Active Brokers and Their Runtime Deployment in the ECho/JECho Distributed
Event Systems

Dong Zhou, Yuan Chen, Greg Eisenhauer and Karsten Schwan
College of Computing, Georgia Institute of Technology
{zhou, yuanchen, eisen, schwan} @cc.gatech.edu

Abstract

This paper introduces active brokers and the third-party
derivation, the basic programming construct for runtime
remote broker deployment, in the ECho/JECho distributed
event systems. We describe its implementation in the
JECho system and give examples of using it in ECho/
JECho distributed event systems. In particular, we describe
the use of third-party derivation in supporting the scalabil-
ity of content-based event delivery. Specifically, third party
derivation is used both to dynamically construct content-
based event distribution trees and to offload potentially
expensive client-specific event routing/processing by runt-
ime creation of remote brokers. Our preliminary bench-
mark results demonstrate significant benefits of using third-
party derivation.

1. Introduction

Event selection and conversion in publish/subscribe sys-
tems. Large scale distributed publish/subscribe systems
depend on event matching or filtering to deliver events
solely to interested clients. Examples of event matching or
filtering include their selection based on type(3][2], their
selection based on application-specific headers that may
include client identifiers[4][3][5][6][7], and their selection
based on arbitrary elements of their data content[3][5].
Event conversion or transformation performed prior to
their receipt by clients is a further step toward customizing
event delivery to individual clients’ needs.

Out of client event processing. There are various reasons
for event conversion and transformation to happen outside
of clients, before the events reach individual clients. Per-
formance enhancement is the most obvious one. Specifi-
cally, performance enhancement is possible because such
conversion can potentially: '

® Minimize network traffic: event conversion may result
in new events of smaller sizes.

0-7695-1528-2/02 $17.00 © 2002 IEEE

67

* Offload computation from slower or power-constrained
clients: for clients with limited computational resources or
limited power supply (e.g., PDAs), offloading computation
from clients to brokers can either speedup event delivery or
reduce power consumption. An example is for event bro-
kers to pre-convert events to the forms needed by specific
client’s graphical displays [7][6][5], saving the cost of for-
mat conversion in the client.

e Enable event filtering: in some applications we have
developed, filtering to reduce system traffic is possible only
after certain conversions are performed. For example, con-
sider data events that carry scientific data to be distributed
across multiple collaborating scientists viewing this
data[10]. Often, such distribution follows rules that may be
applied only after event data has been transformed, as with
atmospheric data that is routed to collaborating scientists
according to its temporal and spatial distribution across the
Earth’s grid. This distribution is possible only after the data
has been transformed from its spectral to its grid form(8].

e Streamline event transport: events sent between hetero-
geneous machines can be converted to client machine for-
mats before being sent out to avoid the overheads in using
standard intermediate formats, yet doesn’t sacrifice ease of
use if it is done transparently by middleware[11].

In addition, individual applications may have more specific
reasons for doing out-of-client event conversions. Such
conversion could be vital for the correctness of some appli-
cations and be important to the quality of service of some
others. We will describe some of such applications in
Section 3.2.

Problem statement: efficient event distribution and out
of client event processing. A well-known problem in dis-
tributed event systems is the trade-off between the latency
of event distribution vs. scalability with respect to the dis-
tribution of events to large numbers of clients. Low latency
suggests the use of point to point connections between
event producers and consumers[3][5]. High scalability sug-
gests the use of distribution trees and event routing{4]. Out
of client event processing complicates this trade-off, since

it may add processing load to event producers, but it may
also filter events, thus reducing the network bandwidth
needed between event producers and consumers. Further,
the actual processing loads vs. bandwidth needs implied by
out of client processing are difficult to assess before runt-
ime.

