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Abstract 

In today’s complex and highly dynamic computing 

environments, systems/services have to be constantly 

adjusted to meet Service Level Agreements (SLAs) and 

to improve resource utilization, thus reducing operating 

cost. Traditional design of such systems usually 

involves domain experts who implicitly translate 

Service Level Objectives (SLOs) specified in SLAs to 

system-level thresholds in an ad-hoc manner. In this 

paper, we present an approach that combines 

performance modeling with performance profiling to 

create models that translate SLOs to lower-level 

resource requirements for each system involved in 

providing the service. Using these models, the process 

of creating an efficient design of a system/service can 

be automated, eliminating the involvement of domain 

experts. We demonstrate that our approach is practical 

and that it can be applied to different applications and 

software architectures. Our experiments show that for a 

typical 3-tier e-commerce application in a virtualized 

environment the SLAs can be met while improving CPU 

utilization up to 3 times. 

 

1. Introduction 

A Service Level Agreement captures the formal 

agreement between a service provider and one of its 

customers relating to service behavior guarantees, 

escalation procedures, and penalties in case the 

guarantees are violated. When an SLA requirement is 

agreed upon, a service administrator usually designs the 

service and then stages it.  In many cases, the staging 

process is iterative in nature and involves several 

manual interventions. Once the service is observed to 

behave satisfactorily during staging, it is put in 

production. 

Enterprise applications and services are typically 

comprised of a large number of components, which 

interact with one another in a complex manner. Since 

each sub-system or component potentially affects the 

overall behavior of the system, any high level goal (e.g., 

performance, availability, security, etc.) specified for 

the service potentially relates to all low-level sub-

systems or components. One of the key tasks during the 

design stage is SLA decomposition ― deriving low 

level system thresholds from Service Level Objectives 

(SLOs) specified in SLAs. The thresholds can then be 

used to create an efficient design to meet the SLA. For 

example, the system thresholds are used to determine 

how much and how many of the resources should be 

allocated to satisfy the proposed SLA requirement. 

With the advent of virtualization and application 

sharing techniques, opportunities exist for improving 

overall system performance and resource utilization by 

allocating optimal resources for the service.  

System administrators and experts normally apply 

their domain knowledge to implicitly map high level 

goals to lower level metrics, i.e., use past experience 

with specific applications to determine low level 

thresholds necessary to ensure that the overall system 

goals are met. Automatically deriving and inferring low 

level thresholds from high level goals are difficult tasks 

due to the complexity and dynamism inherent in such 

systems. The range of design choices in terms of 

operating systems, middleware, shared infrastructures, 

software structures etc. further complicates the problem. 

For example, different virtualization technologies (e.g., 

Xen [2] or VMware [4]) can be used in a utility data 

center. Applications can use different software 

structures (e.g., 2-tier PHP, 3-tier Servlet, or 3-tier EJB 

[14]) to implement the same functionality. Different 

implementations are also available for each tier (e.g., 

Apache or IIS for web server; WebLogic, WebSphere, 

or JBoss for EJB server; Microsoft SQL Server, Oracle, 

or MySQL as database server).  

In our work, we propose a general methodology that 

combines performance modeling and profiling to 

accomplish SLA decomposition. The intent is to first 

model and characterize the behavior of a service and 

then to use this model to predict the required design of a 

service instance with different high level goals and 

configurations. While the high-level SLA requirements 
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Figure 1.  Performance of a multi-tier 

application in a virtualized data center 

may include performance, availability, security, etc., we 

focus on performance goals in this paper.  

We provide a general approach for calculating the 

bounds on system behavior given performance-oriented 

SLOs for the service. Our approach uses analytical 

models to capture the relationship between high level 

performance goals (e.g., response time of the overall 

system) and the refined goals for each component (e.g., 

average service time of each component).  In particular, 

we present a novel queueing network model for multi-

tier architecture, where each tier is modeled as a multi-

station queueing center. Our model is sufficiently 

general to capture a number of commonly used multi-

tier applications with different application topology, 

configuration, and performance characteristics. Our 

approach also builds profiles characterizing per-

component performance metrics (e.g., average service 

time) as functions of resource allocations (e.g., CPU, 

memory) and configuration parameters (e.g., max 

connections). With the analytical models and the 

component profiles, the low level operational goals can 

be derived by translating high level performance goals 

to component level goals and using the profiles to 

determine component level resource requirements and 

configuration, which can meet high level goals. The low 

level goals can then be used to create an efficient design 

to meet the high level SLA. Some of the thresholds, 

such as healthy ranges of lower level metrics, are used 

for monitoring the systems during operation. The 

developed models are archived for future reuse, both 

analytical models and component profiles. 

