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Abstract Policy-driven service management helps reduce IT
management cost and it keeps the service management aligned
with business objectives. While most of the previous research
focuses on performance/resource managements, little has been
researched in the area of availability management driven by
business policies. This is a critically important task in
enterprise IT, because a single failure in enterprise IT could
cause huge business loss. It is still unclear how we can
automate the availability management in a highly dynamic and
complex system according to business level objectives for
performance and risk attitude/preference. As a consequence,
users can not manage the availability/performance ratio to
match their risk tolerance.
In this paper, we propose a policy-driven approach to
automate run-time availability management in IT systems,
according to high level availability and performance
objectives. We further apply von Neumann-Morgenstern
utility theory to deal with users' risk attitude policies, an
important class of business policies specific for availability
management, and the associated preference structures. Based
on the proposed approach, we implement an automated
decision engine for availability management. The initial
evaluation of the solution illustrates the significance of the
policy-driven approach and it demonstrates its applicability for
availability management in complex IT environments. This
way IT users can customize their availability to the risks
tolerable by business objectives.

I. INTRODUCTION

As businesses are increasingly dependent on their IT
environment for critical business function, IT service
management solution driven by business policies is taking on a
crucial role. In IT service management driven by business
policies, which specify the service objectives and preferences
from business value perspective, the underlying IT systems are
designed to maximize the business values of the services
offered by IT and to continuously change as business needs
change.
A key goal of the IT service management driven by

business policies is to use business policy to guide resource
management and allocation in the IT infrastructures used to
carry out business tasks. In the datacenter environment, for
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instance, business policy has been shown important for guiding
provisioning for the different applications that share the
center's computing resources [1]. In the high performance
domain, batch schedulers routinely use high level policies to
determine the allocation of parallel machines to applications
[2]. In the operational information systems, tradeoffs exist with
respect to the performance vs. reliability of business
applications, recovery time (MTTR) being a key metric. The
research presented in this paper makes several contributions to
the domain of IT management driven by business policies:

* Rigorous methods and an associated management
framework relate business objectives to the IT services
that implement certain business tasks and to the
performance implications of provisioning changes for IT
services - performance model and availability model;

* An automated decision engine continuously optimizes IT
availability management and controls service provisioning
based on expected utility value in order to maximize high
level business objectives;

* A new risk-based formulation of business policy combines
the Service Level Agreements (SLAs) used in prior work
with notions of risk tolerance to better capture current
business needs and requirements, when risk is the nature of
the managed enterprise IT infrastructure, e.g., when
dealing with failures; and

* Novel management methods based on risk tolerance and
SLAs are shown useful for runtime guidance and control
of performance/reliability tradeoffs in two different
business environments: (1) multi-tier business applications
and (2) operational information systems.

Our focus on reliability is driven by multiple facts. First,
failures are a key threat to enterprise systems, since they can
result in unacceptable levels of service unavailability and lead
to substantial revenue loss [3].

Second, handling failure manually is both a difficult and
error-prone task, constituting a strong motivation for
automating system management. This complexity is evident
both for the datacenter environment [4] evaluated in this paper
and the complex, distributed service-based systems now being
developed and deployed in industry [5]. The complexity
derives from several factors. First, modem enterprise services
typically comprise multiple systems and sub services, and
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often interact with other services. In addition to this
complexity, the growing scale of modern enterprise service
(e.g., tens of thousands of services instances running in UP
consolidated data center) cause manual availability
management almost impossible. At the same time, the
business objectives or policies are diverse and complicated,
and often involve performance, availability, security and other
aspects. While the operational policies are the actual policies
used in practice to manage IT services, instead of business
policy, it is hard to assess the business value of the service
management using operational policies, and align them to high
level business objectives and policies. Finally, fault tolerance
mechanisms (e.g., active standby and passive standby)
themselves are complex and different mechanisms are
applicable under different situations since they may offer
different levels of reliability, recovery times, as well incur
different overhead or performance penalty.

Third, there are some well-known causes of failures, one
being increased failure rates under high loads, another being
failures caused by external interventions such as the
application of system patches or change of configurations [13].
They occur very frequently in large-scale enterprise data
center and automated management to improve service
availability in these situations is highly demanded.

