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1. Introduction

The Internet has created new opportunities for remote in-
teraction and collaboration. Scientists and engineers work-
ing in geographically different locations remotely visu-
alize the results of their large-scale simulations[14], and
their models use real-time information captured by re-
mote instruments[7]. In addition, real-time collaboration
tools[4] permit evaluation and discussion of results and in-
sights with remote colleagues [10]. Finally, modern portal
technologies[1, 11] and their underlying publish/subscribe
communication infrastructures[5, 18] not only enable the
real-time viewing and inspection of the results of remote
simulations and/or instruments, but also their online steer-
ing and control[14, 17].
Portals and Virtual Workbenches for Scientists and En-
gineers.The purpose ofportals is to give users remote ac-
cess to resources ranging from digital library data[11], to
remote instruments[7], to information produced by running
simulations[14] or even captured on the shopfloor. This pa-
per uses the termvirtual workbench rather than portal, in
order to indicate the importance we place on users’ abili-
ties to both access and manipulate remote entities via these
interfaces. As an example, we present an interactive ‘De-
sign Workbench’ for the Rapid Tooling Testbed(RTTB)[16]
and used by researchers in Mechanical Engineering at Geor-
gia Tech. The RTTB permits engineers to rapidly design,
simulate, and prototype new mechanical parts. The ‘De-
sign Workbench’ presents to such users a virtualization of
the RTTB, which enables them to (1) remotely interact with
ongoing design simulations and with the software packages
implementing those simulations, (2) utilize graphical inter-
faces to interact with instrumented portions of the physi-
cal RTTB (e.g., cameras viewing rapid tooling machines),
and (3) use diverse interfaces ranging from web browsers
or Java-based visualizations to high end 3D graphics dis-
plays that render in real-time the potentially large amounts
of data being produced and evaluated by the RTTB. More-
over, such interactions may be maintained even as end
users move from one interface or access device to another,
perhaps initially inspecting an ongoing design simulation

from their office machines, but then continuing their work
while inspecting the associated prototype manufacture on
the shopfloor, using handheld, wireless-connected devices.
Finally, as with most high performance computations[10]
or Internet resources, the design workbench assumes that
simulations and prototyping processes are distributed and
concurrent, the former typically comprised of multiple soft-
ware components executing in parallel on multiprocessor or
distributed machines, the latter involving multiple prototyp-
ing and manufacturing machines on the shopfloor.1

Mirror Objects – Building Blocks for Distributed Work-
benches and Portals. Mirror objects are the key build-
ing blocks used to realize the RTTB workbench, because
they ‘mirror’ those behaviors of the target application be-
ing viewed or controlled that are important to end users.
Specifically, a mirror object is a CORBA- or Java-based
representation of an application component that may itself
not be structured as an object.The idea is to ‘cast’ into the
structured forms of objects components of an engineering
or scientific application written in Fortran or C. This in-
volves instrumenting the components such that (1) any up-
dates of their states important to remote users trigger con-
sequent updates of the mirror objects’ states, and (2) when
invoked, operations exported via the mirror objects’ class
interfaces trigger updates on the corresponding application
components. In this fashion, operations performed on the
remote workbench’s mirrors are turned into operations per-
formed on the target application, thus making mirror objects
into virtualizations of applications components.
JMOSS Java Mirrors. The use of mirrors across the In-
ternet and from mobile devices requires novel capabilities
from the Java-based JMOSS mirrors described in this pa-
per:

Mobility – JMOSS mirrors can be migrated at any time,
without loss of messages in transit. This facilitates the im-
plementation of functionality in which an end user moves
his interactions from a desktop to a mobile device and back
to the desktop, thus enabling him to freely move between

1Other research groups have formulated similar characterizations for
scientific or engineering ‘workbenches’ or ‘portals’ [11, 2].
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lab and shopfloor, for instance.
Customized Mirroring and Migration – JMOSS mirrors

can be customized, and mirror migration specialized, the
former permitting users to have differing views of an ob-
ject’s state, the latter permitting mirror state to be changed
during migration. Customized migration is important in
mobile systems,where the object state being migrated must
be adjusted to the differing capabilities of remote devices
like desktops vs. handhelds. Customized mirroring is crit-
ical when insufficient communication bandwidths preclude
the transfer of entire mirror states. Customization permits
Java-based mirrors to ’keep up’ with the high performance
RTTB simulation by only transmitting and converting the
data currently most important to an end user.

