
SML Model-based Management

Ricardo Rivaldo, Guilherme
Germoglio, Flavio Santos

UP Brasil - Brazil
{first. lastname @ghp.com

Yuan Chen, Dejan S Milojicic
HIP Labs - USA

{first.lastname3ghp.com

Robert Adams
Intel - USA

{first.lastname @gintel.com

Abstract- Abstract models enable a clear separation between
domain knowledge and application-specific details. In the
system management arena, there are multiple implementations
of model-based system management solutions, but until now,
there was no industry-wide agreement on a common language
or paradigm to enable interoperability. A new standard has
been proposed to describe IT Services, the Service Modeling
Language ("SML"). While SML enables interoperability, it
still poses challenges in terms of scalable model stores, model
validation, and use. This paper discusses an architecture for
SML model management and validation and describe and
evaluate a prototype implementation with a use case on system
management of PlanetLab.

I. INTRODUCTION
Model-based system management is not a new concept

[8], [10],[11], [12], [15], but until nowthere was no industry-
wide agreement on a common language to enable
interoperability and model reuse. A new standard towards
this objective is the Service Modeling Language (SML) [1].
While SML enables interoperability, it poses challenges in
terms of designing model stores for performance and
scalability, validating models, reasoning about actual versus
desired state of a system and using the models.

This paper discusses the use of SML to manage a large
scale distributed system (PlanetLab [2]) and evaluates an
SML model store and validation. The paper is organized as
follows. In Section II, we introduce the SML language. In
Section III we demonstrate how SML is used by presenting a
real use case (automated service management on PlanetLab).
Section IV presents the architecture and design of the SML
validator and model store. Section V shows the
implementation of the validator. A scalability and
performance evaluation of the prototype appears in Section
VI. Finally, we compare our results with related work in
Section VII and summarize the paper in Section VIII.

II. SML LANGUAGE OVERVIEW
Service Modeling Language (SML) [1] is defined as an

XML Schema derived modeling language built on profiles of
existing W3C and ISO Schematron [16] standards.

A model in SML is realized as a set of interrelated XML
documents which contain information about the parts of an
IT service and constraints that each part must satisfy for the
IT service to function properly. Constraints are captured in
two ways: schemas and rules. Schemas are constraints over
the structure of data in a model. SML uses a profile ofXML
Schema 1.0 as the schema language. SML also defines a set

of extensions to XML Schema to support inter-document
references. Rules are constraints authored as Boolean
expressions on top of the data in a model. SML uses profiles
of Schematron and XPath 1.0 for rules.

SML defines a Document as a well-formed XML 1.0
document and a Model as set of inter-related documents that
describe an IT service. Each model consists of two disjoint
subsets of documents - Genic documents and Phenic
documents. A Genic Document is the subset of a document
in a model which describes the rules and principles that
govern the content of the model's documents. The
specification defines two kinds of Genic documents: XML
Schema documents that conform to SML's profile of XML
Schema and rule documents that conform to SML's profile of
Schematron. A Phenic Document is the subset of a document
in a model that describes the form and structure of the
modeled entities. Model Validation is defined as the process
of verifying that all documents in a model are valid with
respect to the model's Genic documents. Validation of a
model is done by a Model Validator, which is an
embodiment capable ofperforming model validation.

III. USE CASE: AUTOMATED SERVICE MANAGEMENT OF
PLANETLAB

To demonstrate the above described features of SML, a
dynamically managed service use case has been built and
tested. The testbed environment used (PlanetLab) has several
features that fit requirements of "utility computing"-
dynamic allocation of virtual machines, geographic
distribution, and dynamic workload on each server. A system
where resources are dynamically allocated as required by a
service and/or a service level agreement encourages the use
of a model-based system. The SML Model Validator is used
to test whether a version of the infrastructure and service
operation conforms to the rules and constraints of the model.
The Model Validator output feeds a service management
module to perform actions to change the service operation so
that it conforms to the models. The action module and the
SML Model Validator together comprise policy based
service management.

IV. ARCHITECTURE AND DESIGN
The software is designed to provide users with a set of

services to work with SML models and implements
functionality required by an application using SML models.
The architecture is presented in Figure 1.