The remainder of this paper is organized as follows. 

Section 2 describes a motivating scenario for SLA 

decomposition in a virtualized data center. Section 3 

provides an overview of our approach. We then 

describe in detail a novel analytical performance model 

for multi-tier applications in Section 4. Section 5 

presents the implementation of profiling and 

decomposition of a multi-tier application as the 

experimental validation of our approach.  Related work 

is discussed in Section 6. Section 7 concludes the paper 

and discusses future work.  

2. Motivating Scenario 

Today’s enterprise data centers are designed with on-

demand computing and resource sharing in mind, where 

all resources are pooled into a common shared 

infrastructure [3]. Virtualization technologies such as 

VMware ESX Server [4] and Xen Virtual Machine 

Monitor [2] enable applications to share computing 

resources with performance isolation. Such a model also 

allows organizations to flex their computing resources 

based on business needs. Typically, such data centers 

host multiple applications (often from different 

customers). 

Consider a typical 3-tier application consisting of a 

web server, an application server and a database server 

in the virtualized data center, where each tier is hosted 

on a virtual machine. Figure 1 shows the application’s 

average response time with three different CPU shares 

assigned to the virtual machine hosting the application 

server tier (i.e. Tomcat). Given the SLO of average 

response time less than 10 seconds, the configuration 

with CPU assignment of 20% fails to meet the SLO 

while the CPU assignment of 90% meets the SLO but 

the system is over-provisioned since CPU assignment of 

50% is sufficient to ensure the SLO. One key task of 

designing such a system is to determine the resource 

requirement of each tier to meet high level SLA goals 

while achieving high resource utilization. For the above 

example, SLA decomposition determines the CPU 

assignment to Tomcat, e.g., “CPU assignment = 50%” 

such that if the virtual machine is configured that way, 

the application will meet the response time requirement 

with reasonable CPU utilization.   

3. SLA Decomposition 

Given high level goals, SLA decomposition 

translates these goals into bounds on low level system 

metrics such that the high level goals are met. In other 

words, the task of SLA decomposition is to find the 

mapping of overall service level goals (e.g., SLOs) to 

the state of each individual component involved in 

providing the service (e.g., resource requirement and 

configuration).  For example, given SLOs of a typical 3-

tier e-commerce environment in terms of response time 

and throughput requirement, the decomposition task is 

to find the following mapping  

(R, T)� (θhttp-cpu, θhttp-mem, θapp-cpu, θapp-mem, θdb-cpu, θdb-mem) 
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where R and T denote the response time 

and throughput of the service 

respectively and θ is the resource 

requirement. SLA decomposition 

problem is the opposite of a typical 

performance modeling problem, where 

the overall system’s performance is 

predicted based on the configuration and 

resource consumption of the sub-

components.  

The conceptual architecture of our 

approach is illustrated in Figure 2. We 

benchmark the application and generate a detailed 

performance profile for each component. Analytical 

model is built to capture the relationship between the 

application’s high level goals (e.g., application 

performance) and lower level goals (e.g., single 

component’s performance and configuration). We then 

use the profile and analytical models to generate low 

level operational goals by decomposition.   

3.1 Component Profiling 

      This step creates detailed profiles of each 

component. A component profile captures the 

component’s performance characteristics as a function 

of the resources that are allocated to the component and 

its configuration. In order to obtain a component 

profile, we deploy a test environment and change the 

resources (e.g., CPU, memory) allocated to each 

component. We then apply a variety of workloads and 

collect the component’s performance characteristics 

independent of other components (e.g, mean service 

rate µ and variance of service time σ). After acquiring 

the measurements, general functional mappings from 

system metrics to the component’s performance metrics 

are derived using either a classification or regression 

analysis based approach. For example, Apache Web 

server’s profile captures the correlation between an 

Apache Web server’s mean service rate and the CPU 

and memory allocated to it, i.e. µ = f(CPU, MEM). The 

profiling can be performed either through operating 

system instrumentation [13] or estimation based on 

application or middleware’s monitoring information 

[17] (e.g., service time recorded in Apache and Tomcat 

log file). The former approach can achieve transparency 

to the application and component middleware but may 

involve changes to the system kernel while the latter 

approach is less intrusive.   