Supporting out of client processing with active brokers.
(DECho supports a special kind service objects called
active brokers. An active broker is a special service object.
In addition to normal service requests, an active broker can
accept program logic from clients. The broker provides an
environment for client submitted program logic to be exe-
cuted at certain moments. The behavior of an active broker
is jointly defined by the logic of the broker itself and the
logic submitted by the clients. An example is a content-
based event router, whose routing algorithm is partially
defined by its clients’ filter functions. Active brokers differ
from conventional event brokers in that (1) they are
deployed at runtime, and (2) they may be deployed into
event consumers, producers, or into separate processes.
This permits event systems to be dynamically configured to
match the event traffic they are carrying and their clients’
current needs. For instance, low latency of event distribu-
tion between producers and consumers may be achieved by
placing active brokers into producers and creating point to
point connections between producers and consumers[13].
Scalability to large numbers of clients may be attained by
creating additional processes into which active brokers are
deployed, and by performing event routing across multiple
event brokers, thus creating at runtime suitable event distri-
bution trees[4].

Third Party Derivation. In the (J)ECho systems, dynamic
active broke deployment is supported by Third Party Deri-
vation (3PD), a novel event system-level programming
construct to permit system developers and applications to
deal with the overheads of event processing and distribu-
tion in publish/subscribe middleware. Derivation creates a
new stream of events by client-controlled filtering and/or
processing of an original stream of events. Third party der-
ivation means such derivation is carried out at remote sites.
Since derivation happens at runtime, an important issue in
3PD is to ensure clients’ event observation consistency
before and after derivation.

In the remainder of this paper, we first introduce active bro-
kers in the context of JECho implementation. We then
explain the notion of third party derivation in more detail.
This explanation is followed by a description of how 3PD
will be and is being used in the (J)ECho systems. Micro-
benchmarks evaluating the effects of 3PD appear last.

68

2. Active Brokers in the JECho Distributed
Event Systems

JECho([17] is a Java-based efficient distributed event sys-
tem. JECho offers the abstractions of events and event
channels. An event is an asynchronous occurrence, and
may be used both to transport data and for control. An
event endpoint is either a producer that raises an event, or a
consumer that observes an event. An event channel is a log-
ical construct that links some number of endpoints to each
other. An event generated by a producer and placed onto a
channel will be observed by all of the consumers attached
to the channel. Each event consumer can submit an event
filter, which can include complex computtaion, to the sys-
tem. The system puts the filter into an active broker, which
can reside at the data source, in the client’s address space
or in other remote process.

Active brokers provides an enviroment for event filters to
(1) permit the filter to carry out computation with neces-
sary access to resources and (2) notify the filter at signifi-
cant moments (e.g., when an event has been emitted or
when network bandwidth is available). In addition, since a
filter can be replicated when there are multiple data
sources, it is necessary for the environment to provide
facilities for maintaining state consistency across filter rep-
licas whenever necessary. In response to these require-
ments, active brokers provide three interfaces to filters:

e the resource control interface exports and controls
‘capabilities’ based on which filterss can access system-
and application-level resources;

o the shared object interface provides consistency control
for replicated filterss that share state; and

e the intercept interface defines a set of functions that can
be provided by a filters and later be invoked at certain
significant moments.

3. Runtime Remote Broker Deployment with
Third-party Derivation

The presence of many filters in an active broker may cause
the degradation of its performance. (J)ECho handles this
problem by dynamically integrating new active brokers
into the event distribution system that is currently running.
This runtime deployment of active brokers is supported by
a novel programming construct, termed Third Party Deri-
vation (3PD).

3.1 Definition of Third Party Derivation

Third-party Derivation (3PD) is a mechanism for runtime
remote proxy deployment in distributed event environ-
ments. 3PD takes as input one or more original channels,

Broker
A

Broker
A hannel |
Channel 1 Broker :?]
B ?K Broker
14 B
Client Client
New Channel Derived

From Channel 1

FIGURE 1. lllustration of Third Party Derivation

the name and location(s) of the desired remote service, and
returns a new channel. 3PD may be explained in two steps,
the first concerning the basic notion of deriving an event
channel, the second concerning the involvement of a third
party in such a derivation. Intuitively, whenever a client
wishes to specialize an existing event channel in order to
filter or select the events being received differently, or to
change how they are processed, the client derives the event
channel from its current to some new form (Figure 1). Part
of this derivation is the client’s provision of a new ‘filter’
function that must be applied to the event before the client
receives it. This filter function is applied to all events
received from the new channel that has thus been ‘derived’
from the existing one. Clients that use the derived channel
receive the filtered events. Clients that continue to sub-
scribe to the original channel are not affected. In this fash-
ion, at runtime, (J)ECho can create from some event source
any number of additional events of interest to clients,
selecting them based on type, on client id, or on event con-
tent.