Validation and Inferencing Layers perform what is defined

1-4244-0799-0/07/$25.00 t2007 IEEE 761

as model validation. The SML language has two aspects:
syntactic and semantic. The syntactic aspect of the language
expresses the model's data structure. The semantic aspect of
models is a knowledge representation of IT Services
expressed as Schematron rules. This knowledge can be used
to verify differences between the actual and desired service
state, i.e., to check semantic compliance with the application
domain. Validation is the process of verifying that the
model and instance data syntax and semantic are correct.

External Dat
~Prcvde

External Phen Stoge Se

cl:
(D

LU

Figure 1: SML Engine Architecture.

The service will return the syntax and semantic results to
the caller. These results may be error messages if the
document is not syntactically correct or the text output
produced by the Schematron rules on the corresponding
Genic document. The SML Engine will treat inter-document
references and take into account where Phenic documents
are located, i.e., locally or external to the repository.

Storage Layer. Both Phenic and Genic Documents can be
stored, updated, queried and retrieved. The storage layer will
find and retrieve not only locally stored Phenic documents,
but also external ones. In the storage process, an application
can ask for a Validation and/or Inferencing action to
guarantee that the stored model is syntactically and/or
semantically valid.

Publish-Subscribe Layer is responsible for handling
applications subscription requests on SML Models change
(Phenic and Genic Documents) and for notifying those
applications when those models change.

Engine Core Layer is the "glue" that makes all the layers
work together, taking care of communication and
management of shared resources and others specific
implementation details.

Web Services Layer, as the name suggests, is a web
service stack compatible with WS-Addressing specification.
This layer is the front-end for the engine.

V. IMPLEMENTATION

Our implementation uses modified open source tools:
XMLBeans [17] as the interface to the XML Schema
validator built from Scimitar (a component of Amara XML
toolkit [18]) as an ISO compliant Schematron validator. We
extended Scimitar to develop an SML Identity Constraints
validator and an XML library to handle the XML

hierarchical structure and to treat inter-document references.

SML model validator is composed of four main layers:
1. Documents Publisher accepts the set of files with their

respective aliases and creates a map where, given an
alias to a file, its URI can be retrieved. This entity eases
the inter-document references resolution.

2. XML Schema validator validates the entire model against
the SML and W3C XML Schemas.

3. Schematron validator includes: a) Schematron Extractor:
Transforms the model schema in order to get all the
Schematron rules in a unique XML file. b) Scimitar
Parser: Gets the Schematron Extractor output and
generates a Python validation file. c) Rules Evaluator:
Executes the Python file and returns a significant code
(zero if everything valid and another number otherwise).

4. Identity Constraints validator includes: a) Constraints
Extractor: Creates a set of constraints to be analyzed
against the date files. b) Date Selector: Uses the
constraints definitions, such as 'selector' and 'field'
elements, to select the data to be analyzed. c) Constraints
Analyzer: Analyzes each constraint (key, unique and
keyref) and returns a significant code.

PlanetLab SML model represents a collection of several
hundred computers ("nodes"), each able to create virtual
machines on request. A service runs on each PlanetLab
node which collects data on the node and on all running
virtual machines. This information is collected by the
NodeMonitor application which places it on the Planetary
Scale Event Propagation and Router, PsEPR (pronounced
"pepper"). PsEPR is a publish/subscribe event system which
routes XML messages. A centralized application (toRepos)
subscribes to these monitoring events and stores them in the
repository. The PlanetLab structure model is a straight
forward hierarchical organization of the nodes within sites.
The model for the metrics [3] includes per-node and per-
virtual machine measurements. The service instances also
generate metric information on operations which are part of
the service model. Part ofthe service model is the parameters
that control the service and the assertions around these. In
particular, the number of instances of the service to run is an
important parameter.

The SML model for PlanetLab consists of: a) sites
hosting nodes; b) the Nodes: which are hosting virtual
machines; c) the Virtual Machines: where the applications
are executed; d) the Services: describe the required resource
and conditions for a service.