3.2 Performance Modeling 

 Performance modeling captures the relationship 

between each single component and the overall system 

performance. For example, given performance 

characteristics of each of the components in a 3-tier 

application, µhttp, µapp, µdb, and the workload 

characteristics of the overall system w, model R = g 

(µhttp, µapp, µdb, w) predicts the response time of the 3-

tier application. We propose a novel queueing network 

model of multi-tier applications. In this model, the 

server at each tier is modeled as a multi-station 

queueing center (i.e., G/G/K queue) which represents 

the multi-threaded architecture commonly structured in 

the modern servers (e.g., Apache, Tomcat, JBoss, and 

MySQL). An application with N tiers is then modeled 

as a closed queueing network of N queues Q1, Q2, ... QN. 

Each queue represents a tier of the application and the 

underlying server that it runs on. Mean-value analysis 

(MVA) [5] is used for evaluating the performance of the 

queueing network. Such a model can handle user-

sessions based workloads found in most e-business 

applications and accurately predict the multi-tier 

application’s performance based on single tier’s 

performance [5] and the workload characteristics, such 

as the flow of the requests across tiers. Our model can 

handle arbitrary service rate distribution as well as 

multiple visits to a tier. Since we explicitly capture the 

concurrent limits in our model (e.g., max number of 

concurrent threads), this model inherently handles 

concurrent limits at tiers. The performance model is 

further discussed in Section 4.  

3.3 Decomposition 

     Once we have the component profile, µhttp = f1 

(CPUhttp), µapp = f2 (CPUapp), µdb = f3 (CPUdb), and the 

model R = g1 (µhttp, µapp, µdb, w) and T =  g2 (µhttp, µapp, 

µdb, w),  the decomposition of high level goals response  

time R <  r and  throughput X > x is to find the set of 

CPUhttp, CPUapp, CPUdb satisfying the following 

constraints: 

1 1 2 3( ( ), ( ), ( ), )http app dbg f CPU f CPU f CPU w r<  

1 1 2 3( ( ), ( ), ( ), )http app dbg f CPU f CPU f CPU w x>      

Other constraints, such as “minimize CPUhttp+ 

CPUapp+ CPUdb”, can also be added. 

Figure 2.  SLA decomposition 
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Once the equations are identified, the decomposition 

problem becomes a constraint satisfaction problem. 

Various constraint satisfaction algorithms, linear 

programming and optimization techniques are available 

to solve such problems [20]. Typically, the solution is 

non-deterministic and the solution space is large. 

However, for the problems we are studying, the search 

space is relatively small. For example, if we consider 

assigning CPU to virtual machines at a granularity of 

5%. We can efficiently enumerate the entire solution 

space to find the solutions. Also, we are often interested 

in finding a feasible solution, so we can stop the search 

once we find one. Other heuristic techniques can also be 

used during the search. For example, the hint that the 

service time of the component typically decreases with 

respect to the increase of resource allocated to it can 

reduce the search space. 

If the high level goals or the application structures 

change, we only need to change the input parameters of 

analytical models and generate new low level 

operational goals. Similarly, if the application is 

deployed to a new environment, we only need to 

regenerate a profile for new components in that 

environment. Further, given high level goals and 

resource availability, we can apply our decomposition 

approach for automatic selection of resources and for 

generation of sizing specifications that could be used 

during system deployment. The generated thresholds 

can be used for creating efficient designs and for 

monitoring systems for proactive assessment of SLOs. 

The detailed implementations of modeling, profiling 

and decomposition of multi-tier applications in a virtual 

data center are discussed in the following two sections. 

4. Modeling Multi-Tier Web Applications  

4.1 Basic Queueing Network Model  

Modern Web applications and e-Business sites are 

usually structured into multiple logical tiers, responsible 

for distinct set of activities. Each tier provides certain 

functionality to its preceding tier and uses the 

functionality provided by its successor to carry out its 

part of the overall request processing. Consider a multi-

tier application consisting of M tiers, T1, …, TM. In the 

simplest case, each request is processed exactly once by 

each tier and forwarded to its succeeding tier for further 

processing. Once the result is processed by the final tier 

TM, the results are sent back by each tier in the reverse 

order until it reaches T1, which then sends the results to 

the client. In more complex processing scenarios, each 

request at tier Ti, can trigger zero or multiple requests to 

tier Ti+1. For example, a static web page request is 

processed by the Web tier entirely and will not be 

forwarded to the following tiers. On the other hand, a 

keyword search at a Web site may trigger multiple 

queries to the database tier.  