Interoperability with non-Java systems – JMOSS mirrors
interoperate with the MOSS CORBA-based realization of
mirror objects developed in our previous work and shown
useful for the runtime monitoring and steering of high per-
formance applications[6]. They also interoperate with ex-
isting engineering or scientific applications, by automatic
conversion of their typed output data to Java objects (and
vice versa). Our results show that the conversion of typical
workbench data from its native form to Java objects typi-
cally adds less than 15% to data transfer costs.
Technical Contributions. Our previous work has demon-
strated the utility of the MOSS CORBA-based realization
of mirror objects for the runtime monitoring and steering of
high performance applications[6].This paper focuses on the
properties of mirrors required for their use across the Inter-
net and in mobile systems: (1) the ability to migrate mirrors,
(2) the customization of mirroring and of mirror migration,
and (3) interoperability of Java- with non-Java-based mir-
rors. Toward these ends, this paper employs both CORBA-
and Java-based mirror objects for remote program inspec-
tion and control,where the JMOSS Java mirrors are used
to extend mirroring into Internet-connected and mobile de-
vices.

2. The Mirror Object Model
Basic Functionality. The Mirror Object Model views all
application-level entities as objects with associated meth-
ods and state, even when the application is actually written
in Fortran or C. To implement mirroring, we thus rely on
the target application’s instrumentation. Since automatic in-
strumentation requires tools not freely available, instrumen-
tation is performed manually for the RTTB workbench.2

Mirror objects are ‘linked’ to the target applications via
events updating their states in response to application-level
state changes. Such monitoring events are generated for
all state changes in instrumented application-level objects.

2Better instrumentation methods include the source code annotations[6,
8] used in our own past research, compiler and linker support, or runtime
binary editing[9].
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Figure 1. Mirror Object Architecture and Experi-
ment Configuration

Events are asynchronous, in that application-level state
changes are not delayed until mirror-level state changes
have been completed. The motivation is to avoid impos-
ing unnecessary overheads on the high performance appli-
cations monitored and controlled by mirror objects.

Since mirror objects are intended to be faithful virtual-
izations of application components, methods executed on
mirrors that change their internal states reflect such changes
on application-level components. This is done via syn-
chronous remote method invocations that trigger ‘steering’
actions on application components.

Mirror objects also contain the additional methods
and/or derived state implied by the roles they play in vir-
tual workbenches. They may implement certain state trans-
formation of display methods, for instance, so that they
render transformed and not raw, unintelligible application
state[14, 18].

Application programs may be mirrored many times and
in many places, as per their instrumentation, and a sin-
gle application ‘object’ may be associated with any num-
ber of mirror objects. In both cases, by default, all mirrors
observe the same application-level changes, and an opera-
tion executed on a mirror is synchronously reflected to all
application-level objects being mirrored. In addition, mirror
objects themselves may be further mirrored, thereby creat-
ing hierarchies of mirrors. Thus, inherent in mirror objects
is basic support for multiple observers to view the same
data, each in ways customized to their individual needs.
Implementation. The ECho and JECho publish/subscribe
event infrastructures[5, 18] implement the communications
within mirror object structures, as depicted in Figure 1.
Specifically, each mirror object subscribes to the event
channels to which the application-level monitoring events
they desire are sent. Thus, any one mirror object can receive
events emanating from any number of application compo-
nents and/or remote objects, for instance to track the du-
rations of certain application-level actions. Conversely, to
propagate to application components the state changes re-
sulting from operations on mirror objects, mirror objects
use object invocation layers accessible in ECho and JECho
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applications, which is the Object Transport Layer (OTL) in
ECho and RMI in JECho, both using IDL interface descrip-
tions.

Figure 1 depicts a scenario in which a MOSS mir-
ror object is further mirrored into the Java domain, using
JMOSS. ECho events transport application-level updates to
the MOSS mirror, and JECho events transport MOSS mir-
ror updates to JMOSS mirrors. Finally, it is the Java mirror
object that either acts as or interacts with some wired or
mobile Java-based user interface.