Fourth, it is possible to directly relate managerial attitudes
concerning failures to different levels of risk tolerance. Given
the tradeoff between performance and downtime, low risk
tolerance might choose lower downtime values, whereas high
risk tolerance might choose higher performance. For example,
policy may directly prohibit patching under conditions of high
load - i.e., low risk tolerance. More generally, in the
operational information systems run by one of our industry
partners [6], risk tolerance is an approximation of a
combination of factors, including peak vs. non-peak
operational time, proximity to delivery time for certain
subsystem output, and others. Risk tolerance, therefore, is an
aggregate measure of managerial policy. Specific research
results presented in this paper use risk tolerance to adjust
system performance/reliability characteristics in response to
system changes, using von Neumann-Morgenstern utility
theory based on the proposed availability management
framework with performance/availability modeling and utility
formulations. One case considers patch application or service
replacement for multi-tier web services. Another case
considers the aforementioned aggregate measure of risk.
Results demonstrate entirely different tradeoffs made for risk-
averse vs. risk-tolerant scenarios. They also show the effects
of different risk vs. utility curves.

The remainder of this paper is organized as follows. The
next section motivates the paper, emphasizing importance of
availability management in enterprise computing. In Section
III, we present our approach, including the framework, models
and automated decision engine. Section IV discusses how to
apply utility theory to deal with users' risk attitude.
Experimental evaluations, related work, and lessons learned,
are given in Section V, VI, and VII, followed by conclusion.

II. MOTIVATION EXAMPLE
Failures in enterprise systems [4, 6] can result in substantial

revenue loss. For example, it is reported that the average cost
per hour of downtime for financial organizations can be up to
6.5 million US dollars, and for retail systems such as the home
shopping industry, the cost can be up to 113 thousand US
dollars per hour of downtime [3]. The continued growth in
scale and complexity of these applications and their IT
infrastructures, however, makes it difficult, if not impossible
for human end users to continuously maintain and improve
their availability. Factors contributing to this difficulty include
the diverse and complex business objectives and policies, and
changing run-time environments as well as changing demand
behaviors. An important goal, therefore, is to automate
availability management in large enterprise systems, both to
provide higher levels of availability and performance and to
reduce management cost [7].

Service dependency
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Figure I.Availability Management Framework
Availability management must consider risk and risk

attitude policies [8]. One intuitive example of risk attitude
policies given in [8] is, "given a choice between good
performance and mediocre downtime, or mediocre
performance and good downtime, I'd pick the second one (or
some other customers will pick the first one)." Consider the
Operational Information System (OIS) run by one of our
industrial partners, a major U.S. airline. OIS is responsible for
a wide array of tasks that range from facilitating passengers
check-in, to baggage handling, to flight updates, and even
supporting the website that allows online check-in, and ticket
sales. From an operational point of view, different components
of the OIS exhibit different levels of risk. A flight positioning
subsystem, using FAA inputs, for example, can tolerate some
loss of state since the FAA feed periodically updates each
flight's positions [6]. Conversely, the subsystem performing
passenger check-in must be highly reliable. At the same time,
risk is not a static quantity. An OIS sub-component providing
services to a flight ready to depart in 5 minutes is more
critical, i.e., it is less risk-tolerant, than the sub-component
serving a flight that is preparing for departure in 50 minutes,
for instance. Quantifying such runtime changes in risk
(criticality) would allow an enterprise to allocate more
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resources to a sub-component that is currently at a higher level
of risk.

Knowledge about risk can guide management of
subsystems as well as that of individual components. An OIS
example is perceived risk for the web server used to book
flights, perform check-ins, etc. The two important attributes
for this server are its response-time and availability.
Unfortunately, when resources are constrained, improved
availability through methods such as active/passive standbys
typically implies increased response-times. The resulting
tradeoff in availability vs. response-time must be guided by its
effect on the users (potential customers) accessing the web-
site. Risk tolerance, i.e., the willingness to tolerate risk, is
high, for instance, when loads are high. In this case, as in other
enterprise systems, fault-tolerance modulated based on
currently perceived risk, can exploit the fact that risk may be
quantified as potential loss of revenue. A high risk state is one
in which a failure in that state would cause a high loss of
revenue or the amount of potential revenue loss is high. As a
result, enterprise policy might dictate a preference for higher
availability in such conditions.

III. AVAILABILITY MANAGEMENT DRIVEN BY BUSINESS
POLICIES

A. Framework
Our availability management leverages a policy-driven

approach to automate the run-time availability management in
IT systems, according to high level availability and
performance objectives. The framework is shown in Figure 1.
Business objective is the business level metrics including
utility which we want to maximize. The business policies
specify a set of business level regulations. Examples of this
kind of policies are:
1. Customer with revenue greater than $1 00K/Year should

be classified as gold customers (Class 1 customers).
2. Services for gold customers should have at least four-

nines availability
3. Services for bronze customers should not consume more

than 20% of the utility data center (UDC) resources.