Event channel derivation must guarantee certain correct-
ness rules, in order to maintain consistent behavior as per-
ceived by event consumers. Assume that Co is the old
channel and Cn is the newly derived channel. Events Eo(0),
Eo(1), Eo(2)...Eo(t), Eo(t+1)... describe the event stream in
the channel Co and events En(0), En(1), En(2)... describe
the event stream in Cn. Further assume that event En(0) is
derived from event Eo(t), then it must hold true that this
particular client should never observe events Eo(i) for i>=t,
and that this same client should have observed events Eo(i)
once and only once for i<t. In addition, All Eo(i) observed
by the client should be observed before any En(j).

For example, suppose we have a visualization client receiv-
ing and displaying a uncompressed video stream. If we
wish to deploy, at runtime, an active broker that com-
presses image frames before they are sent to the client, this
implies that the client must also uncompress the frames it
receives. The consistency constraint defined for channel
derivation and stated above says that, assuming the broker
starts compression at frame 20, the client should receive

69

Class MySubscription extends FIFOFilter{
void enqueue(Event e) {

Stock s = (Stock) e.getContent();

if(s.name == "IBM")
super.enqueue(e);

else if(s.price > 100)
super.enqueue(e);

return;

FIGURE 2. Sample Subscription Code

frames 0-19 in uncompressed form and frames 20 and
beyond in compressed form. Further, frames are correctly
ordered and should be uncompressed starting at frame 20.

This seemingly simple constraint complicates the imple-
mentation of runtime channel derivation, considering the
typically asynchronous nature of events, the possible pres-
ence of multiple event providers, and the fact that the bro-
ker may be running in a process separate from the event
consumers or producers.

3.2 Using Third-party Derivation

3.2.1 An Example of Consumer-Initiated 3PD

The introduction has already mentioned several exam-
ples of consumer-based 3PD. We add to these examples a
simple scenario we are currently implementing for the
wireless domain, where a single multi-media data server is
supplying data to a large number of wireless clients. Spe-
cifically, consider a sports stadium in which a large number
of users receive video data from a central server, which was
first captured by cameras offering different views of the
field and players, and is then distributed to clients as per
their current interests in players, different views of the
game, etc. In this case, a large number of clients will
require the central data server to perform considerable data
selection and routing actions, an issue we address by use of
3PD. That is, in response to client-initiated channel deriva-
tion to serve individual clients’ needs, the event system can
use 3PD to create third party proxies on other nodes of the
cluster- or SMP-based data server, thereby dealing at runt-
ime with the dynamic behavior exhibited by clients. Note
that certain stadiums already offer seat-resident PDAs
capable of actions like these to limited degrees and that
companies like SONY are developing interactive video
games in which players can ‘race’ their cars in real-time
against those driven by actual NASCAR race drivers[15].

Since (J)ECho now runs across wireless laptop- and
PDA-based platforms, we are experimenting with scenar-
ios like these, where it is desirable to reduce the use of

wireless media shared by a large number of clients, while
at the same time, increasing data communication and pro-
cessing in the tightly coupled cluster servers that provide
processed and/or down-sampled data to clients[16].

3.2.2 An Example of Supplier-Initiated 3PD

While previous text has indicated the utility of 3PD from
the perspective of event clients, an equally important bene-
fit is the use of 3PD by an event supplier, in order to
dynamically deploy new proxies for improving event deliv-
ery. For example, assume that an embedded device (e.g., a
camera or infrared sensor with a built-in communication
processor and board) is sending out data via an event chan-
nel, and that this device is connected to its host via a wire-
less network. Instead of using multiple point-to-point
connections from this smart device to every consumer of its
data (e.g., multiple users viewing the same camera data or
requiring the infrared sensor’s output), in this scenario, it is
better to use 3PD to construct at runtime, a third party that
first receives events from the wireless sensor and then dis-
tributes them (via wired links) to all interested clients. A
similar example occurs in the case of large-scale opera-
tional information systems, like those we have been inves-
tigating jointly with collaborators from Delta Air
Lines[12]. In Delta’s wide-area system, for example, each
of its airports is connected to its centralized data processing
system (located in Atlanta) via leased lines. Line costs
depend on the total bandwidth guaranteed by the carrier, so
that it is preferable to concentrate events within each air-
port LAN, thus performing all possible event filtering and
concentration there. In JECho, such concentration is
achieved by deploying into the airport active broker pro-
cess, using 3PD, which performs all necessary event con-
centration and filtering, and then forwarding only the
events needed by the central side via the leased lines.
Unfortunately, such ‘smart’ event filtering and concentra-
tion is not currently done within Delta’s OIS, with the
exception of using TIBCO’s LAN/TCP-based ‘multicast’
solution to reduce the total traffic imposed on links to air-
ports.