3. JMOSS Implementation
3.1. Basic JMOSS Functionality
Interoperation of MOSS and JMOSS Objects. MOSS
and JMOSS objects interact via the Java native interface
(JNI). Specifically, a MOSS mirror produces events de-
scribed in some standard native form. This form is trans-
lated into a Java object by JMOSS’s Java/native translation
library. Conversely, a Java mirror object interacts with a
MOSS object by calling native procedures in the MOSS
library, again using the translation library to create native
events from Java objects.
Java Objects and JMOSS Mirrors. JMOSS may be used
to mirror Java objects or MOSS’ CORBA-based objects.
The following process is used to ‘ready’ an existing Java ob-
ject for remote monitoring and steering and then create its
mirror object. First, the Java object is ’wrapped’. Each such
wrapper controls access to the object’s internal state. Such
state is read by calling the wrapper’s ‘get attribute’ meth-
ods, and it is updated with ‘set attribute’ methods. Second,
the wrapper propagates state updates to all JMOSS mirrors
associated with this object, by creating appropriate event
channels, subscribing to such channels as a provider, and
publishing state changes to all JMOSS mirrors that have
subscribed to the channel. Third, all changes to the Java
object’s state are mediated by the wrapper, thereby ensur-
ing that its state updates can be propagated to its dependent
mirrors.

JMOSS provides thejmossw wrapper generator tool to
assist users in the creation of wrappers for existing Java ob-
ject. JMOSS mirror objects are generated using thejmossm
tool. Once created, they receive state updates by subscrib-
ing to appropriate JECho channels created by their wrap-
pers. Steering operations are accomplished by invoking
the wrapper object’s methods using RMI. Further details
of the JMOSS implementation,including sample code seg-
ments for the RTTB design workbench appear in a technical
report[3].

3.2. Advanced JMOSS Functionality
Customized Migration. JMOSS mirror objects can mi-
grate while in use and ensure that additional updates re-
ceived during migration are not lost.Customized migration
involves (1) customizing the amounts of state transferred

during migration, (2) controlling the ways in which state
is restored at the target, and (3) changing the target ob-
ject’s behavior in comparison to the original one. For (1)
and (2), users may provide their own serialization and de-
serialization, by implementing the jecho.JEChoObject in-
terface. This interface is similar to the java.io.Externizable
interface, except that it uses JECho’s optimized and cus-
tomized object stream. The user can declare only certain
object fields to be serialized and other fields to be ignored.
At the destination, during deserialization, the user-provided
procedures may recompute the values of fields that were not
migrated. For (3), the migration facility permits the class of
the target object to differ from that of the original one, so
that the new object may use implementations of methods
better matched to the migrated object’s new tasks (e.g., for
rendering data on a small handheld’s display).
Customized Mirroring. Customized mirroring controls
how state updates on mirror objects are performed. This
is in contrast to previously explained customized migration,
which permits changes in the amounts of state migrated and
the ways in which state is initialized and used at the target.
Customized mirroring is important because mirrors are up-
dated continuously, in accordance with changes in the target
application component being mirrored. It permits the devel-
oper, for instance, to ‘move’ at runtime an averaging com-
putation being performed on two values from the mirror to
the object being mirrored, thereby reducing communication
overheads at the cost of only slightly increased perturbation
in the object being mirrored. This is particularly important
for mobile mirrors, where large-scale data transfers should
be prevented from crossing wireless links.

Customized mirroring is implemented using lower level
support for handler migration offered by the JECho event
transport facility (see [18]). To use such support, JMOSS
allows each mirror object to define a ‘policy object’ that
controls how state information is transmitted from the target
to the mirror object. This policy object is the entity being
moved by JECho’s lower level support for event channel
customization.
Concurrency and Consistency Control.There is also con-
currency and consistency control in JMOSS.

4. The RTTB Design Workbench

The workbench targets the RTTB(Rapid Tooling
Testbed), which intended to be a distributed computing
environment to support product design, prototyping, and
manufacturing[15]. The engineers using it are experiment-
ing with different design processes and different sets of
tasks, personnel, vendors, software, and equipment.3

3As part of the RTTB effort, multiple computing infrastructures have
provided communication, information sharing, work-flow, and distributed
computation capabilities. The design workbench described in this paper
constitutes one such infrastructure.
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Figure 2. RTTB workbench
The experiments with the RTTB workbench conducted

in this paper use four software packages to iteratively design
and analyze a new part. They are the experiment design-
ing and parsing package FeaGett, the Geometric Modeling
package ProEngineer, the Finite Element Analysis package
Ansys, and the response surface calculating package Fd-
Maxi. FeaGett and FdMaxi are locally developed research
packages. The others are commercially available codes.

