
SLA Decomposition: Translating Service Level Objectives to System Level

Thresholds

Yuan Chen, Subu Iyer, Xue Liu, Dejan Milojicic, Akhil Sahai

HP Labs

{firstname.lastname}@hp.com

Abstract

In today’s complex and highly dynamic computing

environments, systems/services have to be constantly

adjusted to meet Service Level Agreements (SLAs) and

to improve resource utilization, thus reducing operating

cost. Traditional design of such systems usually

involves domain experts who implicitly translate

Service Level Objectives (SLOs) specified in SLAs to

system-level thresholds in an ad-hoc manner. In this

paper, we present an approach that combines

performance modeling with performance profiling to

create models that translate SLOs to lower-level

resource requirements for each system involved in

providing the service. Using these models, the process

of creating an efficient design of a system/service can

be automated, eliminating the involvement of domain

experts. We demonstrate that our approach is practical

and that it can be applied to different applications and

software architectures. Our experiments show that for a

typical 3-tier e-commerce application in a virtualized

environment the SLAs can be met while improving CPU

utilization up to 3 times.

1. Introduction

A Service Level Agreement captures the formal

agreement between a service provider and one of its

customers relating to service behavior guarantees,

escalation procedures, and penalties in case the

guarantees are violated. When an SLA requirement is

agreed upon, a service administrator usually designs the

service and then stages it. In many cases, the staging

process is iterative in nature and involves several

manual interventions. Once the service is observed to

behave satisfactorily during staging, it is put in

production.

Enterprise applications and services are typically

comprised of a large number of components, which

interact with one another in a complex manner. Since

each sub-system or component potentially affects the

overall behavior of the system, any high level goal (e.g.,

performance, availability, security, etc.) specified for

the service potentially relates to all low-level sub-

systems or components. One of the key tasks during the

design stage is SLA decomposition ― deriving low

level system thresholds from Service Level Objectives

(SLOs) specified in SLAs. The thresholds can then be

used to create an efficient design to meet the SLA. For

example, the system thresholds are used to determine

how much and how many of the resources should be

allocated to satisfy the proposed SLA requirement.

With the advent of virtualization and application

sharing techniques, opportunities exist for improving

overall system performance and resource utilization by

allocating optimal resources for the service.

System administrators and experts normally apply

their domain knowledge to implicitly map high level

goals to lower level metrics, i.e., use past experience

with specific applications to determine low level

thresholds necessary to ensure that the overall system

goals are met. Automatically deriving and inferring low

level thresholds from high level goals are difficult tasks

due to the complexity and dynamism inherent in such

systems. The range of design choices in terms of

operating systems, middleware, shared infrastructures,

software structures etc. further complicates the problem.

For example, different virtualization technologies (e.g.,

Xen [2] or VMware [4]) can be used in a utility data

center. Applications can use different software

structures (e.g., 2-tier PHP, 3-tier Servlet, or 3-tier EJB

[14]) to implement the same functionality. Different

implementations are also available for each tier (e.g.,

Apache or IIS for web server; WebLogic, WebSphere,

or JBoss for EJB server; Microsoft SQL Server, Oracle,

or MySQL as database server).

In our work, we propose a general methodology that

combines performance modeling and profiling to

accomplish SLA decomposition. The intent is to first

model and characterize the behavior of a service and

then to use this model to predict the required design of a

service instance with different high level goals and

configurations. While the high-level SLA requirements

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

0

5

10

15

20

20 50 90
 Percentage of CPU Assigned to Tomcat

A
v
e
ra

g
e
 R

e
s
p

o
n

s
e
 T

im
e
 (

s
e
c
.)

SLO

Figure 1. Performance of a multi-tier

application in a virtualized data center

may include performance, availability, security, etc., we

focus on performance goals in this paper.

We provide a general approach for calculating the

bounds on system behavior given performance-oriented

SLOs for the service. Our approach uses analytical

models to capture the relationship between high level

performance goals (e.g., response time of the overall

system) and the refined goals for each component (e.g.,

average service time of each component). In particular,

we present a novel queueing network model for multi-

tier architecture, where each tier is modeled as a multi-

station queueing center. Our model is sufficiently

general to capture a number of commonly used multi-

tier applications with different application topology,

configuration, and performance characteristics. Our

approach also builds profiles characterizing per-

component performance metrics (e.g., average service

time) as functions of resource allocations (e.g., CPU,

memory) and configuration parameters (e.g., max

connections). With the analytical models and the

component profiles, the low level operational goals can

be derived by translating high level performance goals

to component level goals and using the profiles to

determine component level resource requirements and

configuration, which can meet high level goals. The low

level goals can then be used to create an efficient design

to meet the high level SLA. Some of the thresholds,

such as healthy ranges of lower level metrics, are used

for monitoring the systems during operation. The

developed models are archived for future reuse, both

analytical models and component profiles.

The remainder of this paper is organized as follows.