Given an M-tier application, we model the 

application using a network of M queues Q1, Q2, ..., QM 

(see Figure 3). Each queue represents an individual tier 

of the application.  Each queue models the request 

queue on the underlying server where it runs on. A 

request, after being processed at queue Qi either 

proceeds to Qi+1 or returns to Qi-1. A transition to the 

client denotes a request complementation (i.e. response 

to the client). We use Vi to denote the average request 

rate serviced by Qi. Our model can handle multiple 

visits to a tier. Given the mean service time Si of queue 

Qi, the average service demand per user request Di at Qi 

can be approximated as
0

/
i i

S V V× , where V0 is average 

request rate issued by the users. 

4.2 Multi-Station Queueing Network Model 

 Modern servers typically utilize a multi-thread 

and/or multi-process architecture. The server listens in 

the main thread for requests. For each request, it 

allocates a thread to handle it. For example, the flow of 

servicing a static HTTP request is as follows. A request 

enters the TCP accept queue where it waits for a worker 

thread. A worker thread processes a single request to 

completion before accepting another new request. In the 

most general case, each of the tiers may involve 

multiple servers and/or multiple threads. The 

application server tier for example may involve one or 

more multi-threaded application servers (e.g., Tomcat) 

running on multiple processors. A similar notion is 

applicable to the database tier which may consist of one 

or more database servers (e.g., MySQL) which in turn 

may run on a multi-threaded/multi-processor system.  

The amount of concurrency may also be determined 

by the number of processes or concurrent 

threads/servers the tier supports. In order to capture the 

multi-thread/server architecture and the concurrency, 

we enhance the basic model by using a multi-station 

queueing center to model each tier. In this model, each 

worker thread/server in the tier is represented by a 

station. The multi-station queueing model thus is the 

general representation of a modern server architecture.  

Figure 3.  Basic queueing network model 
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Figure 5.  Approximate model for MVA analysis 
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4.3 Closed Multi-Tier Multi-Station Queueing 

Networ Network Model 
The workload on a multi-tier application is typically 

user session-based, where a user session consists of a 

succession of requests issued by a user with think time Z 

in between. At a time, multiple concurrent user sessions 

interact with the application. In order to capture the user 

session workload and the concurrency of multiple 

sessions, we use a closed queueing network, where we 

model concurrent sessions by N users in the queueing 

system. Figure 4 shows the closed multi-station 

queueing network model (QNM) of a multi-tier 

application. Each tier is modeled by a multi-station 

queueing center as discussed earlier, with the number of 

stations being the server’s total number of worker 

threads. 

 We use Ki to denote the number of worker threads at 

tier i. Similarly, the mean service time at tier i is 

denoted by Si. A user typically waits until the previous 

request’s response returns to send the following request. 

The average time elapsed between the response from a 

previous request and the submission of a new request by 

the same user is called the “think time”, denoted by Z.  

4.4 Deriving Queueing Network Performance 

Given the parameters {N, Z, Vi, Mi, Si}, the proposed 

closed queueing network model can be solved 

analytically to predict the performance of the underlying 

system. For example, an efficient algorithm such as the 

Mean-value analysis (MVA) can be used to evaluate the 

closed queueing network models with exact solutions 

[5]. MVA algorithm is iterative. It begins from the 

initial conditions when the system population is 1 and 

derives the performance when the population is i from 

the performance with system population of (i-1), as 

follows  

delay resource
( )

(1 ( 1) queueing resource

k

k

k k

D
R i

D Q i


= 

× + −
 

    

1

( )

( )
K

k

k

i
X i

R i
=

=

∑

 

     ( ) ( )
k k

Q i X R i= ×  

where ( )
k

R i is the mean response time (mean residence 

time) at server k when system population is i; ( )
k

R i  

includes both the queueing time and service time; X(i) 

the total system throughput when system population is i; 

and ( )
k

Q i  is the average number of customers at server 

k when system population is i.  

Traditional MVA has a limitation that it can only be 

applied to single-station queues. In our model, each tier 

is modeled with a multi-station queueing center. To 

solve this problem, we adopt an approximation method 

proposed by Seidmann et al. [6] to get the approximate 

solution of performance variables. In this 

approximation, a queueing center that has m stations 

and service demand D
1
 at each station is replaced with 

two tandem queues. The first queue being a single-

station queue with service demand D/m, and the second 

queue is a pure delay center, with delay D×(m-1)/m. It 

has been shown that the error introduced by this 

approximation is small [7]. By using this 

approximation, the final queueing network model is 

shown in Figure 5 where qrDi and drDi are average 

demands of the regular queueing resource and the delay 

resource in the tandem queue respectively.  

