
JECho - Interactive High Performance Computing with Java Event Channels

Dong Zhou, Karsten Schwan, Greg Eisenhauer and Yuan Chen
College of Computing, Georgia Institute of Technology, Atlanta, GA 30332

{zhou, schwan, eisen, yuanchen}@cc.gatech.edu

Abstract

This paper presents JECho, a Java-based communica-
tion infrastructure for collaborative high performance
applications. JECho implements apublish/subscribecom-
munication paradigm, permitting distributed concurrent
sets of components to provide interactive service to collab-
orating end users via event channels. JECho’seager han-
dler concept allows individual event subscribers to
dynamically tailor event flows to adapt to runtime changes
in component behaviors and needs, and to changes in plat-
form resources. Benchmark results suggest that JECho may
be used for building large-scale, high-performance event
delivery systems, which can efficiently adapt to changes in
user needs or the environment using eager handlers.

1. Introduction

End users of high performance codes increasingly
desire to interact with their complex applications as they
run, perhaps simply to monitor their progress, or to per-
form tasks like program steering[5][6], or to collaborate
with fellow researchers using these applications as compu-
tational tools. For instance, in our own past research, we
have constructed a distributed scientific laboratory with 3D
data visualizations of atmospheric constituents, like ozone,
and with parallel computations that simulate ozone distri-
bution and chemistries in the earth’s atmosphere[3][7].
While an experiment is being performed, scientists collab-
orating within this laboratory may jointly inspect certain
outputs, may create alternative data views on shared data or
create new data streams, and may steer the simulations
themselves to affect the data being generated. Similarly,
the Hydrology Workbench[8] created by NCSA research-
ers uses a Java-based visualization tool, termed VisAD[2],
to permit end users to view data produced by the running
model or from previous generated model files. Finally, for
meta-computing environments, researchers have created
and are developing the Access Grid[1] framework and, in
related work, domain-specific ‘portals’ for accessing and

using computations that are spread across heterogeneous,
distributed machines.

Java is attractive to such applications due to its ability to
inter-operate across machines with different architectures
and abilities, ranging from workstations to handheld
devices. In addition, users can take advantage of the many
available Java-based collaboration and visualization
tools[2][14][19]. Unfortunately, a disadvantage of using
Java in interactive HPC applications is substantially differ-
ent performance for Java- vs. non-Java-based communica-
tions, as demonstrated in our previous work[9]. In response
to this problem, we have been developing a lightweight,
efficient, adaptable Java-based communication middle-
ware, called JECho.

JECho addresses three requirements of Java-based inter-
active HPC applications, in Grid environments and/or in
ubiquitous computing/communication settings:

• High level support for anonymous group communica-
tion -- to permit end users to collaborate via logical
event channels[15][16] to which subscribers send, and/
or from which they receive data, rather than forcing
them to explicitly build such collaboration structures
from lower-level constructs like Java sockets or raw
object streams;

• Scalability in group communication-- to permit large
numbers of end users to collaborate with performance
exceeding that of other Java-based communication par-
adigms, including Javaspaces[11], Jini events[12], and
the lower-level mechanisms used by them, such as
RMI[13]; and

• Heterogeneity of collaborators-- to enable collabora-
tion across heterogeneous platforms and communica-
tion media, thereby supporting the wide variety of
scientific/engineering, office-, and home-based plat-
forms across which end users wish to collaborate.

2. Target Applications and Environments

The evaluation of JECho uses applications in which end
users collaborate via potentially high-end computations,
involving large data sets, and/or rich media objects, created

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

and shared across highly heterogeneous hardware/software
platforms. One class of applications created and evaluated
by our group implements collaborations of scientists and
engineers, where data is not only moved between multiple
application components, but also from these components to
user interfaces running on various access engines. The two
types of access engines with which we experiment in this
paper are (1) those used in labs/offices offering high end
graphical interfaces and machines and (2) those in mobile
settings using Java-based tools running on laptops or even
PDAs. In such a setting, users wish to switch from one
access engine to another, as they move from one lab/office
to another or from lab/office to shop floors or conference
rooms. Furthermore, two-way interactions occur, such as
those where engineers continuously interact via simula-
tions or computational tools, including when jointly ‘steer-
ing’ such computations and sharing alternative views of
large-scale data sets[5][6]. Three concrete instances of
such collaborations have been constructed by our group,
including an interactively steered simulation of the earth’s
atmosphere[3], an instance of the hydrology workbench
originally developed at the Univ. of Wisconsin[8], and a
design workbench used by mechanical engineers in materi-
als design.