While business policies are the high level policies the
automated service management should adhere to, the
operational policies are the actual refined policies which are
used to manage the service availability at run time. One typical
example of the operational policies in availability management
domain is to allocate passive standby to second instance of
second tier, and checkpoint every 10 minutes.

To 'map' the business policies to operational policies, a
set of service models is used to specify the application
topology, dependency between different sub systems or tiers,
and setup information of services and their components. The
service model will be used for availability modeling,
performance modeling, operational policies generation, and
cascading failures.

A set of utility policies, which can also be viewed as part
of the business policies (sometimes they are considered as

business objectives, as they dictate customer satisfactions),
express preferences for a variety of performance metrics, as
well as metrics describing availability, security, and any other
service attributes of interest. Often, utility function maps the
performance metrics (e.g., response time) to monetary
measurement (e.g., revenue). A widely used exponential utility
functions is in the form of:

U(d) = -Ked+M
l+e d+M

where d is the response time of the service requests and K and
M is are constants which are specific to different services
offered in the data center. The good property of this utility
function family is that it reasonably well models the common
business requirement for service response time, i.e., when the
response time is less than a threshold M, the utility is almost
constant (although it still decreases very slowly when the
response time increases), and when the response time is higher
than the acceptable threshold, when it is considered the
response time is unacceptable, the utility will drop very
quickly to almost 0. Note that different services for different
customers will have different constant and the utility function
could change over time. One concrete example in Delta
Airline's IT infrastructure is that one sub-system requires high
performance (low response time) during a certain period of the
day (from Midnight to early in the morning), and it has much
lower requirement on the performance during other times.
Our methodology can accommodate this kind of utility
policies which change over time.

The performance profile is used to estimate the
relationship between performance and resource allocation,
under current and predicted work load. Service model is used
to estimate the availability of various services using different
fault-tolerance methods, including active standby, passive
standby, and proactive standby [9].

Figure 2. Policy Decision Engine

Based on business policies, objectives, service model, and
performance profiles, the policy decision engine (see Figure 2)
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first obtains the performance model and availability model,
then forms a Mixed-Integer Programming (MIP) problem
automatically which optimizes the service availability
management according to high level business and utility
policies, by finding the suitable availability operational
policies. How the decision engine obtains the
performance/availability models and optimizes availability
management is discussed in the next two subsections.

B. Performance Model
Although session arrival process is normally modeled as

Poisson process, the request arrival rate for each component of
a multi-tier application is not well-modeled as Poisson, as it
largely depends on the load balancing/scheduling algorithms
being used [10]. We therefore, use a GIGI1 queuing system
(see Figure 3) for modeling the performance of this class of
applications[11]. Let A, be the session arrival rate of

application s, Ts be the average session length, and zsbe the
average session think-time. Then, by applying Little's Law, the
arrival rate of each component can be calculated as:

2, t i =PS,t /i zs ,zs ,

where #35ti is the component-specific constant for the ith
component in tier t of application s. This constant depends on
the load balancing and scheduling algorithm used in each tier
and can be measured at run time.

Assume the response time of customers' request ds is
broken down into per-tier response times, then

ds =E/J51ds1 /,8 , where ds,t is the average response

time of each component, under its current workload and with
its currently allocated resources.

To estimate ds,ti we use a tight bound for G/G/1 waiting
time:

5,1t1X- 2.. < stli<w- i,1,S,t,

where ps,t',=Ps,t,iSs,tri and w¾1 is the upper bound of

t= is,t,i (oti + a s ) 1(2p-s2p5tj)
To see the tightness of the above bounds, we can convert

this waiting time bounds to the bounds for the mean number of
requests waiting in queue, and the difference between the latter
lower and upper bounds is I + Ps,ti , which is between 0.5 and 1

2
(events in the queue), because 0 < ps5t i < 1 always holds.

Now the response time of each component can be estimated

by: dsti = (ws +tt2A +S
stji

Several parameters are needed in the above formulations.
The average service time under some workload Aist with
allocated resourceRs t i,SS t i = S,t i(Rs t,i), is determined using
off-line profiling (performance model profiling). The variation
of service time -'s2 is determined with a similar method.s tJ
The variation of request inter-arrival time can be measured on-
line. Currently we use a simple moving average predictor to
predict the inter-arrival time variation in the next time slot, but
more sophisticated predictors can be used.

