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Abstract. The delivery of data in pervasive systems has to deal with
end host mobility. One problem is how to create appropriate, application-
level data provisioning topologies, termed data brokers, to best match
underlying network connectivity, end user locations, and the locales of
their network access. Another problem is how to balance workloads
in such overlay networks, in response to mobility and to changes in
available processing and communication resources. This paper improves
the performance of data provisioning by dynamically changing broker
topologies and end users’ assignments to brokers. Specifically, using pub-
lish/subscribe as a communication paradigm, a new abstraction, termed
an opportunistic event channel, enables dynamic broker creation, dele-
tion, and movement. Experimental and simulation results demonstrate
the ability of opportunistic channels to optimize event delivery and pro-
cessing when end users move across different network access points. The
technique is to ‘opportunistically’ follow network-level handoffs across
network access points with application-level handoffs of a user’s broker
functionality to a new, ‘closer’ broker. The potential load imbalances
across brokers caused by such handoffs are also addressed.
Opportunistic channels are realized with the JECho event infrastructure.
Performance advantages attained from their use can be substantial, with
the cost of sending a message from a publisher to a mobile subscriber
improved by up to 50%. Load balancing improves event delivery even for
moderate numbers of event subscribers.

1 Introduction

Publish/subscribe is a widely used paradigm for interconnecting applications
in distributed environments. It provides anonymous, inherently asynchronous
group communication, where event providers and consumers interact via event
brokers, as illustrated in Figure 1. Subscription means that an event consumer
declares its interest in receiving certain events, using some predicate or more
generally, in content-based subscription, a filter/conversion function defined on
event contents (e.g., see the ECho and JECho infrastructures developed in our re-
search [9, 38]). An event provider generates and publishes events, where message
brokers are responsible for collecting event subscriptions and routing events from



publishers to interested consumers. Each provider/consumer connects to one of
the brokers, where broker networks can be organized in multiple ways, rang-
ing from single central broker (Elvin [31]), to hierarchical topologies (JEDI [7],
Gryphon [24]), to general graphs (SIENA [3], READY [11]). Once a topology
of brokers has been defined, appropriate routing paths must be established to
ensure the correct and efficient delivery of events to all interested consumers.
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Fig. 1. Publish/Subscribe Communication Model

The issue addressed in this paper is that publish/subscribe systems’ broker
infrastructures or more generally, overlay networks [20] used in distributed appli-
cations do not take into account the unique needs of mobile systems. Problems
include (1) which interconnection topology may currently best suit the underly-
ing mobile system’s communication paths [26] and how to dynamically construct
such a topology, (2) selecting the numbers and capabilities of brokers to match
the mobile platform’s configuration, and (3) dynamic changes in (1) and (2)
to match changes in mobile node locations [35], configurations, and resources.
For publish/subscribe systems, this implies the need to use dynamically varying
topologies with a changing number of brokers, and it requires runtime changes
to providers’ and consumers’ assignments to brokers. A specific example is one
in which a location change by an event provider or consumer results in a con-
sequent change of the network access point used by the underlying Mobile IP
protocol [25, 17]. This can lead to inefficiencies in broker communications, as
depicted in Figure 2, where a mobile client’s crossing of a network boundary
results in a circuitous path from publisher to home broker to event subscriber.

Opportunistic channels is an event channel concept that addresses the mobil-
ity of event producers, consumers, and of the dynamic changes in the pervasive
systems where they operate. The following attributes of opportunistic channels
differentiate them from previous work:
– Network and location awareness. The event broker associated with an op-

portunistic channel is aware of the underlying network topology used for
transporting events from providers to consumers. It is also aware of the re-
spective locations of both.

– Dynamic broker adaptation. Brokers can be created, deleted, and moved at
runtime, resulting in the ability of opportunistic channels to react to changes
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Fig. 2. Inefficient Event Delivery after Subscriber Migration

in end user locations and also to secondary effects of such changes, such as
broker overloads due to changes in client/broker assignments.

The algorithm used for dynamic broker deployment and movement is one that
evaluates the performance opportunities presented by current network connec-
tivities and broker loads/node capabilities. Specifically, it attempts to optimize
the event delivery path when a mobile user moves out of range of its old net-
work access point by ‘opportunistically’ following the network level handoff [25,
35] with an application-level handoff of the user’s brokering functionality to a
broker that is ‘closer’ to the new client location, hence the term ‘opportunis-
tic’ event channel. The potential load imbalances across brokers caused by such
middleware-level handoffs are addressed by dynamic broker creation. In effect,
we aim to dynamically construct portions of the event dispatch trees used in
static broker architectures [24].