FIGURE 1. Using event Channels in Multi-user, Multi-
view Collaborations.

Figure 1 depicts a simple version of a multi-user and
multi-view collaboration via computational components.
The figure also shows different user interface devices and
their respectively different connectivities, ranging from
high-end immersive systems accessed via gigabit links to
web browsers on wireless-connected palmtops being used
to ‘stay in touch’ or to loosely cooperate with selected
application components.

A second class of applications we are now developing
targets ubiquitous computing environments, involving
wireless-connected laptops and palmtop devices, and it

implements server-side functionality that provides client-
specific flexibility in excess of what is currently offered by
typical web portals. The idea is to have servers generate
and deliver content to clients based on dynamically chang-
ing client profiles. One example of such generated content
are user-selected instant replays for ongoing sports actions,
where both the replays and live feed data delivery must be
adapted to current client connectivity and needs.

3. JECho Concepts

3.1 Basic Concepts

JECho supports group communication by offering the
abstractions ofeventsandevent channels. An event is an
asynchronous occurrence, such as a scientific model gener-
ating data output of interest to several visualization engines
used by end users, or a control event sent by a wireless-
connected sub-notebook throttling data production at some
source. Events, then, may be used both to transport data
and for control. Anevent endpointis either a producer that
raises an event, or a consumer that observes an event. An
event channelis a logical construct that links some number
of endpoints to each other. An event generated by apro-
ducerand placed onto a channel will be observed by all of
the consumersattached to the channel. An event handler
resident at a consumer is applied to each event received by
that consumer.

Since the notion of publish/subscribe communications
via events is well-known, the remainder of this section
focuses on an innovative software abstraction, termed
eager handler, for dealing with the dynamic heterogeneous
systems and user behaviors targeted by JECho.

3.2 Eager Handlers -- Distributing Event
Handling Across Producers and Consumers

Consider the multi-user and multi-view depiction of
data being generated by a single source, exemplified by the
distributed visualizations of data generated by scientific
simulation[3](see Figure 1). When using Java-based visu-
alization engines, such as VisAD, to visualize data, it is
typically impossible to continuously display the wealth of
data being produced, nor does the end user want to inspect
all such data all of the time. In order to create useful views,
visualizations must not only transform data for display, but
they must also down-sample or filter it. Specifically, the
data consumer (i.e., the visualization) applies a handler to
the incoming data that filters or down-samples it before
presenting the data to its graphical processing component.
Moreover, such filtering varies over time, as end users view
data in different forms, zoom into or out of specific data
areas, or simply change their levels of attention to graphi-
cal output. Clearly, it is inappropriate to send all data for
display to a visualization engine, only to discard much of
it. It is preferable for each visualization client to dynami-

IDL visualization

3D visualization
& steering

VisAD 3D
active interface

visualization
2D applet

IDL visualization

Channel C : JECho Event Chanenls

Spectral2Grid

Spectral2Grid Channel C

Channel D

Channel E

Channel F

ClusteringChannel B

Channel A

global transport
Model

Circulation
Residual

Legends:

: Computation Components : Access Stations

Channel A : ECho Event Channels

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

cally control which data they transform and display, by
controlling what is being sent to them by data sources[10].
Thus, event receivers must be able to customize event pro-
ducers.

JECho handles the dynamic, receiver-initiated special-
ization of data producers with a novel software abstraction:
eager handlers. An eager handler is an event handler that
consists of two parts, with one part remaining in the con-
sumer’s space and the other part replicated and sent into
each event supplier’s space. We term the latterevent modu-
lator, while the part that stays local to the consumer is
termedevent demodulator.Events first move through the
modulator, then across the wire, and then through the
demodulator. The event modulator is split from the original
handler, moved across the wire, and then installed in order
to operate inside the producer’s address space. Namely, it is
‘eager’ to touch the producer’s events before they are sent
across the wire.