Tier2 Tier3
/, , f Xt, X

Tierl GIGI G/GI Tier4

IG// G/G/i

s >.t,i 1 V it G/G/ 1

Figure 3. G/G/lQueuing System Modeling of Multi-Tier
Applications

C. Availability Model
There are several availability evaluation engines, such as

Sharpe and Avanto [12]. We use a traditional Markov Chain
Model. Figure 4 represents the Markov Chain Model of a two-
tier application with only two components. For simplicity, we
only consider software failures, as software failures are usually
the dominant failures in commercial utility data center [13],
although the Markov Chain Model can be extended easily to
consider the hardware failures. For limited space, we omit the
formulations of Markov Chain analysis, referring interested
readers to [14] for additional details.
The allocated standbys help to increase the repair rate of the

system under consideration. For example, active standby can
decrease the repair time to almost zero, while passive standby
reduces the repair time significantly by using checkpointing
and recovery based on most recent checkpointed session state.
At the same time, active and passive standbys require
additional resource, thus causing performance penalty before
failures. A specific resource considered in this paper is the
CPU, which is normally the primary bottleneck for multi-tier
applications in utility data center [15]. We also assume that
virtualization methods and Work Load Manager (WLM) (e.g.,
such as those used in HP's utility data center ([4]) make it easy
to adjust primary and standby allocations.
A specific cause of failures considered in our work are

configuration changes and updates such as software patching.
In web server applications, these are known to cause up to
40°0 of all failures [13]. For availability management, then, we
model the change process as four phases: standby
initialization, patching/change, failure detection, and
recovery.. During the second phase, the primary component is
typically un-available if it is patched, but it may still provide
service if its configuration is being changed. If failure occurs
in the failure detection phase, recovery phase is initiated
immediately. The resources required by the standbys in each
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phase are profiled off-line, to determine the resource available
in the performance model [9], and the performance model
determines the utility obtained in each phase.

D. Resource allocation

Given a set of components, let Ast i be the 0-1 variable that
equals to 1 if an active standby is to be allocated for
component CS t or 0 if no active standby is to be allocated

for this component. Psf t is 0-1 variable that equals to 1 if a

passive standby is to be allocated for CS.ti . Finally, Nst,,is 0-
1 variable that equals to 1 if no standby is to be allocated for
cs t i . Then, we have the following constraints that state only
one standby can be allocated for one component:

if Ast,i= 1

then E As,t,i,P = 1
k-

if Ps,t,i =I1

then E Ps,t,i,k = 1
k

and
Asti+ -s'ti,+ Ns'ti,= 1, for all s,t,i.

The following constraints guarantee that one standby is
allocated to only one host:

H

AtJI(ZA,Ih)=1, and
k=l
H

Ps,tji (E 's,t,,h) 1
k=l

where A t,i,h and s tjih are 0-1 variable, and they are equal to

1 if active standby A t'i(or passive standby p ) is allocated
at host h. Sometimes data center administrators or customers
have specific restrictions on where the standbys should be
placed at, for which the following additional constraints can be
applied:

if Afti =1

then Astil +Ast15+i =1
The primaries and standbys allocated on one particular

host can use up to 100% of the CPU resource, thus the
resource allocation constraints can be formulated as:

if Astih =0
then CP Uhs ti,a = 0

Y Cp Uh,s,t,i,b = 1, for all hosts h
st,ti ,b

The objective function of this MIP problem is then:
Max(U) = Max(Z IsUs)

S

whereUs is the average utility in each possible state in the

Markov Chain, and Ps is the limiting probability of the
corresponding state. This MIP formulation maximizes the
expected utility of the data center. In the next section, we will
consider the risk attitude policies under uncertainty, which
result in a different objective function. All the constraints of

the new MIP problem are the same as the constraints in this
MIP problem.

IV. RISK-ATTITUDE SENSITIVE AVAILABILITY
MANAGEMENT

A. von Neumann-Morgenstern Utility Theory
Availability management usually involves uncertainty, and

decision making in such circumstances should take into
account the users' preference structure, that is, how a user
compares different outcomes of his or her decisions. In terms
of availability management, how differently the outcome with
failure and the outcome with no failure are valued implies the
decision maker's preference structure or risk attitude, e.g.,
good performance and mediocre reliability versus mediocre
performance and good reliability. Different preference
structure or risk attitudes will result in different decisions.
Utility theory developed by von Neumann and Morgenstern
can be used to deal with such decisions under uncertainly. We
will informally describe this theory below. A comprehensive
introduction of this theory can be found in [ 16].