The Nodes and Virtual Machines levels have the metrics
such as: CPU usage, bandwidth available, bandwidth usage,
and virtual machines running on a node. For the relationships
between nodes, virtual machines and service, Schematron
assertions infer the state for at least the following conditions:
Insufficient Nodes, Too Many Nodes, Failed Nodes Exist,
Timeout Allocating, and Timeout Failed. The SML
Validator checks those conditions each time the model's
Phenic documents (the data) is updated and reports to the
Service Control the inference process results. With those
results, the Service Control can take the appropriate actions
to correct the problems detected, if any. Those are initial,

762

(store/query/update)

Data Hub Services
(search and retrieve)

ckD
5U
az
co

LU

Event notification Services
(Publish-Subscribe)

nfe ren ci ng Se rvices

failure tests of node management. We will add tests for the
health of the service instances.

Figure 2: Server instances runs in multiple VMs, metrics information is
sent over the event bus and stored in the SML repository. The dotted lines
show the validation events to control service instances and infrastructure.

VI. SCALABILITY AND PERFORMANCE EVALUATION

A. Scalability of Validator. To evaluate the scalability of
the validator we choose SML specific metrics.
Inter-document Referencefrom one document to another

is introduced by SML. Our validator test shows that Inter-
document reference performance is linear.

Phenic Documents. Figure 3 demonstrates the validation
time as the function of the number of Phenic documents
(instance data files) in a model.

Schematron Rules. The SML models describe rules
based on Schematron. To measure the models of different
size, the Figure 4 presents the validation time as a function of
the number ofrules.

Figure 3: When a new Phenic document is added in a model, the entire
validation time is the previous plus the new document validation time.

Figure 4: The phase with more resolution impact is the Schematron
validation, since it has to evaluate the Schematron rules.

SML Identity Constraints. SML specifies three identity
constraints (key, unique and keyref), however, we present
experiments only for key constraint. We created three sets of
files. The first uses two fields as a key, the second set uses
ten fields, and the last set uses twenty. Figure 5 demonstrates
validation time as function of the number of identity
constraints for each set of files (simple, medium and
complex). Figure 5 shows validation time as a function of
the number ofkey constraints.

Observing the experiments results we can conclude that the
XML Schema validation time only increases when the size
of Phenic documents in a model increases due to the number
or the length of the files. The figures 4, 5 and 6 show
increasing ofthe validation time due to:
* Number of inter-document references: In order to increase
the number of references, they needed to be defined in the
Phenic documents, increasing the document length.

* Number of Phenic documents: The experiment itself
increases the number of Phenic documents in the model.

* Number of Schematron rules: The number of rules
evaluation increases when there are more elements in the
Phenic documents where the rules must be applied. This
increases the length ofthe documents.

The Schematron validation extracts the Schematron
definitions from the Genic documents and applies them to
the Phenic documents. Therefore, its validation time
increases as these documents increase and this is true in all
the experiments. The SML Identity Constraints validation
time increases when the number of fields which compounds
the constraints, the number of its occurrence in the Phenic
documents and the Genic document size increases.

Figure 5: The linear behavior on constraints evaluation.

Figure 6: Depending on the number of fields in a key definition, the
Identity Constraints validation phase can take more time than the others

763

A. Performance ofautomated service management on
PlanetLab
A naive implementation of the policy engine would poll

the Validator on every instance change. A more reasonable
implementation is to evaluate the instance information at the
response granularity required for service configuration
changes. It becomes obvious that even continuous validation
(which generates events when assertions are incorrect) can
be quickly overwhelmed by the computational requirements
of handling the number of instance document changes
generated by even simple systems.

VII. RELATED WORK
The more complex services become, the more laborious

their management is. Considering this, modeling has been
the natural answer for reducing the management complexity.
Many efforts have been made towards this [12], [15][13],
[10]. Using models for management comprise different areas
such as computer networks [7], distributed applications [9],
or web services [11]. A lot of research was conducted on
ECA systems and data repositories, and languages to specify
actions for certain conditions and events [6][4]. Some of
them are also very similar to SML [14], but none of them
leverage standards, such as XML, XML Schema,
Schematron, and XPath.