The result of using an eager handler is not that all event
consumers suddenly receive modulated events. Instead,
conceptually, an eager handler’s creation affects only the
specific client that performed handler partitioning. For effi-
ciency, our implementation, however, permits all consum-
ers of a channel that use the same modulator to share a
single copy of this modulator. Whether or not two modula-
tors are the same is determined by the user-definedequals()
methods of the modulators.

A sample eager handler used in this paper is applied to
an event channel that provides to a scientist data from a
running atmospheric simulation. Such data is, in accor-
dance with the atmosphere’s representation, structured into
vertical layers, with each layer further divided into rectan-
gular grids overlaid onto the earth’s surface. A scientist
viewing this data (by subscribing to this channel) may
change her subscription at any time. Examples of such
changes include: (1) specifying new values for desired grid
positions, and (2) changing the handler to create new ways
in which data is clustered, down-sampled, or converted for
interactive display. Such flexibility is important since at
any one time, the scientist is typically interested only in
studying specific atmospheric regions, at some desired
level of detail, using certain visual tools and analysis tech-
niques. Runtime handler partitioning helps us implement
such tasks by enabling changes both at the data consumer
and provider sides of a communication, thereby reducing
bandwidth needs and the processing power requirements at
the recipients.

We have already demonstrated the importance and ben-
efits of client-controlled, dynamic data filtering for wide
area systems[10]. Such filtering is even more important in
the Java environment where communication costs are high.
Therefore, our principal goal in creating the notion of eager
handlers is to prevent networks with limited bandwidth and
event consumer stations with limited computing capabili-
ties from being flooded by events. In addition to transform-
ing and filtering events at a source, eager handlers can be
also be used for:

• Consumer-specific traffic control:Using eager han-
dlers, event consumers can change the scheduling
methods and/or priority rules used by producers,
thereby enabling clients to control event traffic based on
application-level semantics.

• Quality control on event streams:An event consumer
may use an eager handler to filter out less important
events, to perform lossy compression to match event
rates to available network bandwidth, or to simply drop
some of the events (rather than leaving it up to the sup-
plier to determine which events are important to the
consumer).

This paper demonstrates the utility of eager handlers to
limit bandwidth consumption and to reduce the computa-
tional costs experienced by receivers.

FIGURE 2. Components of JECho Distributed Event
System. (Modulator and Demodulator are explained later)

4. JECho Implementation

A JECho system (see Figure 2) consists of channel
name servers, concentrators, channel managers, channels
and event endpoints. In this section, we first describe issues
in implementing JECho’s base system, then we describe
the implementation of JECho’s eager handlers.

4.1 Base System

The key goals of JECho are system performance and
scalability. For the base system’s implementation, this
means that channels, endpoints, and events must be light-
weight entities in terms of the event processing and trans-
port overheads they imply.

4.1.1 Scalability with Respect to Numbers of Channels
and Clients

JECho’s implementation uses the concentrator model.
Each Java virtual machine (JVM) involved in the system
has a concentrator that serves as a hub for all incoming/out-
going events. Since this concentrator multiplexes the

CI-1’s Modulator

CI-1’s Demod
for

Channel I

Manager For
Channel II

Name Server
Channel

Channel I Channel II

Concentrator

Manager

Consumer CI-1

Supplier SII-1

Consumer CII-2

Consumer CII-1

Supplier SI-1

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

potentially large number of logical event channels used by
the JVM onto a smaller number of socket connections to
other JVMs, JECho can easily support thousands of event
channels. Furthermore, since each concentrator can rapidly
dispatch local events, without involving some remote
entity, event transport within a JVM has low latency.
Finally, concentrators can reduce total inter-JVM event
traffic by eliminating duplicated events sent across JVMs
when there are multiple consumers of one channel residing
within the same concentrator.

Bookkeeping is distributed, a prerequisite for building a
scalable event infrastructure. Specifically, to each event
channel is assigned a channel manager that maintains such
meta-data, thereby distributing meta-data generation and
storage across multiple managers. JECho can be instanti-
ated with any number of channel managers, where the
mapping of channels to managers are maintained by the
channel name servers. A channel name server defines a
name space for channel names. The name of an event chan-
nel is represented by a<name server address, channel
name>pair. The name server’s address is the IP address
(and TCP port number) of the channel name server, and the
channel name is a user-defined string. This scheme helps
avoid naming conflicts in a large-scale system as a system
can deploy multiple independent name servers.