The modified MVA algorithm used to solve our 

queueing network is presented in Figure 6. The 

algorithm   takes the following set of parameters of a 

multi-tier application as inputs:  

N: number of users; 

Z:  think time; 

M: number of tiers; 

Ki: number of stations at tier i (i = 1,…, M); 

Di: service demand at tier i (i = 1,…, M); 

Vi : mean request rate of tier i (i = 1,…, M); 

The MVA algorithm computes the average response 

time R and throughput X of the application.  

4.5 Model Validation  

To validate the correctness and accuracy of our 

model, we experimented with two open-source 3-tier 

applications running on a virtualized Linux-based server 

testbed. The testbed is composed of four machines. One 

                                                           
1
 Di represents the average service demand per user request at Qi . It 

can be approximated as Si × Vi / V0. 

Figure 4.  Closed multi-station queueing network 

model 
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of them is used as client workload generator and the 

other three machines are used as Apache 2.07 web 

server, Tomcat 5.5 Servlet server and MySQL 5.0 

database server respectively. We measure the service 

time for each tier by computing the elapsed time when a 

thread is dispatched to process a new request at that tier 

and when it finishes the task. Another required 

parameter for our model is the number of stations for 

each queue or tier. For Apache and Tomcat, the total 

number of stations is determined by the size of thread 

pool (i.e., maxClients in Apache and maxThreads in 

Tomcat). MySQL manages threads in a more dynamic 

fashion. Depending on the server configuration settings 

and current status, the thread may be either created new, 

or dispatched from the thread cache. The average 

number of all worker threads during a run is used to 

approximate the number of stations. This approximate 

model enables us to use load-independent multi-station 

queueing to model thread cache based server. Average 

visit rate of each tier is obtained from log files.  
The first application we use is TPC-W [19], an 

industry standard e-commerce application. TPC-W 

specifies 14 unique Web interactions. The database is 

configured for 10,000 items and 288,000 customers. 

Session based workload is generated from a client 

program to emulate concurrent users. The think time is 

set to 0.035 seconds. The max clients of Apache and 

max threads of Tomcat are set as 50. We change 

workload by varying the number of concurrent sessions 

generated by the workload generator. Each run lasts 200 

seconds after 60 seconds of warm-up period. We 

measure different model input and output parameters 

during each run. We then apply MVA algorithm 

described in section 4.4 to derive the response time and 

throughput. Figure 7 shows the results of the response 

time and throughput predicted by the model and the 

response time directly measured for number of 

concurrent sessions varying from 1 to 200. From the 

figures, we can see that the analytic model does predict 

the performance of TPC-W accurately. The results 

predicted by our model are close to the measurement 

under different workloads, even when the application 

reaches its maximum throughput.  

To further validate the effectiveness of our 

performance model, we experimented with RUBiS, an 

eBay like auction site developed at Rice University [1]. 

It defines 26 interactions and has 1,000,000 users and 

60,000 items. The think time is exponential distribution 

with a mean of 3.5 seconds. We vary the number of 

concurrent sessions from 50 to 300 and each run lasts 

300 seconds with a 120 seconds warm up. Unlike the 

TPC-W experiments, we use the same set of input 

parameters obtained during profiling to predict the 

performance for different workloads. The results of 

response time and throughput are depicted in Figure 8. 

Even using the same set of model input parameters, the 

model can still accurately predict the performance for 

different workloads.  

5. Profiling and SLA Decomposition 

5.1 Experimental Infrastructure  

Input:  N, Z, M, Ki, Si, Vi (i = 1,.. M)  

Output: R, X 

//initialization 

R0 = Z; D0 = Z; Q0 = 0; 

for i = 1 to M  {  

  // Tandem approximations for each tier  

   Qi = 0; Di = (Si 0 Vi) / V0; 

   qrDi = Di/Ki ;  drDi = Di ×  ( Ki-1)/Ki ; } 

//introduce N users one by one 

for i = 1 to N { 

for j = 1 to M { 

     Rj = qrDj ×  (1 + Qj);  // queueing resource 

     RRj = drDj; }               //delay resource 

for j  =  1 to M 

   Qj = X ×  Rj; 

X =  

)(
1

0 ∑
=

++

m

j

ii RRRR

i   

} 

R = )(
1

∑
=

+

M

i

ii RRR  

Figure 6.  Modified MVA algorithm  
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Figure 9.  Service Time Profiles 

 
Our experimental testbed consists of a virtualized 

data center where multiple applications share a common 

pool of resources.  We use a cluster of dual processor 

x86 based servers with Xen virtual machines (VMs) to 

simulate such a virtual data center. The testbed consists 

of multiple HP Proliant servers, each running Fedora 4, 

kernel 2.6.12, and Xen 3.0-teseting. Each of the server 

nodes has two processors, 4 GB of RAM, and 1G 

Ethernet interfaces. These hardware resources are 

shared between the virtual machines that host the 

application. Each virtual machine can be instantiated 

from a bunch of VM images, database images, and swap 

images. These hardware resources are shared between 

the virtual machines that host the application. 