Opportunistic channels are realized with the JECho peer-to-peer pub/sub
infrastructure [38]. A unique extension of JECho is that its current peer-based
broker infrastructure (i.e., each peer runs its own broker) is enhanced with dy-
namically created ‘third party’ brokers, which can run on machines and/or in
address spaces not used by event publishers or subscribers [38]. Moreover, gener-
alizing the capabilities of other event systems, brokers perform tasks in addition
to the event routing permitted by other systems [24], using subscriber-provided
functions, termed event modulators [37]. The intent is to address the severe re-
source limitations existing in many mobile and embedded systems, by permitting
event consumers to deploy application-specific functions that manipulate event
content into event sources and/or brokers, so as to precisely meet their current
needs, and to avoid needless data transfers [38]. Finally, since JECho is con-
structed with Java, the realization of opportunistic channels presented in this
paper has some limitations, including the need for a reasonably sized Java foot-
prints on the target mobile nodes [38]. Opportunistic channels, however, also



benefit from certain JECho functionality, such as the relative ease with which
third party brokers may be created, deployed, and migrated.

The performance advantages attained from the use of opportunistic channels
can be substantial. For instance, simulation results indicate that the cost of
sending a message from a fixed publisher to a mobile subscriber can be improved
by up to 50%. Experimental results show that the end-to-end latency can be
improved by 20% with microbenchmarks, when a mobile devices uses a 802.11a-
based wireless network, where access points are connected via a high performance
network backbone. Furthermore, broker load balancing can deliver events at two
times the speed of a non-load balancing solution when the number of subscribers
reaches 16, as demonstrated with microbenchmarks. Finally, even for a moderate
number of video players (i.e., 8 players), load balancing and dynamic broker
creation permits video playout to be improved by a factor of 3.

In the remainder of this paper, Section 2 briefly reviews the JECho event
system, clarifying the basic software architecture of opportunistic channels. In
Section 3, opportunistic channels are used in a mobile environment, including
experimental measurements with campus wireless network. Section 4 describes
load balancing in opportunistic channels. Related work is discussed in Section
5, and conclusions and future work appear in Section 6.

2 System Architecture

2.1 Overview of JECho

JECho implements a publish/subscribe communication paradigm, providing in-
teractive services to distributed, concurrently executing components via event
channels. JECho’s efficient implementation enables it to move events at rates
higher than other Java-based event system implementations [38, 37]. In addi-
tion, using JECho’s modulator concept [38, 37], individual event subscribers can
dynamically tailor event flows to their own needs, and adapt to runtime changes
in component behaviors and needs and/or changes in platform resources. JE-
Cho’s implementation is in pure Java, its group-cast communication layer is
based on Java Sockets, and it runs with both standard and embedded JVMs. A
modulator is a Java object that executes in a source’s or broker’s address space,
on behalf of some client. The basic communication model in JECho is shown in
Figure 3.
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Fig. 3. JECho Communication Model

Client-defined customization in modulators, including event conversion or
transformation, is performed prior to delivering the event to the consumer. Event
conversion may reduce their sizes and hence reduce network traffic. Modulators



can also be used for offloading computation from constrained mobile devices. An
example is a modulator that pre-converts events to the forms needed by specific
client’s graphical displays, thereby eliminating the costs of data conversion in the
client. In fact, it is sometimes impossible to display data appropriately without
performing such conversions, as with rendering OpenGL-based graphical data on
a PalmTop or when applying server-resident business rules to data prior to its
display on cellphones [6]. Other reasons for such conversion include the delivery
of data with certain Quality of Service or to conserve power on battery-limited
handheld devices [28].

2.2 Broker Adaptation Architecture

The notion of opportunistic channel (OC) generalizes upon JECho’s modulators
in three ways. First, OC modulators can run in consumers, intermediate brokers,
or in providers. Second, brokers may be created dynamically. Third, for load
balancing and migration, each broker is associated with a Java object called an
adaptor. The idea is for a modulator and adaptor to adapt event dispatching to
the dynamic needs of the clients, as shown in Figure 4.
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Fig. 4. Opportunistic Channel Architecture