4.1.2 Optimizing/Customizing Object Serialization

Object serialization accounts for a large portion of com-
munication cost in Java. Similar to more efficient RMI
implementations[26], JECho improves communication
performance with optimizations like using persistent
stream state, eliminating extra layers of buffering, and cus-
tomizing commonly used objects (please refer to [28] for a
detailed description of JECho’s optimizations). In addition,
JECho supports object serialization for embedded Java
environments where standard serialization is not available,
although it does support features like distributed garbage
collection and network classloading in such environment.

JECho’s object transport layer also does group serializa-
tion for events to be sent to multiple destinations. Instead
of using multiple object streams (one between the sender
and each of the receivers), which will serialize the event
multiple times, JECho serializes the event only once and
then sends the resulting byte array directly through sockets.
The benefits of this are obvious when sending complex
objects to multiple destinations.

4.1.3 Flexible Event Delivery

Collaborative applications, as well as multimedia or
sensor processing codes running in wireless domains, are
typically comprised of multiple sequences of code modules
operating on streaming data. These pipeline/graph-struc-
tured applications expect that different code modules will
run concurrently and across multiple machines. In
response, JECho offers not only a synchronous model for

event handling and delivery, but also permits applications
to publish and consume events asynchronously. Asynchro-
nous delivery means that a producer returns from an ‘event
submit’ call immediately after the event has been placed
into an outgoing event queue. It requires producers to
employ other, application-level means for checking suc-
cessful event distribution and reception when necessary.
Synchronous event delivery, however, offers stronger
semantics for event delivery. It returns successfully from an
event submission only when all consumers of that event
channel have received and processed the event (in other
words, the invocation to the handler function at the con-
sumer side has returned and an acknowledgment has been
received by the supplier side). For both synchronous and
asynchronous events, event delivery is partially ordered in
that all consumers of a channel observe events in the same
order in which any one producer generates them.

Asynchronous event delivery is important not only
because its functionality matches the needs of JECho’s tar-
get applications, but also because asynchronous event han-
dling offers event throughput rates that exceed those of
synchronous mechanisms (e.g., RMI or JECho’s synchro-
nous events). Asynchronous delivery can overlap the pro-
cessing and transport of ‘current’ with ‘previous’ events,
and it can also batch the delivery of events. Event batching
means that multiple events sent to the same concentrator
result in a single, not multiple Java socket operations (and
multiple crossings from the Java domain into the native
domain), generating significantly higher event throughput
rate for smaller events (see Section 5).

4.2 Implementation of Eager Handlers

The idea of eager handlers is to permit an event con-
sumer to specialize the content and the manner of handling
and delivery of events by producers. This is achieved by
‘splitting’ the consumer’s event handler into two compo-
nents, a ‘modulator’ resident in the event supplier and a
‘demodulator’ in the consumer. Furthermore, to each cli-
ent, the multiple producers in which modulators exist are
anonymous. Consequently, JECho must take care of modu-
lator replication, of their placement into potentially multi-
ple event producers, and of their safe execution in those
contexts. Therefore, it is important for the system to (1)
provide secure environments with necessary resources for
the execution of modulators, (2) ensure state coherence
among replicated modulators, and (3) define an interface
for modulators to define their actions upon system state
changes. JECho accomplishes (1)-(3) by providing the
Modulator Operating Environment (MOE):

• MOE’s resource control interface exports and controls
‘capabilities’ based on which event users can access
system- and application-level resources;

• MOE’s shared object interface provides consistency
control for replicated modulators that share state; and

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

• MOE’s intercept interface defines a set of functions that
are invoked at different state changing moments. For
example, an Enqueue function is invoked when a sup-
plier generates an event, a Dequeue function is invoked
when the transport layer is ready to send an event
across the network, and a Period function is invoked
when a timer expires.

Figure 3 shows the architecture of MOE. More detailed
descriptions of MOE appear in [28].

FIGURE 3. MOE Architecture

Given the MOE facility in JECho, modulators can col-
laborate with demodulators to implement application-spe-
cific group communication protocols, and such protocols
can be efficiently changed at runtime. Changes are enacted
by having an event consumer provide a new modulator-
demodulator pair and then reset its event handler, thereby
dynamically adapting the communication protocol it uses
with its event supplier. An example of such a change is
described in detail in [28].