Section 2 describes a motivating scenario for SLA

decomposition in a virtualized data center. Section 3

provides an overview of our approach. We then

describe in detail a novel analytical performance model

for multi-tier applications in Section 4. Section 5

presents the implementation of profiling and

decomposition of a multi-tier application as the

experimental validation of our approach. Related work

is discussed in Section 6. Section 7 concludes the paper

and discusses future work.

2. Motivating Scenario

Today’s enterprise data centers are designed with on-

demand computing and resource sharing in mind, where

all resources are pooled into a common shared

infrastructure [3]. Virtualization technologies such as

VMware ESX Server [4] and Xen Virtual Machine

Monitor [2] enable applications to share computing

resources with performance isolation. Such a model also

allows organizations to flex their computing resources

based on business needs. Typically, such data centers

host multiple applications (often from different

customers).

Consider a typical 3-tier application consisting of a

web server, an application server and a database server

in the virtualized data center, where each tier is hosted

on a virtual machine. Figure 1 shows the application’s

average response time with three different CPU shares

assigned to the virtual machine hosting the application

server tier (i.e. Tomcat). Given the SLO of average

response time less than 10 seconds, the configuration

with CPU assignment of 20% fails to meet the SLO

while the CPU assignment of 90% meets the SLO but

the system is over-provisioned since CPU assignment of

50% is sufficient to ensure the SLO. One key task of

designing such a system is to determine the resource

requirement of each tier to meet high level SLA goals

while achieving high resource utilization. For the above

example, SLA decomposition determines the CPU

assignment to Tomcat, e.g., “CPU assignment = 50%”

such that if the virtual machine is configured that way,

the application will meet the response time requirement

with reasonable CPU utilization.

3. SLA Decomposition

Given high level goals, SLA decomposition

translates these goals into bounds on low level system

metrics such that the high level goals are met. In other

words, the task of SLA decomposition is to find the

mapping of overall service level goals (e.g., SLOs) to

the state of each individual component involved in

providing the service (e.g., resource requirement and

configuration). For example, given SLOs of a typical 3-

tier e-commerce environment in terms of response time

and throughput requirement, the decomposition task is

to find the following mapping

(R, T)� (θhttp-cpu, θhttp-mem, θapp-cpu, θapp-mem, θdb-cpu, θdb-mem)

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

where R and T denote the response time

and throughput of the service

respectively and θ is the resource

requirement. SLA decomposition

problem is the opposite of a typical

performance modeling problem, where

the overall system’s performance is

predicted based on the configuration and

resource consumption of the sub-

components.

The conceptual architecture of our

approach is illustrated in Figure 2. We

benchmark the application and generate a detailed

performance profile for each component. Analytical

model is built to capture the relationship between the

application’s high level goals (e.g., application

performance) and lower level goals (e.g., single

component’s performance and configuration). We then

use the profile and analytical models to generate low

level operational goals by decomposition.

3.1 Component Profiling

 This step creates detailed profiles of each

component. A component profile captures the

component’s performance characteristics as a function

of the resources that are allocated to the component and

its configuration. In order to obtain a component

profile, we deploy a test environment and change the

resources (e.g., CPU, memory) allocated to each

component. We then apply a variety of workloads and

collect the component’s performance characteristics

independent of other components (e.g, mean service

rate µ and variance of service time σ). After acquiring

the measurements, general functional mappings from

system metrics to the component’s performance metrics

are derived using either a classification or regression

analysis based approach. For example, Apache Web

server’s profile captures the correlation between an

Apache Web server’s mean service rate and the CPU

and memory allocated to it, i.e. µ = f(CPU, MEM). The

profiling can be performed either through operating

system instrumentation [13] or estimation based on

application or middleware’s monitoring information

[17] (e.g., service time recorded in Apache and Tomcat

log file). The former approach can achieve transparency

to the application and component middleware but may

involve changes to the system kernel while the latter

approach is less intrusive.

3.2 Performance Modeling

 Performance modeling captures the relationship

between each single component and the overall system

performance. For example, given performance

characteristics of each of the components in a 3-tier

application, µhttp, µapp, µdb, and the workload

characteristics of the overall system w, model R = g

(µhttp, µapp, µdb, w) predicts the response time of the 3-

tier application. We propose a novel queueing network

model of multi-tier applications. In this model, the

server at each tier is modeled as a multi-station

queueing center (i.e., G/G/K queue) which represents

the multi-threaded architecture commonly structured in

the modern servers (e.g., Apache, Tomcat, JBoss, and

MySQL). An application with N tiers is then modeled

as a closed queueing network of N queues Q1, Q2, ... QN.

Each queue represents a tier of the application and the

underlying server that it runs on. Mean-value analysis

(MVA) [5] is used for evaluating the performance of the

queueing network. Such a model can handle user-

sessions based workloads found in most e-business

applications and accurately predict the multi-tier

application’s performance based on single tier’s

performance [5] and the workload characteristics, such

as the flow of the requests across tiers. Our model can

handle arbitrary service rate distribution as well as

multiple visits to a tier. Since we explicitly capture the

concurrent limits in our model (e.g., max number of

concurrent threads), this model inherently handles

concurrent limits at tiers. The performance model is

further discussed in Section 4.

