D.. A generic model for it services and service management.
In IFIP/IEEE Eighth International Symposium on Integrated Network
Management, 2003, pages 171–184, 2003.

[14] SOAP - XML Protocol Working Group
http://www.w3.org/2000/xp/Group/

[15] Rivaldo,R., Germoglio,G., Santos,F., Chen,Y., Milojicic,D, Adams,R.
SML Model-based Management. Integrated Network Management
2007: 761-764

[16] "Rule Based Validation - Schematron" - ISO/IEC FDIS 19757-3 ,
http://www.schematron.com/iso/dsdl-3-fdis.pdf

[17] SML Specification - www.serviceml.org
[18] Thompson, H.S., Beech, D., Maloney, M., and Nendelsohn, N (editors),

XML Schema Recommendation, http://www.w3.org/TR/xmlschema-1/
[19] UDDI - OASIS UDDI Specifications TC - Committee Specifications,

<http://www.oasis-open.org/committees/uddi-spec/doc/tcspecs.htm>
[20] XML - Extensible Markup Language <http://www.w3.org/XML/>
[21] WS-Addressing –http://www.w3.org/Submission/ws-addressing

866

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 18:01:19 EST from IEEE Xplore. Restrictions apply.