Let W be a set of possible outcomes of lotteries and wi is
one outcome in terms of money. A lottery L is defined as /(wl,
P1), (w2, P2) .(wn, PF)}. Where Pi is the probability that
outcome w, would happen. The von Neumann and
Morgenstern theory suggests that if the preference structure
satisfies certain primitive axioms, then L1 is preferred over L2
if and only if vNMU(L1) > vNMU(L2), where

n

vNUM(L) = p vNMU(w1) is the expected von

Neumann-Morgenstern utility of L.
In other words, a lottery is preferred over another one if

and only if the preferred lottery has a lager expected utility.
Based on this theory, a decision making becomes a procedure
to find an alternative with maximal expected utility. The utility
function vNMU is the value of a monotonically increasing
function of the wealth level w. The function intuitively reflects
how happy the decision maker is with its current wealth level.
Consider a utility function, U defined over wealth w.
Let MU(w) = dU(w) dw. For everyone, regardless of their
attitude, it is natural to assume that MJU(w) > 0 since a
person's utility always increases in the amount of wealth that
he has. We can then determine a person's risk attitude through
their marginal utility function MU(w) as follows.
1) dMU(w) I dw > 0 > risk - seaking. In other words, the
additional utility he gets from one more dollar is larger when
he already has a larger amount of initial wealth. Loosely
speaking, a risk-seeking person cares more about the upside
potential than the downside risk.
2) dMU(w) I dw <0 > risk - averse. In other words, the
additional utility he gets from one dollar becomes less with the
increase of his wealth. Loosely speaking, a risk-averse person
cares more about the downside risk than upside potential.
3) dMU(w) Idw = O > risk - neutral. In other works, the
additional utility is independent of the wealth level. Loosely, a
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risk-averse person cares equally about downside risk and
upside potential.

Risk attitudes explain why people buy insurance even
though the insurance premium is usually much larger than the
expected loss from the insurance cause (i.e., risk-averse), and
also why people buy lottery even though the money spent on
lottery is usually much larger than the expected lottery prize
(i.e., risk-seeking).

Exponential utility functions are one of the most used type
of risk-sensitive utility functions. In this paper, we consider a
very popular exponential utility function in economics:
Constant Relative Risk Aversion (CRRA) von Neumann-
Morgenstern (vNM) utility function.

Figure 4. Markov Chain for a Simple Two-Component
Application

B. Risk-attitude Sensitive Availability Manamgent
Next we use an example to discuss how to apply the utility

theory described above to deal with uncertainty and user's
preference in availability management. Our approach uses
risk-sensitive utility function such as CRRA to capture users'
preference, and then optimize availability management by
maximizing the expected utility.

Table 1. Lottery Outcomes
Options |Performance| Availability |

LI: (pP,hA) 550o ofMax 99.9990o
L2: (hP,pA)| 99.50o 97.25% |
L3: (gP,gA)| 92% 99.950o l

Table 2. Preferences of Outcomes
Customer Preference |

Ci: ('like high availability') Li>L3>L2

C2: ('like high performance') L2>L3>Li
C3: ('mediocre perf. and avail.') L3> Li>L2

To manage the availability according to users' preference
structure, we first need to find the user's risk attitude under
uncertainty. In our example, we use three typical possible
outcomes ('lottery outcomes' in game theory) to elicit user's
risk attitudes (Table 1). Intuitively, LI represents an outcome
with very high availability (five nines) with poor performance,
L2 represents an outcome with very high performance with
poor availability, and L3 represents an outcome with mediocre
performance and mediocre availability. Different customers
have different risk attitudes, for example, customer Ci (Table
2) prefers LI to L3, and prefers L3 to L2, since he likes really

high availability (very risk-averse), while customer C2 prefers
L2 to L3, and prefers L3 to Li. Their different risk attitudes are
captured by the CRRA vNM utility function, which has the
form of:

Pua
vNMU(Li) =

where U is the performance outcome (e.g., 550/O), and P is the
probability that the performance outcome could happen (e.g.,
99.999°O). It's straightforward to show (1) 0< a <1 *risk
averse and the smaller a is, the more risk averse the person is;
(2) a =i X risk neutral; and (3) a >1 X risk seeking, the
bigger a is, the more risk-seeking the person is. To estimate
the value of a for Ci, we use the outcome preference of this
user, i.e., Li>L3> L2, to find the estimated range of a. Given
more preferences of the customer, we can further narrow down
the range, and when the range is narrow enough, the average
of the upper and lower bounds is sufficiently good to represent
the user's risk attitude [16]. There exist other techniques to fix
the value ofa, if that is preferred. One technique is to find the
equivalent outcomes, which states two outcomes make no
difference to the customer. It results in an equation with a as
the single variable to be determined. Another technique is to
find the limit of the user's risk attitude. For example, for
customer Ci, if he states further that Ll's five-nines
availability is good enough for him, and other outcomes with
even lower performance and higher availability are not as
attractive to him as outcome LI, then the lower bound of a
we found previously (which is 0.001) is the value that
represents this customer's risk attitude. Similarly, we found
that a for customer C2 is 0.37. The a for customer C3 is
estimated at 0.03, by averaging the lower and upper bounds
derived by the preferences stated in Table 2 (we can refine the
a for customer C3 by asking more preference questions, but
the lower and upper bounds turn out to be sufficient to
differentiate the outcomes in the experiments). To manage the
availability according to customer's risk attitude under
uncertainty, we simply replace the objective function of the
previous MIP with the new objective function:

p a°

Max(vNMU) = Max(Y' sUs .
seS a

4-tier J2EE
web server

2-tier Aireine
webserver System

D s 1i~I 1,9
2

I/ \1

Figure 5 Example Services in Utility Data Center

V. EXPERIMENTS

We evaluate our approach in a utility data center scenario,
as shown in Figure 5, with three multi-tier applications. The
first one is a 4-tier J2EE web server application with a load
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balancer tier, Apache HTTP server tier, Tomcat Servlet server
tier and MySQL database server tier. The second application is
a 2-tier web server with one load balancer tier and one Apache
HTTP server tier. The third application is a two-tier airline
revenue sub-system.

The experiments are to validate our approach in two
aspects. The first experiment is availability management during
changes [13]. The second experiment is availability
management according to customers' risk attitudes. To
simulate the failures, we use a trace-based queuing system
simulator, which has as inputs the user request arrival time
traces for each server, and the service time traces for each
component as input. Additional experiments conducted on the
real test-bed with injected failures are currently underway. The
simulation engine is similar to the simulation engine used by
Janakiraman et al. [12]. In our work, each component processes
the request according to the time logged in the service time
traces, while the simulation engine used in their work is based
on estimated service time distribution. The load balancing
algorithm for each tier is the widely used round-robin
algorithm (e.g., used in Linux Virtual Servers (LVS) [17]).

Automated
Active

700 Utility 700 Utility Passive
600 600 - No Standb

500 500
400 400 ;

300 300-
200 200 fw
100 Tilr e(Min) 1 Time(Min)

o 0o 10 20 0 10 20
(a) Utility with Failure (b) Utility without Failure

400
390
380
370
360
350
340

A P N Automated
(c) Expected Utility

Figure 6. Utility during Patching Component C1jj
Patch/change starts at t=5min, and ends at 15min. Graph (a) is the
utility when failure occurs, (b) is the utility when failure doesn't
occur, and (c) is the expected utility using active standby (denoted
by A), passive standby (P), no standby (N), and automated standby
configuration.

A. Availability Management During Changes
To illustrate the importance of automated availability

management for IT infrastructure, and to show how to optimize
availability configuration to maximize expected utility, we
introduce three different change scenarios in the first
experiment: 1) patching component C11,1 (Server 1, Tierl,
Component 1, and the probability that the component will fail
after patch is 0.1, 2) patching component C1 2,2 and the
probability that the component will fail after patch is 0.1, and
3) changing the configuration of component C1 1 1, and because

the risk of this change, the probability of failure is 0.7. The
results are illustrated in Figure 6 to Figure 8. Figure 6 depicts
the utility achieved by the J2EE web server under two different
situations: patch applied and the new component failed vs.
patch applied without resultant failure. The expected utility,
which we want to maximize is calculated by PfUf + PlfUlfI
where Pf is the probability the new component will fail, and

Uf is the average utility from the time patch is applied till the

time the recovery is completed (2OMins). PIf and Unf are thenf

probability the new component will not fail and the average
utility in the same time period. Expected utilities under three
possible configurations (active standby, passive standby, no
standby) are shown in Figure 6(c). In this experiment, our
availability management automatically determines the active
standby is the optimal configuration in this situation.

While optimal in this scenario, active standbys are not
desirable for all scenarios. For example, in Figure 7, the active
standby provides higher levels of availability than needed and
therefore, it has the worst expected utility as compared with
other two possible configurations. The intuitive reason here is
that the tier two has two replicated components and the failure
probability that the patch will fail is low. In this case, it is better
not to allocate standbys, in order to maximize the expected
utility during change.

Again, while the no-standby configuration is the best
configuration in this scenario, it is not the best configuration for
the third scenario (actually it is the worst one among three
configurations). Instead the passive standby becomes the best
configuration (Figure 8). The insight gained from these
experiments is that although current availability management
either doesn't take any preventive procedures before changes,
or use static/same configuration for different situation, one
particular availability configuration can result in totally
different behaviors in different situations, depending on many
factors including the failure probability, current workload,
available resource, patch time, and recovery time, etc. One
optimal (or close to optimal) configuration for one particular
scenario could easily become the worst configuration in other
scenario, and it is important to automate the availability
management so the appropriate configuration (operational
policies) can be determined and executed automatically.