3.3 Decomposition

 Once we have the component profile, µhttp = f1

(CPUhttp), µapp = f2 (CPUapp), µdb = f3 (CPUdb), and the

model R = g1 (µhttp, µapp, µdb, w) and T = g2 (µhttp, µapp,

µdb, w), the decomposition of high level goals response

time R < r and throughput X > x is to find the set of

CPUhttp, CPUapp, CPUdb satisfying the following

constraints:

1 1 2 3((), (), (),)http app dbg f CPU f CPU f CPU w r<

1 1 2 3((), (), (),)http app dbg f CPU f CPU f CPU w x>

Other constraints, such as “minimize CPUhttp+

CPUapp+ CPUdb”, can also be added.

Figure 2. SLA decomposition

Profiling&
Regression

Analysis

Applications

Component

Performance Profiles

µhttp = f1 (cpuhttp, memhttp)
µapp = f2 (cpuapp, memapp)
µdb = f3 (cpudb, memdb)

Performance

Modeling
Performance Model

R = g (µhttp, µapp, µdb, w)

high level goals
e.g., response time < r

low level operational goals
e.g., cpuhttp > υ1 memcpu > m1

cpuapp > υ2, memapp > m2

cpudb > υ2, memdb > m3

workload
characteristics w

Decomposition

R = g (f1 (cpuhttp,memhttp),
f2 (cpuapp,memapp),

f3 (cpudb,memdb), w) < r

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

Once the equations are identified, the decomposition

problem becomes a constraint satisfaction problem.

Various constraint satisfaction algorithms, linear

programming and optimization techniques are available

to solve such problems [20]. Typically, the solution is

non-deterministic and the solution space is large.

However, for the problems we are studying, the search

space is relatively small. For example, if we consider

assigning CPU to virtual machines at a granularity of

5%. We can efficiently enumerate the entire solution

space to find the solutions. Also, we are often interested

in finding a feasible solution, so we can stop the search

once we find one. Other heuristic techniques can also be

used during the search. For example, the hint that the

service time of the component typically decreases with

respect to the increase of resource allocated to it can

reduce the search space.

If the high level goals or the application structures

change, we only need to change the input parameters of

analytical models and generate new low level

operational goals. Similarly, if the application is

deployed to a new environment, we only need to

regenerate a profile for new components in that

environment. Further, given high level goals and

resource availability, we can apply our decomposition

approach for automatic selection of resources and for

generation of sizing specifications that could be used

during system deployment. The generated thresholds

can be used for creating efficient designs and for

monitoring systems for proactive assessment of SLOs.

The detailed implementations of modeling, profiling

and decomposition of multi-tier applications in a virtual

data center are discussed in the following two sections.

4. Modeling Multi-Tier Web Applications

4.1 Basic Queueing Network Model

Modern Web applications and e-Business sites are

usually structured into multiple logical tiers, responsible

for distinct set of activities. Each tier provides certain

functionality to its preceding tier and uses the

functionality provided by its successor to carry out its

part of the overall request processing. Consider a multi-

tier application consisting of M tiers, T1, …, TM. In the

simplest case, each request is processed exactly once by

each tier and forwarded to its succeeding tier for further

processing. Once the result is processed by the final tier

TM, the results are sent back by each tier in the reverse

order until it reaches T1, which then sends the results to

the client. In more complex processing scenarios, each

request at tier Ti, can trigger zero or multiple requests to

tier Ti+1. For example, a static web page request is

processed by the Web tier entirely and will not be

forwarded to the following tiers. On the other hand, a

keyword search at a Web site may trigger multiple

queries to the database tier.

Given an M-tier application, we model the

application using a network of M queues Q1, Q2, ..., QM

(see Figure 3). Each queue represents an individual tier

of the application. Each queue models the request

queue on the underlying server where it runs on. A

request, after being processed at queue Qi either

proceeds to Qi+1 or returns to Qi-1. A transition to the

client denotes a request complementation (i.e. response

to the client). We use Vi to denote the average request

rate serviced by Qi. Our model can handle multiple

visits to a tier. Given the mean service time Si of queue

Qi, the average service demand per user request Di at Qi

can be approximated as
0

/
i i

S V V× , where V0 is average

request rate issued by the users.

4.2 Multi-Station Queueing Network Model

 Modern servers typically utilize a multi-thread

and/or multi-process architecture. The server listens in

the main thread for requests. For each request, it

allocates a thread to handle it. For example, the flow of

servicing a static HTTP request is as follows. A request

enters the TCP accept queue where it waits for a worker

thread. A worker thread processes a single request to

completion before accepting another new request. In the

most general case, each of the tiers may involve

multiple servers and/or multiple threads. The

application server tier for example may involve one or

more multi-threaded application servers (e.g., Tomcat)

running on multiple processors. A similar notion is

applicable to the database tier which may consist of one

or more database servers (e.g., MySQL) which in turn

may run on a multi-threaded/multi-processor system.