5. Evaluation

All measurements presented in this section are per-
formed on a cluster of Sun Ultra-30 (248 MHz) worksta-
tions, each with 128MB memory, running the Solaris 7 OS
and connected by 100Mbps Fast Ethernet. The roundtrip
time for native sockets is about 260us. The JVM is from
J2SE 1.3.0.

Recall the basic requirements of Java-based, interactive
HPC applications to be supported by JECho: (1) anony-
mous group communication for data of substantial size, (2)
scalability for groups in terms of potentially large numbers
of publishers and subscribers, and (3) runtime adaptation
and specialization to support highly heterogeneous distrib-
uted systems and applications. To evaluate JECho with
respect to these requirements, this section presents mea-
surements that compare JECho’s performance to RMI,

which is used by some the current implementations of
Java-based distributed event systems including JavaSpaces
and versions of Jini event systems. We also compare with
Voyager’s (a commercial product from ObjectSpace) mes-
saging system, although Voyager provides functionality in
addition to basic messaging[20]. Results show that
JECho’s performance exceeds that of RMI and Voyager,
sometimes by substantial margins, thereby demonstrating
that JECho, and thus Java, can potentially support large-
scale applications.

5.1 Simple Case Latency and Throughput

This set of experiments compares the unicast end-to-end
latency of Java ObjectStream, Java RMI, JECho Object-
Stream and JECho synchronous event delivery (see
Table 1). JECho has better performance because it uses
persistent -state object stream, and it has lower base runt-
ime overhead because it eliminates extra layers of buffer-
ing and because it internally customizes serialization for
commonly used objects[28].

Table 1 also lists the corresponding throughput rates for
JECho’s asynchronous event delivery. JECho Async out-
performs all others because it uses one-way messaging and
because it batches events (see Section 4.1.3).

5.2 Multi-sink Throughput and Latency

Figure 4 shows the measurement numbers for JECho
Sync, JECho Async, RMI and Voyager multicast one-way
messaging for varying numbers of sinks.

Since current implementations of RMI do not yet sup-
port group communication, the RMI numbers in the figure
are not actual measurements. Rather, they are deducted
from the following formula and are used only as reference
numbers:

TRMI(n,o)=TRMI(1,o)+(n-1)*TOS(1,byte[sizeof(o)]),

where TRMI(n, o) is the latency for RMI to send object
o to n sinks, TOS(n, o) is the roundtrip latency of the stan-
dard object stream. Note that we use a byte array with a
length of the size of the object, rather than the object itself.
In essence, this hypothetical ‘multicast-RMI’ (hereafter
termed RM-RMI) only serializes the object once, for the
first sink, and the result byte array is reused and sent to all
other sinks, exactly as with the current implementation of
JECho. RM-RMI performance, therefore, is substantially
better than that of our actual RMI measurements.

The reason JECho Sync still scales better than RM-RMI
is that JECho Sync parallelizes its send and reply-receive
tasks with respect to different subscribers, by overlapping
these tasks in a way similar to that used by vector proces-
sors to achieve parallelism. As a result, an event might still
be in progress of being sent to some subscriber S2 while a
reply to this event is already being received from some
other subscriber S1. Figure 4 shows that for each additional

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

sink, the increased overhead of JECho Sync is about half of
that of RM-RMI.

It is not surprising that JECho Async scales much better
than both JECho Sync and RM-RMI. Furthermore, com-
pared to Voyager’s multicast one-way messaging, JECho
Async provides much higher event throughput rates (50+
times better for ‘null’, and 18+ times better for ‘composite’
objects). JECho Async also experienced less overhead for
each additional sink. For instance, for ‘null’ objects, this
overhead is about 10us for JECho Async, while it is in the
range of from 200us to 700us for Voyager multicast. We
suspect that these performance disparities are caused by
two factors: (1) Voyager’s one-way messaging is probably
built on top of synchronous unicast remote method invoca-
tion, and (2) Voyager is subject to overheads for features
like fault-tolerance, which JECho lacks.

FIGURE 4. Average Time (in usec) for Sending an
Event/Invocation for Different Number of Sinks

5.3 Pipeline Throughput

In large-scale distributed collaborative applications and
in the cluster server application described in Section 2, the
communication pattern among distributed components of

the application can be complex, resulting in communica-
tion paths within applications where a single event
traverses multiple channels. For instance, component A
might send an event to component B. In handling this
event, B sends another event to component C. As a result,
an event from A to B will result in the creation of a com-
munication pipeline of length 2.