B. Risk-attitude Sensive Availability Managment
The second experiment deals with risk attitude policies, to

validate that it is possible to optimize the availability
management according to customers' preference structure/risk
attitudes. Here we consider availability management for the
two-tier airline revenue application, with each tier of the
application having one component (see the third application in
Figure 5), for three different customers (Table 1 and Table 2).
To illustrate the results, the configurations for each component
are limited to 1) No standby, 2) Active, 3) Passive 3Min, 4)
Passive 5Min, 5) Passive 15Min, and 6) Passive 3OMin,
resulting in a total of 36 possible configurations for the two-tier
application. As discussed in the Section IV, the three
customers Cl, C2, and C3 have different risk attitudes which
are characterized by the CRRA vNM utility functions.
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Results obtained by using different CRRA vNM utility
functions for these three customers, and additional results using
risk-neutral and risk-seeking vNM utility functions are given in
Table 3. In this table, the first row is the value a. The first
column is the utilities under five representative configurations.
"A-A" means to allocate active standby for both components,
and "P-P 3" means to allocate passive standby for both
components, with checkpointing interval chosen to be 3Mins.

The configuration with higher vNM utility better matches
customer's risk attitude. This means that the only thing that
matters is the ordering vNM utility. For ease of comprehension,
we convert the results from Table 3 to normalized vNM utility

400. 910q Iv' 400 V W0 Tl I #f 0lwV8
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Figure 7. Utility during Patching Component Cl12,2
(orders of vNM utility) as shown in Figure 9. Experiment
results show that the availability management is optimized
according to the user's risk attitudes (preference structures).
For example, for Customer 1, we use CRRA utility function
witha =0.001, and active standbys are chosen for the two
components in the server. Intuitively this is true, as customer
Ci is very risk averse and availability configuration A-A is the
most conservative one. More accurately, the actual
performance and availability of the application using this
configuration is (54.9%, 99.995%), which is very close to the
top choice of customer Ci (LI in Table 1). Similarly, the
performance and availability achieved for customer C2 and C3
are (92.5%, 99.7%) and (97.5%, 98.3%), which are also very
close to their top preference, L2 and L3 respectively.

Another important observation is that different risk attitudes
(different values of alpha for CRRA vNM utility function)
result in entirely different configurations. Therefore, it is
important to consider the users' risk attitude when managing
availability. Existing policy-based methods only optimize
expected utility, which is actually one special case in our
framework. By optimizing the expected utility, we are actually
treating all users as risk-neutral (a = 1). The reality is however,
most users are risk-averse (including customer C2 in our
example who only requires one nine to two nines availability
and 'seems' risk-seeking). If we simply optimize the expected
utility, the resulted configuration could be significantly
different from what the user actually expected.

VI. RELATED WORK
IT service management driven by business policies is a

relatively new area. Buco et al. present SLA management
system that is based on business-objectives [18]. Salle et al.
propose a solution to minimize the exposed business impact of
service level violation [19]. They further present the
Management by Business Objective (MBO) technology for IT
management that can take into account strategic business
objectives [20] and they specifically apply this approach to
incident management domain [21]. In the context of design,
Sahai et al. propose a policy-based model for automated
configuration management [22]. It automatically creates a
suitable configuration and a workflow to deploy the
configuration based on user requirements, operator constraints,
and technical constraints of the system. Their business-
objectives-driven performance management uses utility
function to optimize resource allocation and maximize the
total utility. Compared to these efforts, our work focuses on
the optimization of availability management to meet business
objectives. Our solution involves the aspect of utility function,
performance modeling, and availability modeling. In addition,
availability management always involves uncertainty. In this
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paper, we provide a method to deal with users' risk attitudes
and handle different tradeoff between performance and
reliability.

To improve availability, fault tolerance techniques are
widely used in systems such as Fault-Tolerant CORBA [23,
24], and Arjuna [25]. These systems replicate selected
application/service objects and provide specifications to
allocate standbys for fast recovery. Multiple replicas allow an
object to continue to provide service even when one of its
replicas fails. Passive replication is used to record both the
state of the currently executing member (primary member) and
the entire sequence of method invocations. Recent systems
including Borealis [26] and SMILE [27] focus on fault-
tolerance for applications that process data streams, instead of
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server/client model. The former uses replication-based failure
recovery, and the authors propose to trade consistency for
recovery time. The latter proposes the soft-checkpointing
mechanism that can be used to implement a low-overhead
passive replication scheme for fault tolerance.