3.3 Implementing Third-Party Derivation

Java’s build-in object and class transport facilities are
used to implement 3PD in JECho, the Java version of our
system. In this section, we will focus on our algorithm for
ensuring event consistency in 3PD. We will use 3PDs initi-
ated by event consumers as examples.

3PD must maintain event order and consistency, as
defined in Section 3.1, in the presence of asynchronous
event arrivals, for multiple event providers, and with bro-
kers that reside in processes other than event producers or
consumers. To attain these correctness properties, we adopt

~ a two-phase algorithm for consumer initiated 3PDs: the

70

first stage is the setup phase, and second stage performs the
actual channel derivation. During the setup phase:

1. the consumer initiates 3PD by sending a 3PD request,
which includes the ID of the consumer and the name
and destination of the remote service, to all of the sup-
pliers of the channel;

2. upon receiving a 3PD request, a supplier atomically
replaces the consumer from its client list with the 3PD
destination, sends an ACK to the consumer and a 3PD
mark to the 3PD destination;

3. the consumer buffers/processes events from a supplier
until it receive the ACK from the supplier; it-enters the
second stage of the algorithm after it receives ACKs
from all the suppliers.

4. upon receiving a 3PD mark, the destination will setup a
delegate for the requested service, if no delegate for the
3PD has already been set up; the delegate will buffer
events for the intended for the newly deployed active
broker.

The actual derivation phase starts when the consumer
receives ACKs from all the suppliers. It will then send an
ACTUAL 3PD request, along with any buffered events, to
the 3PD destination. Upon receiving a ACTUAL 3PD
request, the destination merges events locally buffered
events with events sent along with the request, and then ini-
tiates the active broker with merged events.

This algorithm ensures event consistency. It does not

disrupt other clients of the channel, and it is relatively effi-
cient.

4. Supporting Scalable Content-Based Event
Routing

This section describes content-based event routers in
()ECho event systems and their support of scalable event
routing. It starts with a description of event routers, fol-
lowed by the use of 3PD for router load-balancing, ending
with a brief introduction to the notion predicate extraction
and propagation we are pursuing in order to dynamically
optimize content-based event routing.

Content-based event routers are the most commonly used
active brokers. in (J)ECho. (J)ECho routers allow complex
computations to be performed in filter functions, and filter
functions can maintain internal states. As discussed earlier,
content-based routing may overload routers, because there
are too many clients or because the processing loads
implied by clients are too high. To address this problem,
third-party derivation can transparently deploy active bro-
kers into additional router processes, thereby dynamically

Eftect of Using Thirg Party Derivation on the Workstation Gluster

Without 3PD -+—
Using 3PD ~+—-

Time per ovantims)
~
T

8 10 12 14 18
Number of consumers

FIGURE 3. Effect of Using 3PD to Build Event
Distribution Tree

constructing a hierarchical routing tree like the one used in
systems like Gryphon[1]. For instance, a newly deployed
remote router may alleviate the load experienced by an
existing router (indicated by a growing number of buffered
events), by splitting the existing router’s load into two
equal parts.

When constructing event distribution trees, it is well-
known that in order to support a large number of event sup-
pliers and consumers, it is important to reduce the total
number of events being distributed. Ideally, an event should
be delivered to only those routers that have consumers
interested in the event. Simply moving the filter/processing
functions from a lower to a higher level routers can reduce
network traffic, but it may also overload higher level rout-
ers, thus degrading performance. To solve this problem, we
are currently investigating an approach that automatically
extracts SQL-like predicate expressions from a user’s gen-
eral content-based subscription function. We then use the
predicate subscription information to build a efficient mul-
ticast protocol for content-based event routing. We briefly
outline this extraction procedure below.