5.2 Building Profile 

For the profiling, we use a 3-tier Servlet based 

implementation of RUBiS [1] consisting of an Apache 

Web server 2.0, a Tomcat 5.5 servlet container, and a 

MySQL 5.0 database server, running on virtual 

machines hosted on different servers. A synthetic 

workload generator runs on the fourth server. To isolate 

performance interference, we restrict the management 

domain to use one CPU and virtual machines to use the 

other CPU.   

One of the key objectives of profiling is to accurately 

estimate the service time of each component since the 

accuracy of a model depends directly on the quality of 

its input parameters. To effectively measure service 

time for each component, the time stamp is recorded 

either when a new thread is created or when an idle 

thread is assigned. Similarly, we record the timestamp 

when the thread is returned to the thread pool or 

destroyed. The time interval between the two time 

stamps is the time spent in each component. This time 

also includes the waiting time for its neighbor’s reply. 

The time spent on waiting for next tier is measured in a 

similar way. The difference between the two time 

intervals is the actual service time. This approach works 

for both lightly loaded as well as overloaded systems. 

Details of measurement implementation can be found in 

[19].  

During profiling, we also collect the workload 

characteristics, including the average visit rate on each 

tier Vi. This number is used to derive the average 

service demand Di per user request such as  Di = Vi/V0 

* Si , where Si is the mean service time and  V0 is the 

average user request rate.   

For the purpose of profiling, we systematically 

change the configurations of each virtual machine 

hosting the application including assignment of 

resources (e.g., CPU, MEM) to each virtual machine 

and software configuration parameters (e.g., maximum 

number of clients, thread cache size, query cache size, 

etc.). We then apply certain workloads to each tier and 

measure the service time of that tier. When we profile a 

tier, we configure other tiers at its maximum capacity to 

prevent them from becoming performance bottlenecks. 

This ensures that interdependencies do not affect the 

accuracy of the profile. After collecting the service 

times for different configurations, we apply statistical 

analysis techniques, such as regression analysis, to 

    Figure 8.  RUBiS  performance  
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Table 1.  3-tier RUBiS  

CPU Assignment Performance CPU Utilization  

SLOs 

 

Design Tomcat MySQL Total 
Resp 

(sec) 

Thrpt 

(rqs/s) 
Tomcat MySQL 

Optimal 40% 25% 65% 9.79 21.41 67% 70% 

System0 45% 30% 75% 9.89 21.59 61% 67% 

System1 20% 20% 40% 15.93 11.1 99% 92% 

Users=300 

Res<10sec 

Thrpt>20  

reqs/sec  

System2 90% 90% 180% 8.86 24.3 23% 21% 

Users=100 

Resp.<5sec  

Thrpt>10rqs/s 
System0 15% 15% 30% 4.83 13  74% 69% 

Table 2.  2-tier RUBiS  

CPU Assignment Performance CPU Utilization  

SLOs 

 

Design Apache MySQL Total 
Resp 

(sec) 

Thrpt 

(rqs/s) 
Apache MySQL 

Users=100 

Resp.<5s 

Thrpt>10rqs/s 
System0 10% 15% 25% 4.83 13  72% 53% 

Users=500 

Resp.<10s  

Thrpt>40rqs/s 
System0 35% 30% 65% 8.2 42 76% 61% 

 

derive correlation between the service times of a tier 

and its respective configuration.  

Using the steps mentioned above, we have built 

profiles for Apache, Tomcat and MySQL with different 

CPU assignments to each tier. We used SEDF (Simple 

Earliest Deadline First) algorithm [2] that Xen provides  

for controlling the percentage of total CPU assigned to 

a virtual machine. We used the capped mode of SEDF 

to enforce the fact that a virtual machine cannot use 

more than its share of the total CPU. We changed the 

CPU assignment from 10% to 100% to measure the 

service times with different CPU assignments.  

Figure 9 shows the service time of Tomcat and 

MySQL as a function of the percentage of CPU 

assignment to the virtual machine hosting them. As 

shown in the figure, both Tomcat and MySQL 

demonstrate similar behavior. As the CPU assignment 

increases, the service time drops initially and remains 

constant after getting enough CPU. The results are then 

saved as Tomcat and MySQL’s profiles.  