A typical sample procedure involves generating a trail
file from a parameter file (FeaGett), executing the simula-
tion program (ProE), then the analysis program (Ansys) and
computing the final result (FdMaxi). In our current imple-
mentation, all components used in a sample are ‘wrapped’
into objects that contain all relevant attributes and status in-
formation. For each sample, we have a set of attributes, in-
cluding input parameters, intermediate results, final result,
current status and a unique id. The user creates a mirror
object, through which end users can initiate certain activi-
ties, monitor and control their execution, and even change
parameters in the ongoing experiment. The user observes
the ongoing distributed computations, not only final results
but also intermediate steps. Full control over the computa-
tion is also enabled: the computation can be started, paused,
resumed, or stopped, parameter values can be changed,
using local or browser-based interfaces that employ mir-
ror objects. Intermediate results are typically quite large.
At any one time, engineers are interested only in viewing
small subsets of these results, again using mirror objects
and thereby, reducing the overheads implied by dynami-
cally viewing such data.

The experiment executes multiple simulations and analy-
ses in parallel. Simulations run on parallel machines and on
workstations connected via 100MB Ethernet. Researchers
use both networked, lab-resident workstations and wireless
Linux-based iPAQ pocket PCs to control and monitor ongo-
ing experiments.

Figure 2 depicts the RTTB workbench architecture built
using MOSS and JMOSS, including the parallel nature of
ongoing simulations, the mirroring that targets multiple end
users and user interfaces, and the online control exerted via
those interfaces.

Data Size(Bytes) MOSS(ms) MOSS+Conversion(ms)

10 1.8857 2.3304
100 1.9945 2.4499
1K 2.3577 2.8180
10K 5.0484 6.2166
100K 27.970 31.118

Table 1. Elapsed real-time for MOSS(T1)and
MOSS+Conversion(T2)

5. Performance Evaluation

5.1. Basic Benchmarks
Figure 1 depicts the basic software configuration used in

all experiments, involving a target application component,
a MOSS mirror, and a JMOSS mirror. The times measured
are labeled with T1-T4. The figure also shows the software
being exercised, including the event transport systems ECho
and JECho and the remote object invocation methods OTL
and RMI. All measurements are performed on three Ultra-
Sparc Stations (Ultra 30) running Solaris 2.7, connected by
100Mbps Ethernet.
Basic Measurements. The times required to complete a
roundtrip through a MOSS mirror and ending up in a Java
object using the JNI interface are depicted in Table 1. This
represents the minimum delay experienced when viewing
and controlling a RTTB testbed software component via
MOSS from some Java-based interface. Each test is com-
prised of a user-level Java program initiating some steering
action, communicating this request to the application via
JNI and OTL, then executing the requested state changes in
the application and finally, sending the updated state infor-
mation back to the Java program via ECho and the C-Java
converter.

Results depicted in Table 1 demonstrate the following.
First, basic round-trip costs are roughly 2 milliseconds, and
they increase significantly only when data sizes (the data
used is an array of floats) exceed 1Kbytes. Second, C-Java
conversion costs are acceptable for the relatively simple ar-
ray data structures used in these tests, adding no more than
20% to the total costs of such a round-trip (e.g., consider
the table entry for data of size 10K, where conversion costs
add 1 millisecond to the 5 millisecond delay experienced by
the MOSS mirror). For complex nested data structures be-
ing transported, conversion costs tend to increase by another
10-20%.
Scalability of Mirror Objects. To support collaboration,
multiple mirror objects may be created for a single applica-
tion component. Figure 3 depicts JMOSS round trip costs
when varying the numbers of mirror objects. Results show
that steering latency does not vary significantly for up to
16 mirror objects. Measurements are performed on a clus-
ter of 300MHz dual Pentium II Linux PC connected with
100Mbps fast Ethernet. Each mirror object is located on a
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Data Size (bytes) Wired(ms) Wireless(ms)

1K 73.202 100.013
10K 105.139 786.945
100K 262.811 4204.761

Table 2. Migration Time
different machine.
Comparison to Java Sockets. Results detailed in [3]
demonstrate that JMOSS round trip times are comparable
to Java socket communication delays, including for large
data transfers.