The amount of concurrency may also be determined

by the number of processes or concurrent

threads/servers the tier supports. In order to capture the

multi-thread/server architecture and the concurrency,

we enhance the basic model by using a multi-station

queueing center to model each tier. In this model, each

worker thread/server in the tier is represented by a

station. The multi-station queueing model thus is the

general representation of a modern server architecture.

Figure 3. Basic queueing network model

User Q1 Q2 QM

S1, V1 S2 , V2 SM , VM
. . .

V0

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

Figure 5. Approximate model for MVA analysis

Users

N , Z, V0

Q1

V1, D1, DD1

Q2
QM

…
…

…

V2, D2, DD2 VM, DM, DDM

4.3 Closed Multi-Tier Multi-Station Queueing

Networ Network Model
The workload on a multi-tier application is typically

user session-based, where a user session consists of a

succession of requests issued by a user with think time Z

in between. At a time, multiple concurrent user sessions

interact with the application. In order to capture the user

session workload and the concurrency of multiple

sessions, we use a closed queueing network, where we

model concurrent sessions by N users in the queueing

system. Figure 4 shows the closed multi-station

queueing network model (QNM) of a multi-tier

application. Each tier is modeled by a multi-station

queueing center as discussed earlier, with the number of

stations being the server’s total number of worker

threads.

 We use Ki to denote the number of worker threads at

tier i. Similarly, the mean service time at tier i is

denoted by Si. A user typically waits until the previous

request’s response returns to send the following request.

The average time elapsed between the response from a

previous request and the submission of a new request by

the same user is called the “think time”, denoted by Z.

4.4 Deriving Queueing Network Performance

Given the parameters {N, Z, Vi, Mi, Si}, the proposed

closed queueing network model can be solved

analytically to predict the performance of the underlying

system. For example, an efficient algorithm such as the

Mean-value analysis (MVA) can be used to evaluate the

closed queueing network models with exact solutions

[5]. MVA algorithm is iterative. It begins from the

initial conditions when the system population is 1 and

derives the performance when the population is i from

the performance with system population of (i-1), as

follows

delay resource
()

(1 (1) queueing resource

k

k

k k

D
R i

D Q i


= 

× + −

1

()

()
K

k

k

i
X i

R i
=

=

∑

 () ()
k k

Q i X R i= ×

where ()
k

R i is the mean response time (mean residence

time) at server k when system population is i; ()
k

R i

includes both the queueing time and service time; X(i)

the total system throughput when system population is i;

and ()
k

Q i is the average number of customers at server

k when system population is i.

Traditional MVA has a limitation that it can only be

applied to single-station queues. In our model, each tier

is modeled with a multi-station queueing center. To

solve this problem, we adopt an approximation method

proposed by Seidmann et al. [6] to get the approximate

solution of performance variables. In this

approximation, a queueing center that has m stations

and service demand D
1
 at each station is replaced with

two tandem queues. The first queue being a single-

station queue with service demand D/m, and the second

queue is a pure delay center, with delay D×(m-1)/m. It

has been shown that the error introduced by this

approximation is small [7]. By using this

approximation, the final queueing network model is

shown in Figure 5 where qrDi and drDi are average

demands of the regular queueing resource and the delay

resource in the tandem queue respectively.

The modified MVA algorithm used to solve our

queueing network is presented in Figure 6. The

algorithm takes the following set of parameters of a

multi-tier application as inputs:

N: number of users;

Z: think time;

M: number of tiers;

Ki: number of stations at tier i (i = 1,…, M);

Di: service demand at tier i (i = 1,…, M);

Vi : mean request rate of tier i (i = 1,…, M);

The MVA algorithm computes the average response

time R and throughput X of the application.

4.5 Model Validation

To validate the correctness and accuracy of our

model, we experimented with two open-source 3-tier

applications running on a virtualized Linux-based server

testbed. The testbed is composed of four machines. One

1
 Di represents the average service demand per user request at Qi . It

can be approximated as Si × Vi / V0.

Figure 4. Closed multi-station queueing network

model

…

…

Users

N , Z, V0

Q1

K1 , S1 , V1

…

…

… …

…

Q2 QM

K2 , S2 , V2 KM , SM , VM

…
…

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

of them is used as client workload generator and the

other three machines are used as Apache 2.07 web

server, Tomcat 5.5 Servlet server and MySQL 5.0

database server respectively. We measure the service

time for each tier by computing the elapsed time when a

thread is dispatched to process a new request at that tier

and when it finishes the task. Another required

parameter for our model is the number of stations for

each queue or tier. For Apache and Tomcat, the total

number of stations is determined by the size of thread

pool (i.e., maxClients in Apache and maxThreads in

Tomcat). MySQL manages threads in a more dynamic

fashion. Depending on the server configuration settings

and current status, the thread may be either created new,

or dispatched from the thread cache. The average

number of all worker threads during a run is used to

approximate the number of stations. This approximate

model enables us to use load-independent multi-station

queueing to model thread cache based server. Average

visit rate of each tier is obtained from log files.
The first application we use is TPC-W [19], an

industry standard e-commerce application. TPC-W

specifies 14 unique Web interactions. The database is

configured for 10,000 items and 288,000 customers.