In JECho, a consumer provides its subscription class when
it subscribes to a channel. A subscription function (i.e., fil-
ter function) performs selection and/or transformation on
events. An event is inserted into the outgoing queue by
calling method enqueue() in the subscription class. Sample
subscription in Figure 2 specifies that the consumer is
interested in IBM’s stock and in stocks with prices higher
than 100.

The extraction procedure initiates its analysis by loading
the consumer’s subscription class. It builds the control flow
graph for the method enqueue(). The analysis proceeds as
follows: branch predicates encountered along each of the
paths from the entry point to each enqueue statement are
recorded. All predicates on the same path are conjoined to

71

Time per event(msec)

Number of Consumers

FIGURE 4. Effect of placement of 3PD in a Sample
Wireless Setup

form a path condition for that path. All path conditions are
disconjoined to attain the final predicate expression that
specifies the consumer’s interests. The resulting predicate
is a conditional expression on the event data and constants.
The extraction procedure would discard those predicates
that contain either variables or changed event data. The
predicate extracted from the above example subscription
class would be "name = "IBM’ OR price > 100". We are
using SOOT, a Java Bytecode optimization toolkit, to
implement the extraction algorithm[18)]. With our imple-
mentation, extraction could be performed off-line or on-
line, when a consumer first derives a channel.

5. Some Benchmark Results

This section presents benchmark results using the JECho
implementation. Measurements presented here are per-
formed on two setups. One uses a cluster of 300MHz Pen-
tium II Linux PC connected with dual 100Mbps fast
Ethernet. The other uses the same PC cluster plus one iPAQ
H3650 handheld device. The iPAQ is connected to the PC
cluster via a IEEE 802.11b wireless network.

Building Event Distribution Tree with 3PD. Figure 3
compares the performances of event distribution with and
without using 3PD to build a simple event distribution tree
in the wired PC cluster. The events being passed are arrays
of 100 floats. Without 3PD, all consumers receive events
directly from the single supplier. With 3PD, two intermedi-
ate brokers are added after 6 and more consumers have
joined in the channel. The brokers receive and forward
events from the supplier to consumers. Each consumer
receives a event either directly from the supplier or from
the brokers. A simple load balancing algorithm is used to
equally distribute consumers among the supplier and bro-
kers. The figure clearly shows that the rate of event distri-
bution is improved substantially when active brokers are

placed into the PC cluster, once the number of clients
exceeds a certain limit.

Using Supplier-Initiated 3PD in Certain Wireless Envi-
ronment. Figure 4 compares the average event delivery
time when using or not using supplier-initiated 3PD in a
particular wireless setup. Here the wireless iPAQ is the pro-
ducer of events. Supplier-initiated 3PD is adopted, so that
the iPAQ can dynamically choose a single remote broker to
which it sends all of its events. The idea is to minimize the
use of the wireless communication link. The broker then
propagates events to other clients, effectively reducing
wireless transmission to once per event, regardless of the
number of event subscribers. Figure 4 shows the obvious
benefit of using this supplier-initiated 3PD.

6. Conclusions and Future Work

This paper introduces a novel programming construct for
event systems, termed Third Party Derivation (3PD). 3PD
permits the (J)ECho event systems that support it to react
to dynamic changes in the loads implied by event distribu-
tion and processing due to runtime client arrivals, depar-
tures, and changes in client needs. Essentially, such
reactions consist of deploying at runtime, active brokers
into the address spaces of event consumers, producers, and
into third party processes acting as event routers and pro-
cessors. This paper evaluates 3PD for the Java implementa-
tion of the ECho event system, termed JECho, with both
wired and wireless clients. Our preliminary results demon-
strate that 3PD can provide essential help for the efficient
delivery of events in both environments.

Our future work addresses the automatic deployment of
active brokers for both wired and wireless event capture,
distribution, and processing platforms.