Experimental results depicted in Figure 5 clearly show
that asynchronous event delivery and handling are essential
for achieving scalability along the ‘length’ dimension of
communication pipelines. Specifically, for JECho Async,
the throughput rate is much less affected by any increment
in pipeline length. In fact, the throughput rate is largely
determined by the speed of the relayer, which is slower
than both the sender and the receiver, as it has to receive as
well as send events. As shown in the figure, JECho Async’s
curves are relatively flat after pipeline length of 2.

FIGURE 5. Average Time (in usec) for an Event/
Invocation to Travel Through a Pipeline of
Components, with Changing Pipeline Length (JECho
numbers are timed by 10 for the ease of comparison)

5.4 Multi-channel Throughput

Larger scale applications may use a large number of
logical channels, reflecting their complex control and data
transmission structures. Figure 6 depicts JECho Async’s

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8

A
ve

ra
ge

 T
im

e
pe

r
E

ve
nt

/In
vo

ca
tio

n
(u

se
c)

Number of sinks

Sink Scalability

Voyager-’composite’
RMI-’composite’

Voyager-’null’
RMI-’null’

JECho Sync-’composite’
JECho Sync-’null’

JECho Async-’composite’
JECho Async-’null’

0

5000

10000

15000

20000

1 2 3 4 5 6

Ti
m

e
pe

r e
ve

nt
/in

vo
ca

tio
n

(u
se

c)

Pipeline length

Pipeline Scalability

Voyager space-’Composite’ Object
Voyager space-’null’ Object

JECho Async-’Composite’ Object
JECho Async-’null’ Object

TABLE 1. Round-trip Latency for Different Objects (in usec). (Return objects are always ‘null’ objects. The
difference between the 1st and 2nd columns is that the first column does a reset to the stream before sending each

object. RMI also does such resets. The round-trip time for native sockets is about 260usec.)

Object Types
ObjectStream
(JDK1.3, reset)

RMI (JDk1.3,
NO reset)

RMI
(JDK1.3)

JECho
ObjectStream JECho Sync

JECho

Asynca

null 460 454 929 455 791 59

int100 968 841 1625 714 1073 177

byte400 887 766 1420 638 1011 143

Vector of Integers 2603 2553 3186 723 1097 225

Composite Object 2851 1753 3219 996 1334 318

a. JECho Async numbers are for ’average time used per event’, rather than for ’round-trip latency’.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

throughput rate under varying numbers of logical channels.
In this experiment, the channel used for sending an event is
chosen in a round-robin fashion. Results show that
throughput does not vary significantly for up to 4096 chan-
nels.

FIGURE 6. Average Time (in usec) for Sending an
Event Using Different Numbers of Channels.

5.5 Costs/Benefits of Eager Handlers

5.5.1 Costs of installing an eager handler.

Installing an eager handler and/or dynamically modify-
ing it can be done in two ways:

• Updating an existing modulator using the shared object
interface: shared objects used in a modulator can be
changed at runtime. Such shared objects can be looked
at as parameters of the modulator and by changing
them, a consumer can change the parameters of its
modulator. Since a shared object is implemented using
Java sockets, the costs of changing the value of a
parameter is the cost of sending the parameter object to
all suppliers of the channel via object serialization. In
one of our experiments in [28], an update to a certain
shared object has a latency of about 0.5ms when there is
one supplier.

• Changing modulator/demodulator pairs at runtime:
JECho provides an API using which a consumer may
replace its modulator/demodulator pair at runtime.
There are two components to the cost of doing so: one
is the cost of shipping the modulator object itself from
the consumer’s space to the supplier’s space and install-
ing it, the other is the cost of loading the bytecode that
defines that specific modulator class. The cost of class
loading depends on the performance of classloader and
hence is out of JECho’s control. However, to ship a
modulator (again using object serialization) and to
install it at a supplier, results in costs that are just
slightly higher than the cost of synchronously sending
an event of the same size. For example, for a modulator
with state (data fields) of size similar to that of a 100-
integer array, the total cost of handler shipping and

installation is approximately 1.23ms under our test
environment (with the supplier’s classloader loading
modulator code from its local file system).