Session based workload is generated from a client

program to emulate concurrent users. The think time is

set to 0.035 seconds. The max clients of Apache and

max threads of Tomcat are set as 50. We change

workload by varying the number of concurrent sessions

generated by the workload generator. Each run lasts 200

seconds after 60 seconds of warm-up period. We

measure different model input and output parameters

during each run. We then apply MVA algorithm

described in section 4.4 to derive the response time and

throughput. Figure 7 shows the results of the response

time and throughput predicted by the model and the

response time directly measured for number of

concurrent sessions varying from 1 to 200. From the

figures, we can see that the analytic model does predict

the performance of TPC-W accurately. The results

predicted by our model are close to the measurement

under different workloads, even when the application

reaches its maximum throughput.

To further validate the effectiveness of our

performance model, we experimented with RUBiS, an

eBay like auction site developed at Rice University [1].

It defines 26 interactions and has 1,000,000 users and

60,000 items. The think time is exponential distribution

with a mean of 3.5 seconds. We vary the number of

concurrent sessions from 50 to 300 and each run lasts

300 seconds with a 120 seconds warm up. Unlike the

TPC-W experiments, we use the same set of input

parameters obtained during profiling to predict the

performance for different workloads. The results of

response time and throughput are depicted in Figure 8.

Even using the same set of model input parameters, the

model can still accurately predict the performance for

different workloads.

5. Profiling and SLA Decomposition

5.1 Experimental Infrastructure

Input: N, Z, M, Ki, Si, Vi (i = 1,.. M)

Output: R, X

//initialization

R0 = Z; D0 = Z; Q0 = 0;

for i = 1 to M {

 // Tandem approximations for each tier

 Qi = 0; Di = (Si 0 Vi) / V0;

 qrDi = Di/Ki ; drDi = Di × (Ki-1)/Ki ; }

//introduce N users one by one

for i = 1 to N {

for j = 1 to M {

 Rj = qrDj × (1 + Qj); // queueing resource

 RRj = drDj; } //delay resource

for j = 1 to M

 Qj = X × Rj;

X =

)(
1

0 ∑
=

++

m

j

ii RRRR

i

}

R =)(
1

∑
=

+

M

i

ii RRR

Figure 6. Modified MVA algorithm

 Figure 7. TPC-W performance

Response Time

0

1

2

3

4

5

6

7

8

1 5 10 50 100 150 200

Numer of Sessions

 R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
s

)

Model

Measurement

Throughput

0

5

10

15

20

25

30

35

40

1 5 10 50 100 150 200
Number of Sessions

T
h

ru
o

g
h

p
u

t
(R

e
q

s
/s

e
c

) Model

Measurement

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

Tomcat

0

1

2

3

4

5

6

7

8

10 15 20 25 30 35 40 45 50 55 60

CPU Assignment (% of Total CPU)

S
e

rv
ic

e
 T

im
e

 (
s

e
c

s
)

MySQL

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 15 20 25 30 35 40 45 50 55 60

CPU Assignment (% of Total CPU)

S
e
rv

ic
e
 T

im
e
 (

s
e
c
s
)

Figure 9. Service Time Profiles

Our experimental testbed consists of a virtualized

data center where multiple applications share a common

pool of resources. We use a cluster of dual processor

x86 based servers with Xen virtual machines (VMs) to

simulate such a virtual data center. The testbed consists

of multiple HP Proliant servers, each running Fedora 4,

kernel 2.6.12, and Xen 3.0-teseting. Each of the server

nodes has two processors, 4 GB of RAM, and 1G

Ethernet interfaces. These hardware resources are

shared between the virtual machines that host the

application. Each virtual machine can be instantiated

from a bunch of VM images, database images, and swap

images. These hardware resources are shared between

the virtual machines that host the application.

5.2 Building Profile

For the profiling, we use a 3-tier Servlet based

implementation of RUBiS [1] consisting of an Apache

Web server 2.0, a Tomcat 5.5 servlet container, and a

MySQL 5.0 database server, running on virtual

machines hosted on different servers. A synthetic

workload generator runs on the fourth server. To isolate

performance interference, we restrict the management

domain to use one CPU and virtual machines to use the

other CPU.

One of the key objectives of profiling is to accurately

estimate the service time of each component since the

accuracy of a model depends directly on the quality of

its input parameters. To effectively measure service

time for each component, the time stamp is recorded

either when a new thread is created or when an idle

thread is assigned. Similarly, we record the timestamp

when the thread is returned to the thread pool or

destroyed. The time interval between the two time

stamps is the time spent in each component. This time

also includes the waiting time for its neighbor’s reply.

The time spent on waiting for next tier is measured in a

similar way. The difference between the two time

intervals is the actual service time. This approach works

for both lightly loaded as well as overloaded systems.

Details of measurement implementation can be found in

[19].

During profiling, we also collect the workload

characteristics, including the average visit rate on each

tier Vi. This number is used to derive the average

service demand Di per user request such as Di = Vi/V0

* Si , where Si is the mean service time and V0 is the

average user request rate.