5.2. Advanced JMOSS Functionality

In the following measurements, an application ob-
ject runs on a workstation, and a mirror object resides
on an iPAQ H3650 running the Linux operating system.
802.11b wireless LAN communication devices connect
both. (802.11b WaveLAN devices offer a maximum of
11MB/sec bandwidth, but the effective bandwidth achieved
in our lab, due to interference and shared use by other de-
vices, is typically no more than 300Kbytes/sec).
Customized Migration. Table 2 shows the basic costs of
mirror object migration, which include the cost of migrat-
ing the mirror object itself and of migrating the event chan-
nel associated with it. In the first setup, the object is mi-
grated across two workstations connected via 100MB Eth-
ernet. The second setup uses one workstation and one iPAQ
H3650 handheld device connected via the wireless network.
Again, we vary the amounts of object state being migrated.
Results show that migration costs strongly depend on the
amounts of state migrated. They also show that migration
costs can be quite high, especially when using wireless net-
works. This motivates our work on customized mirroring
and migration, using which the amounts of state mirrored
or migrated can be reduced.
Customized Mirroring. Our final microbenchmarks eval-
uate the utility of customized mirroring, using end-to-end
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Figure 4. Elapsed real-time of MOSS(T1),
MOSS+Conversion(T2), JMOSS(T3) without
Custom Mirroring and JMOSS(T3) with Custom
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measurements between a JMOSS Java mirror object and a
native program. The times shown are the delays of MOSS,
MOSS+conversion and JMOSS (the sums of MOSS, data
conversion, and JMOSS delays) for different amounts of
data. These results indicate that JMOSS mirror objects are
somewhat impractical for mirroring large amounts of state
(JMOSS latency is more than 5 times larger than MOSS
for 100KB data), thus arguing for customizing mirroring to
suppress undesired state information. The simple demon-
stration of customized mirroring used in Figure 4 is one in
which only 10% of total state is mirrored from the MOSS
to the JMOSS mirror. This shows that JMOSS response
times after customized mirroring are comparable to MOSS,
resulting in a reduction of total mirroring delay from ap-
proximate 150 to 30 milliseconds. For design workbench
end users, this would mean the difference between receiv-
ing what appears to be non-real-time vs. real-time service.
Mobile Mirrors. Mobile mirrors operate in an environment
where network latency is high, bandwidth is low, and con-
nections may be intermittent. Table 3 lists the basic costs
experienced by JMOSS objects when using a wireless net-
work. In comparison to the latencies experienced over a
wired network, results show that the latency increases by
factor of more than 70. This is due to the limited bandwidth
available in our wireless domain, typically less than 300kbs.
In environments like these, functionalities like customized
mirroring and migration are critical for achieving what ap-
pears to end users real-time, interactive mirroring.

6. Conclusions and Related Work
This paper presents the concept of mirror objects and

their use for construction of efficient remote portals or
workbenches. To address the potentially large data trans-
fers required from applications to portals in the domain of
high performance computing, two implementations of mir-
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Data Size (bytes) Wired(ms) Wireless(ms)

10 1.108 5.389
100 1.697 12.971
1K 3.024 84.299
10K 13.601 789.294
100K 118.135 7743.617

Table 3. Elapsed Real-time of JMOSS on Wired vs.
Wireless networks

ror objects, one CORBA-compliant, the other using Java,
interoperate in order to offer both high performance and
flexible component monitoring and control. Furthermore,
JMOSS Java mirror objects have properties that are impor-
tant to their use with portals across the Internet and/or in
ubiquitous systems, including mobility, customizable mi-
gration, and customizable mirroring.

Mirror objects may themselves be mirrored, thus en-
abling the construction of rich workbenches that contain
‘mirrors’ of their target applications and also offer new
functionality. Furthermore, by supporting the use of mir-
ror objects in web browsers, remote access and collabora-
tion support can use interfaces that range from high end ma-
chines to handheld or even simpler web-enabled devices.

Related Work. The Diesel Combustion Collaboratory
(DCC)[12] was a pilot project to develop and deploy collab-
orative technologies to combustion researchers distributed
throughout the DOE national laboratories, academia, and
industry. Compared with the DCC, JMOSS provides addi-
tional support for mobility and for customizing mirroring
and migration. In addition, mirror objects appear to match
well the functional requirements of workbenches that virtu-
alize remote software and/or hardware components. Secu-
rity is a key aspect of the DCC; we do not address this issue.
Deepview[13] is a service-based framework for microscopy
that is distributed, extensible, and maximizes the uses of
common off-the-shelf software. It uses a standard CORBA
object system implementation. In contrast to CORBA-
based implementations of functionality akin to what is of-
fered by mirror objects, MOSS demonstrates substantially
better performance for state mirroring[5, 6]. JECho and
thus, JMOSS also demonstrate improved performance for
state mirroring compared to other Java-implemented event
systems. More comparisons of related work appear in a
technical report[3].
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