5.5.2 Benefits of Dynamically Changing Eager
Handlers.

While it is hard to quantify the benefits from features
like QoS control provided by an eager handler, it is obvious
that filtering and down-sampling can reduce network traffic
and system load. In our sample application, depending on
the dimensions of users’ views and their displays’ resolu-
tions, the use of eager handlers can reduce network traffic
by up to 85% via event filtering, with consequent addi-
tional savings in the processing requirements for events
received by clients. Even higher savings are experienced
when using event differencing.

6. Related Work

There has been a considerable work on high perfor-
mance messaging in Java[21][22][24][25]. Some of these
systems are native-code libraries with Java inter-
faces[21][24], while pure Java systems have performance
limits, especially concerning roundtrip latencies[23][25].

Jini[12]’s distributed event specification does not rely
on RMI, but most current implementations of this specifi-
cation are based on unicast RMI, which, as we demon-
strated, has performance limitations in distributed systems.
Some commercial Java notification and messaging sys-
tems, such as JavaSpaces[11] and Voyager[20] are also
based on unicast remote method invocations. While these
systems provide features like transaction and persistency
support, they usually do not implement direct connections
between sources and links, hence they are less likely to sat-
isfy the performance requirements of throughput- and
latency-conscious applications.

Gryphon[27] is a content-based publish/subscribe sys-
tem that implements the JMS distributed messaging system
specification[17]. Its parallel matching algorithm enables
the system to expand to very large scale in terms of the
number of clients it services. However, its matching crite-
ria are currently limited to database query-like expressions,
while JECho’s eager handlers may be used to implement
arbitrary and application-depending routing, transforma-
tion, and filtering strategies.

The use of code migration for performance improve-
ment is not novel. In particular, some database systems[18]
support stored procedures to allow database clients to
define subroutines to be stored in the server’s address space
and invoked by clients. The notion of eager handler is more
powerful than stored procedures, in that it permits clients
to place ‘active’ functionality into suppliers, with modula-
tors run by their own execution threads. Furthermore,
JECho permits handlers to be comprised of arbitrarily com-
plex Java objects, and its MOE (modulator operating envi-
ronment) provides a general environment in which

0

200

400

600

800

1000

1200

1400

1600

1 10 100 1000

Ti
m

e
pe

r e
ve

nt
 (u

se
c)

Number of channels (log scale)

JECho Sync-’Composite Object’
JECho Sync-’null’ object

JECho Async-’Composite’ object
JECho Async-’null’ object

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

modulators and demodulators can be dynamically
installed, removed, and modified for multiple suppliers and
consumers.

7. Conclusions and Directions of Future Work

This paper presents JECho, a high performance Java-
based communication middle-ware supporting both syn-
chronous and asynchronous group communication. It also
presents eager handlers, a mechanism that enables the par-
titioning of event handling across event suppliers and con-
sumers, thereby allowing applications to dynamically
install and configure client-customized protocols for event
processing and distribution.

Benchmarking results show that JECho provides higher
throughput than other pure-Java based communication sys-
tems. Our results and examples using eager handlers also
show that JECho is lightweight, scalable and adaptable,
thereby making it a useful basis for creating the large-
scale, heterogeneous communication infrastructures
required for collaborative HPC and cluster applications.

Our future work will focus on improving MOE (such as
designing an efficient consistency control protocol custom-
ized for high performance event communication systems)
and on automating the process of eager handler generation
with the help of program analysis.

References
[1] Alliance Chemical Engineering Applications Technologies,

http://www.ncsa.uiuc.edu/alliance/partners/ApplicationTech-
nologies/ChemicalEngineering.html.

[2] Space Science and Engineering Center University of Wiscon-
sin - Madison, VisAD, http://www.ssec.wisc.edu/~billh/
visad.html.

[3] B. Plale, G. Eisenhauer, K. Schwan, J. Heiner, V. Martin and J.
Vetter, "From Interactive Applications to Distributed Labora-
tories", IEEE Concurrency, Vol. 6, No. 2, 1998.

[4] Sun Microsystems, "Java on Solaris 2.6: A White Paper",
http://wwwwseast2.usec.sun.com/solaris/java/wp-java.