Table 3 vNM utility of five representative configurations
0.001 0.03 0.o 11 3 10

A-A 1000.1 33. 4 2. 09 1. 10 0. 44 0. 25

P-P 3 997. 2 33. 8 2. 71 1. 85 2. 09 46. 58

p-P 15 983.6 33.4 2.74 1.92 2.42 77.74

N-P 15 933.3 32. 1 2.66 1.88 2.47 91.45

N-N 902. 8 30. 7 2. 55 1. 80 2. 39 91. 89
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Figure 9. Normalized vNM utility of Five Representative
Configurations

Performability is another important research area dealing
with the tradeoffs of performance and availability. Plank et al.
study the performability problem in the scientific domain [28],
and Tai et al. study performability in database systems [29].
However, it is not yet clear how to manage availability of a
complicated enterprise IT system, such as the utility data
center [4], or the IT backbones such as Delta airline
Operational Information Systems (OIS) [6], where multiple
services in the shared environment have different business
objectives and policies, which even change over time, in
addition to the changing run-time availability of resources and
resource demands. Work by Janakiraman et al. [12] and by
Cai et al. [9] are most closely related to our work. Janakiraman
et al. investigate automated availability design [12]. In
comparison, our work focuses on run-time management of
system availability. Per-component performability
management for operational information systems is proposed
by Cai et al. [9], which use failure prediction for proactive
availability management. This paper focuses on the
performability of the entire enterprise system, and it explores
more complex performability policies, including policies that
capture risk attitudes. Such policies specify the risk attitude of
the service or customer, under uncertainty [8]. We provide a
von Neumann-Morgenstern utility theory-based approach
deployed in a policy-based availability management
framework.
Two different methodologies for performance analysis of

Internet applications have been proposed [30]. The model-

based approach uses analytical models such as queuing-
theoretic network models to estimate how performance is
affected by different workloads, resource allocations, and
system configurations. Many such models concern single-tier
Internet applications, e.g., single-tier web servers [31, 32, 33,
34, 35]. A few recent efforts have extended single-tier models
to multi-tier applications [36, 37, 38]. An alternative, model-
free approach uses reinforcement learning to directly learn the
relationship between performance and system configuration
[ 1, 39]. Our work is complementary to these efforts. That is,
any mechanisms that can help determine the performance
(e.g., response time) of applications can be incorporated into
our availability management solution. The specific
performance model used in this paper is based on the model
presented by Urgaonkar et al. [36]. The result is that
performance modeling is secondary to our work, our primary
focus being availability management. Other research has made
performance its primary objective, addressing topics that
include capacity provisioning, application configuration,
bottleneck identification, and admission control [11, 36, 37,
38].

VII. LESSONS LEARNED
1) Current policy specification standards, such as WS-
Agreement, are relatively simple and SLAs are not sufficiently
rich to capture the different functional and expression-based
formulations needed in modern service-based applications and
systems. For example, WS-Agreement can be used to express
different valuations for configurations, however, only with
discrete attributes. It lacks formal semantics to express
preferences for a variety of performance metrics, availability,
security, and any other service attributes of interest in terms of
utility functions. Risk attitudes have not been studied in current
SLA policy specification.
2) The business objectives or policies may involve
performance, availability, security and other aspects defined as
traditional SLA or complex utility functions. Systems and IT
services themselves are complicated, too. Automated IT
management solution should support multiple classes of
enterprise applications, and different utility formulations used
in such applications. The key to success are accurate system
models and optimization algorithms.
3) Availability management involves uncertainty and the
decision making under uncertainty often involves decision
maker's risk attitude. Utility theory is a useful tool to deal with
risk-sensitive policies in IT management, but its applicability in
real systems still needs further study. For example, it is still not
clear how to derive users' risk attitude from high level policies.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents an approach to automate availability of
management in IT systems driven by business policy. We
implement a policy engine that dynamically optimizes
expected utility according to high level availability and
performance objectives. We further study how to apply utility
theory such as von Neumann-Morgenstern utility function to
deal with users' risk attitude and preference and enable users to
customize their availability to the risks tolerable by business
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objectives. The initial evaluation of the proposed solution
demonstrates that our approach is applicable for availability
management of complex IT environments. Future work
includes the evaluation of our approach on real applications
and deal with heterogeneous risk attitude and multi-objective
preferences. We also plan to investigate proactive availability
management in this framework.
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