References

[1]1 M. Aguilera, R. E. Strom, D. C. Sturman, M. Astery and T. D.
Chandra, Matching Events in a Content-based Subscription
System, in the Proceedings of Principles of Distributed Com-
puting(PODC), 1999.

[2] P. Th. Eugster and R. Guerraoui, Content-Based Publish/Sub-
scribe with Structural Reflection, in the Proceedings of 6th
USENIX Conference on Object-Oriented Technologies and
Systems (COOTS’01), San Antonio, Texas, Jan. 2001.

[3] G. Eisenhauer, F. Bustamente and K. Schwan, Event Services
for High Performance Computing, in the Proceedings of High
Performance Distributed Computing (HPDC-2000), 2000.

[4] G. Banavar, M. Kaplan, K. Shaw, R. R. Strom, D. C. Sturman
and W. Tao, Information Flow Based Event Distribution Mid-

72

dleware, in the Proceedings of Middleware Workshop at the
International Conference on Distributed Computing Systems,
1999.

[5] D. Zhou, K. Schwan, G. Eisenhauer and Y. Chen, JECho -
Interactive High Performance Computing with Java Event
Channels, in the Proceedings of the 2001 International Parallel
and Distributed Processing Symposium (IPDPS ’01), April
2001.

[6] C. Isert and K. Schwan, ACDS: Adapting Computational Data
Streams for High Performance, Proceedings of the 2000 Inter-
national Parallel and Distributed Processing Symposium
(IPDPS ’00), May 2000.

[7} B. Plale and K. Schwan, dQUOB: Efficient Queries for
Reducing End-to-End Latency in Large Data Streams, in the
Proceedings of High Performance Distributed Computing
(HPDC-9), Aug. 1999.

(8} T. Kindler, K. Schwan, D. Silva, M. Trauner and F. Alyea,
Parallelization of Spectral Models for Atmospheric Transport
Processes, Concurrency: Practice and Experience, Nov. 1996.

[9] D. Zhou and K. Schwan, Adaptation and Specialization for
High Performance Mobile Agents, in the Proceedings of Sth
USENIX Conference on Object-Oriented Technologies and
Systems (COOTS ’99), May 1999.

[10] B. Plale, V. Elling, G. Eisenhauer, K. Schwan, D. King and
V. Martin, Realizing Distributed Computational Laboratories,
The International Journal of Parallel and Distributed Systems
and Networks, Vol.2 No. 3, 1999.

{11] F. Bustamante, G. Eisenhauer, K. Schwan and P. Widener,
Efficient Wire Formats for High Performance Computing, in
the Proceedings of the ACM Supercomputing 2000 (SC
2000), Nov. 2000.

[12] V. Oleson, Karsten Schwan, Greg Eisenhauer, Beth Plale,
Calton Pu and Dick Amin, Operational Information Systems -
An Example from the Airline Industry, in the Proceedings of
the First Workshop on Industrial Experiences with Systems
Software (WIESS), 2000.

[13] G. Eisenhauer, F. E. Bustamante and K. Schwan, A Middle-
ware Toolkit for Client-Initiated Service Specialization, in the
Proceedings of the Principles of Distributed Computing Mid-
dleware Symposium, Jul. 2000.

[14] D. Zhou and K. Schwan, Eager Handlers - Communication
Optimization in Java-based Distributed Applications with
Reconfigurable Fine-grained Code Migration, in the Proceed-
ings of the 3rd International Workshop on Java for Parallel and
Distributed Computing, Apr. 2001.

[15] SONY Distributed Systems Lab, Interaction with TV in 2003
(Invited Talk), Proceedings of the First Workshop on Indus-
trial Experiences with Systems Software (WIESS), 2000.

[16] R. Gummadi and R. H. Katz, The Data Management Prob-
lem in Post-PC Devices and a Solution, in the Proceedings of
the SIGOPS EW’00: 9th ACM SIGOPS European Workshop
"Beyond the PC: New Challenges for the Operating System”,
Sep. 2000.

[17] JECho Distributed Event System, http://www.cc.gatech.edu/
systems/projects/JECho/.

[18] Soot: a Java Optlmlzatlon
www.sable.mcgill.ca/soot/.

Framework, http://

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