[5] J.S. Vetter and K. Schwan, "High performance computational
steering of physical simulations", Proceedings of IPPS 97,
1997.

[6] G. Eisenhauer and K. Schwan, "An Object-Based Infrastruc-
ture for Program Monitoring and Steering", Proceedings of the
2nd SIGMETRICS Symposium on Parallel and Distributed
Tools (SPDT’98), Aug. 1998.

[7] W. Ribarsky, Y. Jean, T. Kindler, W. Gu, G. Eisenhauer, K.
Schwan and F. Alyea, "An Integrated Approach for Steering,
Visualization, and Analysis of Atmospheric Simulations",
Proceedings IEEE Visualization ’95, 1995.

[8] NCSA Environmental Hydrology Demo, http://
scrap.ssec.wisc.edu/~rob/sc98.

[9] D. Zhou and K. Schwan, "Adaptation and Specialization for
High Performance Mobile Agents", Proceedings of the 5th
USENIX Conference on Object-Oriented Technologies and
Systems, 1999

[10] C. Isert and K. Schwan, "ACDS: Adapting Computational
Data Streams for High Performance, Proceedings of IPDPS
’00, 2000.

[11] Sun Microsystems, "JavaSpaces Specification", http://
www.sun.com/jini/specs/js.pdf.

[12] Sun Microsystems, "Jini Distributed Event Specification",
http://www.sun.com/jini/specs/index.html.

[13] Sun Microsystems", "Remote Method Invocation Specifica-
tion", http://java.sun.com/products/jdk/1.1/docs/guide/rmi/
spec/rmiTOC.doc.html.

[14] Persistence of Vision, Povray, http://www.povray.org.
[15] D. C. Schmidt and S. Vinoski, "OMG Event Object Service",

SIGS, Vol. 9, No. 2, Feb. 1997.
[16] D. C. Schmidt and S. Vinoski, "Object Interconnections:

Overcoming Drawbacks with the OMG Events Service",
SIGS, Vol. 9, No. 6, June 1997.

[17] Sun Microsystems, "JMS Specification", http://
www.sun.com/forte/jmq/documentation/jms-101-spec.pdf.

[18] Oracle, Oracle8i, http://www.oracle.com/database/oracle8i.
[19] National Center for Supercomputing Applications} and Uni-

versity of Illinois at Urbana-Champaign, Habanero, http://
havefun.ncsa.uiuc.edu/habanero/.

[20] ObjectSpace Inc., Voyager, http://www.objectspace.com/
products/voyager/.

[21] V. Getov, S. Flynn-Hummel, and S. Mintchev. "High-Perfor-
mance parallel programming in Java: Exploiting native librar-
ies". ACM 1998 Workshop on Java for High-Performance
Network Computing. Palo Alto, 1998.

[22] A.J. Ferrari. "JPVM: Network parallel computing in Java".
In ACM 1998 Workshop on Java for High-Performance Net-
work Computing. Palo Alto, February 1998, Concurrency:
Practice and Experience, 1998.

[23] N. Yalamanchilli and W. Cohen, "Communication Perfor-
mance of Java based Parallel Virtual machines". In ACM 1998
Workshop on Java for High-Performance Network Comput-
ing. Palo Alto, 1998.

[24] P. Martin, L.M. Silva and J.G. Silva, "A Java Interface to
MPI", Proceeding of the 5th European PVM/MPI Users’
Group Meeting, Liverpool UK, September 1998.

[25] K. Dincer, E. Billur, and K. Ozbas, "jmpi: A Pure Java
Implementation of MPI", in Proceedings of ISCIS XIII ’98
(International Symposium on Computer and Information Sys-
tems), Antalya, Turkey, Oct. 26-28, 1998.

[26] C. Nester, M. Philippsen and B. Haumacher, "A more effi-
cient RMI for Java", Proceedings of the ACM 1999 confer-
ence on Java Grande, June 1999.

[27] Gryphon, IBM Research, "http://www.research.ibm.com/
gryphon/Gryphon_ASSR/gryphon_assr.html".

[28] D. Zhou and K. Schwan, G. Eisenhauer and Y. Chen, "JECho
- Supporting Distributed High Performance Applications with
Java Event Channels", Tech Report, GIT-CC-00-25, College
of Computing, Georgia Institute of Technology.

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