VIII. SUMMARY AND FUTURE STEPS

In this paper we proposed the architecture of an SML
Repository Engine. The target application was a PlanetLab
test bed to control Services running on dynamically allocated
virtual machines. Our focus was implementing the model
Storage and Validator and test rather then on the simulated
models. We discussed the achieved validator performance.
The functionality we provide could be useful to any
application that works with SML Models. To make a
completely application and programming language neutral
tool we used web-services for communication. In the future
work, we intend to address the following questions:

1) XML Storage and Performance
Experiments based on existing PlanetLab data estimate a

7x increment on the data size when converting a relational
table to SML: each node outputs metrics once every 5
minutes. 37 days of collected data results in the MySQL
table occupying 155MB and the corresponding XML is
736MB. This is a big concern to a running system which
requires good performance of the XML parsing, store,
retrieve, and validation. To address this, we plan to add a
native XML Database and an event-driven notification
engine.

2) Versioning on SML models
The main question is how to work with models that

change over the time and keep them compatible with
historical data.

3) SML Validator Reference Implementation
We are using an existing XML Schema validator

associated with a Schematron validator [18], which works by

generating Python code from the Schematron rules. This was
good enough for a research system, but production systems
require implementation of the overall SML validation
process (including a Schematron processor) without
intermediary code generation. This will permit us to work on
specific optimizations for large scale SML models.

4) Large Scale Inter-document Performance
Besides the performance on model validation and

storage, there is a need to investigate how the system will
perform with SML inter-document references on large scale
models.

ACKNOWLEDGMENT

We are indebted to Phil Prasek and William Vambenepe
for their feedback.

REFERENCES

[1] SML Specification - www.serviceml.org
[2] L. Peterson, et al., "A Blueprint for Introducing Disruptive

Technology into the Internet", 2002
[3] Park, K. and Pai, V.S.2006. "CoMon:a mostly-scalable monitoring

system for PlanetLab". SIGOPS Oper.Syst. Rev.40, 1 (Jan. 2006), 65-
74

[4] J. Bailey, A. Poulovassilis, and P. Wood. An event-condition-action
language for xml, 2002.

[5] A. Bonifati, S. Ceri, and S. Paraboschi. Active rules for xml: A new
paradigm for e-services. The International Journal on Very Large
Data Bases, 10(1):39-47, August 2001.

[6] A. Bonifati, S. Ceri, and S. Paraboschi. Pushing reactive services to
xml repositories using active rules. In A. Press, editor, Proceedings of
the 10th International World Wide Web Conference, pages 633-641,
2001.

[7] R. Copal. Unifying network configuration and service assurance with
a service modeling language. In 2002 IEEE/IFIP Network Operations
and Management Symposium, pages 711-725, 2002.

[8] J. E. L. de Vergara et al., Semantic management: advantages of using
an ontology-based management information metamodel, 2002.

[9] A. Dearle, G. Kirby, and A. McCarthy. A framework for constraint-
based deployment and autonomic management of distributed
applications. International Conference on Autonomic Computing,
2004.

[10] T. Eilam et. al. Model-based automation of service deployment in a
constrained environment. Research report, IBM, 2004.

[11] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based
verification of web service compositions. In 18th IEEE International
Conference on Automated Software Engineering, pages 152-161,
2003.

[12] M. Garschhammer et al., Towards generic service management
concepts - a service model based approach. International Symposium
on Integrated Network Management, pages 719-732, 2001.

[13] G. D. Rodosek. A generic model for it services and service
management., 2003.

[14] M. Schrefl and M. Bernauer. Active xml schemas. In Revised Papers
from the HUMACS, DASWIS, ECOMO, and DAMA on ER 2001
Workshops, pages 363-376, London, UK, 2002. Springer-Verlag.

[15] B. C. Williams and P. P. Nayak. A model-based approach to reactive
self-configuring systems, 1996.

[16] Schematron- http://www.schematron.com/iso/dsdl-3-fdis.pdf
[17] XMLBeans - http://xmlbeans.apache.org/
[18] Amara XML Toolkit - http://uche.ogbuji.net/tech/4suite/amara/

764