5.3 SLA Decomposition and Validation 

Our performance model can be represented as 

follows: 

 
( , , , , , )

/( )

i i iR g N Z M K S V

X N R Z

=

= +

  

where variables R, X and N denote response time, 

throughput and the number of concurrent users 

respectively. Please see Section 4 for the definitions of 

the other variables. We also obtain the service time 

profile Si = fi (CPUi), the number of stations Ki  for each 

component and the workload characteristics, such as 

average visiting rate Vi and think time Z via profiling.  

Given high level goals of R < r, X > x and N of a M-

tier application, the decomposition problem is to find a 

set of CPUi (i = 1, …M)  that satisfies the following 

constraints: 

1 m i i M M 1 Mg(N, Z, K , ...K , f (CPU ), f (CPU ), V , ... V ) < r.

N / (R+Z) > x
 

To find the solution to the above equation, we simply 

enumerate all combinations of CPU assignments, 

CPUi= 10% to 100%, in 10% unit increments that 

satisfy the constraints. We then choose the 

combinations of CPUi such as the sum of CPUi (i = 1, 

…, M) is minimized. An advanced algorithm [20] can 

be applied for complex and large scale systems. 

We apply SLA decomposition to design RUBiS 

systems with different SLO goals and software 

architectures. Given high level SLO goals, we generate 

low level CPU requirements through SLA 

decomposition and then configure the VMs based on 

the derived low level CPU requirements. We then 

validate our design by measuring the actual 

performance of the system and compare the results with 

the SLA goals. In the experiments, we consider the high 

level SLA goals defined as number of concurrent users, 

average response time, and maximum throughput. We 

use 5% of the total CPU capacity as a unit for CPU 

assignments. 

In the first experiment, we use a 3-tier 

implementation of RUBiS, an Apache web Server, a 

Tomcat server and a MySQL database server hosted on 

VMs on different servers. Table 1 summarizes the 

results of different CPU assignments for two different 

SLA goals. The first column shows the SLO goals. The 

column of CPU assignment describes the system design 

parameters in terms of the percentage of CPU assigned 

to each tier. The columns of Performance and CPU 

utilization show the measured response time, 

throughput and the CPU utilization of the actual system.   

For the SLA goal of 300 users, response time < 5 

seconds and throughput > 20 requests/seconds, optimal 

system ensures the SLA using the minimum CPU 

resource (65% of total CPU assigned to Tomcat and 

MySQL). System0 is the system designed based on the 

proposed SLA decomposition approach and the 

assignment of CPU 75% is close to the optimal solution 

60%. System0 meets the SLOs with reasonable CPU 

utilization, i.e., 61% and 67%. Two other systems 

(system1 and system2) are used for the purpose of 

comparisons, too. System1 is underprovisioned while 

System2 is overprovisioned. From the table, we observe 

that System1 fails to meet the SLA since the system is 

completely overloaded while system2 meets the SLOs 

but is highly under-utilized with less than 25% CPU 

utilization of both Tomcat and MySQL. Compared with 

the over-provisioning System1, our system (System0) 

can meet the SLAs using less CPU resource (75% as 
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opposed to 180%) and improves the utilization 3 times 

(60% as opposed to 20%).  

We also experimented with a less demanding SLA of 

100 users, response time < 5 seconds and throughput > 

10 requests/seconds. These results are also summarized 

in Table 1. From the results, we can see that System0, 

which is designed based on the low level system 

thresholds derived by our approach, can meet the high 

level SLA with efficient CPU utilization.  

In order to further check the applicability of our 

approach, we applied the decomposition to design a 2-

tier RUBiS implementation consisting of an Apache 

web Server and a MySQL database server. The 2-tier 

application runs PHP script at Web server tier and puts 

much higher load on web tier than 3-tier. We evaluated 

our approach with two different SLAs. The results in 

Table 2 show that our approach can be effectively 

applied to design such a 2-tier system with different 

SLA requirements.  

6.  Related Work  

Previous studies have utilized performance models to 

guide resource provisioning and capacity planning [16], 

[20]. Urgaonkar et al. propose a dynamic provisioning 

technique for multi-tier applications [16]. Our work is 

different from theirs in several aspects. First, their 

model only takes into account the request rate and 

number of servers at each tier while our model can 

estimate how performance is affected by different 

workloads, resource allocations, and system 

configurations and can handle general SLOs, such as 

response time, throughput and the number of concurrent 

users. Second, they assume an open queueing network 

for request-based transactions whereas we assume a 

closed network for user session based interactions. 