For the purpose of profiling, we systematically

change the configurations of each virtual machine

hosting the application including assignment of

resources (e.g., CPU, MEM) to each virtual machine

and software configuration parameters (e.g., maximum

number of clients, thread cache size, query cache size,

etc.). We then apply certain workloads to each tier and

measure the service time of that tier. When we profile a

tier, we configure other tiers at its maximum capacity to

prevent them from becoming performance bottlenecks.

This ensures that interdependencies do not affect the

accuracy of the profile. After collecting the service

times for different configurations, we apply statistical

analysis techniques, such as regression analysis, to

 Figure 8. RUBiS performance

Response Time

0

2

4

6

8

10

12

50 100 150 200 250 300
Number of Sessions

 R
e

s
p

o
n

e
 T

im
e

 (
s

e
c

s
)

Model

Measurement

Throughput

0

5

10

15

20

25

30

50 100 150 200 250 300

Number of Sessions

T
h

ro
u

g
h

p
u

t
(r

e
q

s
/s

e
c

)

Model

Measurement

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

Table 1. 3-tier RUBiS

CPU Assignment Performance CPU Utilization

SLOs

Design Tomcat MySQL Total
Resp

(sec)

Thrpt

(rqs/s)
Tomcat MySQL

Optimal 40% 25% 65% 9.79 21.41 67% 70%

System0 45% 30% 75% 9.89 21.59 61% 67%

System1 20% 20% 40% 15.93 11.1 99% 92%

Users=300

Res<10sec

Thrpt>20

reqs/sec

System2 90% 90% 180% 8.86 24.3 23% 21%

Users=100

Resp.<5sec

Thrpt>10rqs/s
System0 15% 15% 30% 4.83 13 74% 69%

Table 2. 2-tier RUBiS

CPU Assignment Performance CPU Utilization

SLOs

Design Apache MySQL Total
Resp

(sec)

Thrpt

(rqs/s)
Apache MySQL

Users=100

Resp.<5s

Thrpt>10rqs/s
System0 10% 15% 25% 4.83 13 72% 53%

Users=500

Resp.<10s

Thrpt>40rqs/s
System0 35% 30% 65% 8.2 42 76% 61%

derive correlation between the service times of a tier

and its respective configuration.

Using the steps mentioned above, we have built

profiles for Apache, Tomcat and MySQL with different

CPU assignments to each tier. We used SEDF (Simple

Earliest Deadline First) algorithm [2] that Xen provides

for controlling the percentage of total CPU assigned to

a virtual machine. We used the capped mode of SEDF

to enforce the fact that a virtual machine cannot use

more than its share of the total CPU. We changed the

CPU assignment from 10% to 100% to measure the

service times with different CPU assignments.

Figure 9 shows the service time of Tomcat and

MySQL as a function of the percentage of CPU

assignment to the virtual machine hosting them. As

shown in the figure, both Tomcat and MySQL

demonstrate similar behavior. As the CPU assignment

increases, the service time drops initially and remains

constant after getting enough CPU. The results are then

saved as Tomcat and MySQL’s profiles.

5.3 SLA Decomposition and Validation

Our performance model can be represented as

follows:

(, , , , ,)

/()

i i iR g N Z M K S V

X N R Z

=

= +

where variables R, X and N denote response time,

throughput and the number of concurrent users

respectively. Please see Section 4 for the definitions of

the other variables. We also obtain the service time

profile Si = fi (CPUi), the number of stations Ki for each

component and the workload characteristics, such as

average visiting rate Vi and think time Z via profiling.

Given high level goals of R < r, X > x and N of a M-

tier application, the decomposition problem is to find a

set of CPUi (i = 1, …M) that satisfies the following

constraints:

1 m i i M M 1 Mg(N, Z, K , ...K , f (CPU), f (CPU), V , ... V) < r.

N / (R+Z) > x

To find the solution to the above equation, we simply

enumerate all combinations of CPU assignments,

CPUi= 10% to 100%, in 10% unit increments that

satisfy the constraints. We then choose the

combinations of CPUi such as the sum of CPUi (i = 1,

…, M) is minimized. An advanced algorithm [20] can

be applied for complex and large scale systems.

We apply SLA decomposition to design RUBiS

systems with different SLO goals and software

architectures. Given high level SLO goals, we generate

low level CPU requirements through SLA

decomposition and then configure the VMs based on

the derived low level CPU requirements. We then

validate our design by measuring the actual

performance of the system and compare the results with

the SLA goals. In the experiments, we consider the high

level SLA goals defined as number of concurrent users,

average response time, and maximum throughput. We

use 5% of the total CPU capacity as a unit for CPU

assignments.

In the first experiment, we use a 3-tier

implementation of RUBiS, an Apache web Server, a

Tomcat server and a MySQL database server hosted on

VMs on different servers. Table 1 summarizes the

results of different CPU assignments for two different

SLA goals. The first column shows the SLO goals. The

column of CPU assignment describes the system design

parameters in terms of the percentage of CPU assigned

to each tier. The columns of Performance and CPU

utilization show the measured response time,

throughput and the CPU utilization of the actual system.

For the SLA goal of 300 users, response time < 5

seconds and throughput > 20 requests/seconds, optimal

system ensures the SLA using the minimum CPU

resource (65% of total CPU assigned to Tomcat and

MySQL). System0 is the system designed based on the

proposed SLA decomposition approach and the

assignment of CPU 75% is close to the optimal solution

60%. System0 meets the SLOs with reasonable CPU

utilization, i.e., 61% and 67%. Two other systems

(system1 and system2) are used for the purpose of

comparisons, too. System1 is underprovisioned while

System2 is overprovisioned. From the table, we observe

that System1 fails to meet the SLA since the system is

completely overloaded while system2 meets the SLOs

but is highly under-utilized with less than 25% CPU

utilization of both Tomcat and MySQL. Compared with

the over-provisioning System1, our system (System0)

can meet the SLAs using less CPU resource (75% as

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

opposed to 180%) and improves the utilization 3 times

(60% as opposed to 20%).

We also experimented with a less demanding SLA of

100 users, response time < 5 seconds and throughput >

10 requests/seconds. These results are also summarized

in Table 1. From the results, we can see that System0,

which is designed based on the low level system

thresholds derived by our approach, can meet the high

level SLA with efficient CPU utilization.

In order to further check the applicability of our

approach, we applied the decomposition to design a 2-

tier RUBiS implementation consisting of an Apache

web Server and a MySQL database server. The 2-tier

application runs PHP script at Web server tier and puts

much higher load on web tier than 3-tier. We evaluated

our approach with two different SLAs. The results in

Table 2 show that our approach can be effectively

applied to design such a 2-tier system with different

SLA requirements.

6. Related Work

Previous studies have utilized performance models to

guide resource provisioning and capacity planning [16],

[20]. Urgaonkar et al. propose a dynamic provisioning

technique for multi-tier applications [16]. Our work is

different from theirs in several aspects. First, their

model only takes into account the request rate and

number of servers at each tier while our model can

estimate how performance is affected by different

workloads, resource allocations, and system

configurations and can handle general SLOs, such as

response time, throughput and the number of concurrent

users. Second, they assume an open queueing network

for request-based transactions whereas we assume a

closed network for user session based interactions.

Third, our approach has been applied in virtualized

environments, managing resource assignment in a more

fine-grained manner than just determining the number

of servers for each tier.

Zhang et al. present a nonlinear integer optimization

model for determining the number of machines at each

tier in a multi-tier server network [20]. The techniques

to determine the bounds can be applied to solve our

general decomposition problem.

Stewart et al. present a profile-driven performance

model for multi-component online service [18]. Similar

to ours, their approach builds profiles per component

and uses the model to predict average response time and

throughput. However, the basic assumption and the

focus are different. They use the model to discover

component placement and replication that achieve high

performance in a cluster-based computing environment

while our work is focused on ensuring SLAs are met

with optimized resource usage. They profile component

resource consumption as a function of different

workloads while we profile the component performance

characteristics as a function of low level goals such as

resource assignments and configurations. As a result,

our approach can support a more fine grained resource

share and management. Additionally, their approach

uses a simple M/G/1 queue to model service delay at

each server, which is less accurate than general G/G/1

closed queueing network we used. Though our

approach can incorporate different resources, we have

not taken into account the I/O and memory profile as

they did. Their model explicitly captures

communication overhead which is not included in our

current model.

A lot of research efforts have been undertaken to

develop queueing models for multi-tier business

applications. Many such models concern single-tier

Internet applications, e.g., single-tier web servers [9],

[10], [11], [12]. A few recent efforts have extended

single-tier models to multi-tier applications [16], [17],

[19]. The most recent and accurate performance model

for multi-tier applications is proposed by Urgaonkar

[17]. Similar to our model, their model uses a closed

queueing network model and mean value analysis

(MVA) algorithm for predicating performance of multi-

tier applications.
2
 Despite the similarities, the two

models are different in the following aspects. First, our

model uses multi-station queues to capture the multi-

thread architecture, hence explicitly handling the

concurrency limits. Use of multi-station queues also

enables us to model multi-server tier the same way as

single server tier. The approximate MVA algorithm for

multi-station queue is more accurate than simply

adjusting the total workload. Second, our measurement

methodology can work well for both light load as well

as heavily load conditions. Finally, we systematically

study the performance and validate our models in a

virtualized environment. These unique features enable

us to model the application in a more fine-grained

manner and handle various workload conditions in a

consistent way. Though our model can be adjusted to

handle imbalance across tier replicas and multiple

session classes based on queueing theory, we have not

explored these areas yet. An early result of our

performance model was presented at [19]. The model

used in this work makes numerous enhancements to our

earlier model, including general model for any tier

applications, an integrated MVA analysis with SLA

decomposition and additional new experiments for

model validation.

2
 The two models were developed concurrently and an early report of

our model appeared at [19].

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

Kelly et al. present an approach to predicting

response times as a function of workload [13]. The

model does not require knowledge of internal

application component structure and uses only

transaction type information instead. It has been shown

that the approach works well for realistic workload

under normal system load, but it’s not clear how well it

will perform under high system load, which is crucial

for our work.