Third, our approach has been applied in virtualized 

environments, managing resource assignment in a more 

fine-grained manner than just determining the number 

of servers for each tier.  

Zhang et al. present a nonlinear integer optimization 

model for determining the number of machines at each 

tier in a multi-tier server network [20]. The techniques 

to determine the bounds can be applied to solve our 

general decomposition problem. 

Stewart et al. present a profile-driven performance 

model for multi-component online service [18]. Similar 

to ours, their approach builds profiles per component 

and uses the model to predict average response time and 

throughput. However, the basic assumption and the 

focus are different. They use the model to discover 

component placement and replication that achieve high 

performance in a cluster-based computing environment 

while our work is focused on ensuring SLAs are met 

with optimized resource usage. They profile component 

resource consumption as a function of different 

workloads while we profile the component performance 

characteristics as a function of low level goals such as 

resource assignments and configurations. As a result, 

our approach can support a more fine grained resource 

share and management. Additionally, their approach 

uses a simple M/G/1 queue to model service delay at 

each server, which is less accurate than general G/G/1 

closed queueing network we used. Though our 

approach can incorporate different resources, we have 

not taken into account the I/O and memory profile as 

they did. Their model explicitly captures 

communication overhead which is not included in our 

current model.  

A lot of research efforts have been undertaken to 

develop queueing models for multi-tier business 

applications. Many such models concern single-tier 

Internet applications, e.g., single-tier web servers [9], 

[10], [11], [12]. A few recent efforts have extended 

single-tier models to multi-tier applications [16], [17], 

[19]. The most recent and accurate performance model 

for multi-tier applications is proposed by Urgaonkar 

[17].  Similar to our model, their model uses a closed 

queueing network model and mean value analysis 

(MVA) algorithm for predicating performance of multi-

tier applications.
2
 Despite the similarities, the two 

models are different in the following aspects. First, our 

model uses multi-station queues to capture the multi-

thread architecture, hence explicitly handling the 

concurrency limits. Use of multi-station queues also 

enables us to model multi-server tier the same way as 

single server tier. The approximate MVA algorithm for 

multi-station queue is more accurate than simply 

adjusting the total workload. Second, our measurement 

methodology can work well for both light load as well 

as heavily load conditions. Finally, we systematically 

study the performance and validate our models in a 

virtualized environment. These unique features enable 

us to model the application in a more fine-grained 

manner and handle various workload conditions in a 

consistent way. Though our model can be adjusted to 

handle imbalance across tier replicas and multiple 

session classes based on queueing theory, we have not 

explored these areas yet. An early result of our 

performance model was presented at [19]. The model 

used in this work makes numerous enhancements to our 

earlier model, including general model for any tier 

applications, an integrated MVA analysis with SLA 

decomposition and additional new experiments for 

model validation.  

                                                           
2
 The two models were developed concurrently and an early report of 

our model appeared at [19]. 
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Kelly et al. present an approach to predicting 

response times as a function of workload [13]. The 

model does not require knowledge of internal 

application component structure and uses only 

transaction type information instead.  It has been shown 

that the approach works well for realistic workload 

under normal system load, but it’s not clear how well it 

will perform under high system load, which is crucial 

for our work.  

The specific performance model used in this paper is 

based on queueing model. Conceptually, any model 

which can help determine the performance (e.g., 

response time) of applications can be incorporated into 

our solution. It would be interesting to investigate how 

to integrate other models into our solution. 

7. Conclusion and Future Work 

It is a prerequisite for next generation data centers 

that computing resources are available on-demand and 

that they are utilized in an optimum fashion. One of the 

most important steps towards building such systems is 

to automate the process of designing and thereafter 

monitoring systems for meeting higher level business 

goals. These are intriguing but difficult tasks in IT 

automation. In this paper, we propose SLA 

decomposition approach that combines performance 

modeling with performance profiling to solve this 

problem by translating high level goals to more 

manageable low-level sub-goals. These sub-goals 

feature several low level system and application level 

attributes and metrics that are used for creating an 

efficient design to meet high level SLAs. We have built 

a testbed to validate our methodology using a number of 

multi-tier business applications. The evaluation results 

show the efficacy of our approach. 

In the future, we will investigate how the current 

approach can be generalized to support different 

enterprise applications and composed web services 

running on heterogeneous platforms. We are also 

planning to look at other system and application level 

metrics in addition to CPU usage.  
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