The specific performance model used in this paper is

based on queueing model. Conceptually, any model

which can help determine the performance (e.g.,

response time) of applications can be incorporated into

our solution. It would be interesting to investigate how

to integrate other models into our solution.

7. Conclusion and Future Work

It is a prerequisite for next generation data centers

that computing resources are available on-demand and

that they are utilized in an optimum fashion. One of the

most important steps towards building such systems is

to automate the process of designing and thereafter

monitoring systems for meeting higher level business

goals. These are intriguing but difficult tasks in IT

automation. In this paper, we propose SLA

decomposition approach that combines performance

modeling with performance profiling to solve this

problem by translating high level goals to more

manageable low-level sub-goals. These sub-goals

feature several low level system and application level

attributes and metrics that are used for creating an

efficient design to meet high level SLAs. We have built

a testbed to validate our methodology using a number of

multi-tier business applications. The evaluation results

show the efficacy of our approach.

In the future, we will investigate how the current

approach can be generalized to support different

enterprise applications and composed web services

running on heterogeneous platforms. We are also

planning to look at other system and application level

metrics in addition to CPU usage.

8. References

[1] Rubis Rice University Bidding System,

http://www.cs.rice.edu/CS/Systems/DynaServer/rubis.

[2] P. Barham, et al. “Xen and the Art of Virtualization”. In

Proc. of the nineteenth ACM SOSP, 2003.

[3] S. Graupner, V. Kotov, and H. Trinks, “Resource-

Sharing and Service Deployment in Virtual Data

Centers”.,In Proc. of the 22nd ICDCS, pp 666-674, July,

2002.

[4] VMware, Inc. VMware ESX Server User's Manual

Version 1.5, Palo Alto, CA, April 2002.

[5] M. Reiser and S. S. Lavenberg, "Mean-Value Analysis

of Closed Multichain Queueing Networks," J. ACM, vol.

27, pp. 313-322, 1980.

[6] A. Seidmann, P. J. Schweitzer, and S. Shalev-Oren,

"Computerized Closed Queueing Network Models of

Flexible Manufacturing Systems," Large Scale Systems,

vol. 12, pp. 91-107, 1987.

[7] D. Menasce and V. Almeida, Capacity Planning for Web

Services: Metrics, Models, and Methods: Prentice Hall

PTR, 2001.

[8] A. Chandra, W. Gong, and P. Shenoy. “Dynamic

Resource Allocation for Shared Data Centers Using

Online Measurements”. In Proc. of International

Workshop on Quality of Service, June 2003.

[9] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat.

“Model-Based Resource Provisioning in a Web Service

Utility”. In Proc. of the 4th USENIX USITS, Mar. 2003.

[10] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer, A.

Tantawi, and A. Yousse, “Performance Management for

Cluster Based Web Services”. in Proc. of IFIP/IEEE 8th

IM, 2003.

[11] L. Slothouber. “A Model of Web Server Performance”.

In Proc. of Int’l World Wide Web Conference, 1996.

[12] B. Urgaonkar and P. Shenoy. Cataclysm. “Handling

Extreme Overloads in Internet Services”. In Proc. of

ACM SIGACT-SIGOPS PODC, July 2004.

[13] T. Kelley. “Detecting Performance Anomalies in Global

Applications”. In Proc.of Second USENIX Workshop on

Real, Large Distributed Systems (WORLDS 2005), 2005.

[14] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite and

W. Zwaenepoel. “A Comparison of Software

Architectures for E-business Applications”. In Proc. of

4th Middleware Conference, Rio de Janeiro, Brazil,

June, 2003.

[15] Y. Udupi, A. Sahai and S. Singhal, “A Classification-

Based Approach to Policy Refinement”. In Proc. of The

Tenth IFIP/IEEE IM, May 2007. (to appear).

[16] B. Urgaonkar, P. Shenoy, A. Chandra, and OP. Goyal.

“Dynamic Provisioning of Multi-tier Internet

Applications”. In Proc. of IEEE ICAC, June 2005.

[17] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and

A. Tantawi, “An Analytical Model for Multi-tier Internet

Services and its Applications”. In Proc. of ACM

SIGMETRICS, June 2005.

[18] C. Stewart, and K. Shen. “Performance modleing and

system management for multi-component online

services”. In Proc. of USENIX NSDI, 2005.

[19] X. Liu, J. Heo, and L. Sha, "Modeling 3-Tiered Web

Applications". In Proc. of 13th IEEE MASCOTS,

Atlanta, Georgia, 2005.

[20] TPC Council, "TPC-W", http://www.tpc.org/tpcw.

[21] A. Zhang, P. Santos, D. Beyer, and H. Tang. “Optimal

Server Resource Allocation Using an Open Queueing

Network Model of Response Time”. HP Labs Technical

Report, HPL-2002-301.

Fourth International Conference on Autonomic Computing (ICAC'07)
0-7695-2779-5/07 $20.00 © 2007