The adaptation framework constructed with brokers and adaptors utilizes
a resource monitoring service (RMS), which collects, aggregates, processes, and
delivers data about the current execution environment. The RMS is able to mon-
itor any nodes in the mobile system, using daemon processes connected via their
own communication links. Monitoring data is captured from objects (including
devices) at these nodes, and it is distributed to RMS clients via a customizable
push-based interface. As with other monitoring systems [12], such data is con-
tained in events, with current events containing information about CPU loads,
memory availability, handoff actions occurring at the network level (to capture
client mobility), and application-level communication latency and bandwidth



experienced between RMS clients. RMS clients can selectively register their in-
terests in the data being captured, by providing a filter function installed at the
source of a monitoring data stream. For example, a broker may provide a func-
tion that evaluates captured data and then provides it with a notification event
only when the network topology changes and when the broker’s own current
CPU load exceeds 80%. Our current prototype implementation uses a central
RMS server.

Another component of the architecture is a broker information server, which
maintains information about current brokers, including their names, certain at-
tributes (e.g., CPU and memory loads, IP addresses, network-related param-
eters,etc.) and their interconnections. A broker can get these information by
sending a query to the broker information server.

A sample adaptor used by a broker is shown below. Its method ‘subscribe()’
registers the broker with the RMS and specifies its interest in certain monitoring
data, using the object ‘filter’. Adaptation code is implemented in the event han-
dler method ‘push()’, which is invoked whenever an interesting event is received.
Using adaptors, RMS, and filters, system developers can create potentially com-
plex adaptation policies [34].

public class MyAdaptor implements BrokerAdaptor {

//join the resource channel

public void subscribe( ) {

registerToRMS("CPU_Load", filter);

}

public void push(Object e) {

//adaptation code

}

In summary, the adaptation model used for realization of opportunistic chan-
nels is seamlessly integrated with the JECho publish/subscribe system. Adapta-
tion involves broker registration with a resource monitoring service and the use
of potentially broker-specific adaptors. The adaptor can perform simple tasks
like recording certain resource changes, to complex adaptations like changing
the topology of broker interconnection.

3 Opportunistic Channels in Mobile Environments

While the concept of opportunistic channels may be applied to a wide variety
of wireless networks, this paper assumes that there exists a reliable underly-
ing network with guaranteed connectivity, where links are subject to dynamic
variations in available communication bandwidth. In the presence of end user
mobility, connectivity is guaranteed by Mobile IP, which performs network-level
handoff actions [25, 17, 35]. The resulting transparent mobility exists in both de-
ployed and experimental systems, including Berkeley’s BARWAN and CMU’s
wireless Andrew systems [20, 15], which provide such support within a network
(horizontal handoff) and across heterogeneous networks (vertical handoff) across



substantial geographical areas. For simplicity, in the remainder of this paper, we
ignore any transient disconnection, which may happen during mobile suppliers’
or consumers’ migration. Furthermore, brokers are pre-created onto all nodes of
the underlying network, thereby ignoring the costs of dynamic broker creation.

3.1 Mobility Adaptation

The network topologies of mobile systems change in response to mobile users’
movements. When using base stations, this implies that the router (network
access point) to which a mobile host connects may change when the mobile
host moves across network boundaries. In Figure 5, M is a mobile host whose
home network is network-2. M receives events from a source residing in network-
1. There are two brokers in the system: broker-2 in network-2 and broker-3 in
network-3. When M first subscribed to the event channel, it specified broker-2 as
its broker and placed its modulator into broker-2. The event was delivered from
the source to broker-2 through the network and finally reached M. The resulting
delivery path was network-1(source)→network-2(broker-2→M). At some point in
time, M moved from network-2 to network-3. If M still used broker-2, the result-
ing delivery path would be network-1(source)→network-2(broker-2)→network-
3(M). However, if M changed its broker from broker-2 to broker-3, then the
event delivery path would become network-1(source)→network-3(broker-3→M),
which is much shorter.
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Fig. 5. Event Delivery in a Mobile Environment

In most cases, using the old, longer dispatching path (i.e., triangle delivery)
results in higher event delivery latency and in the consumption of additional,
often scarce network capacity. A solution is to change event delivery paths along
with changes in underlying network message delivery. In particular, when a mo-
bile consumer moves out of range of its previous network and into the range of a
new one, the mobile host should connect to the broker that is ‘closest’ to the new
network access point. This is the basic idea of opportunistic channels (OC): to
‘opportunistically’ move broker activities as end users move. Specifically, using
the adaptation mechanism described in Section 2.2, a simple adaptor transpar-
ently relocates the mobile client’s modulator to the new broker in response to a



network-level handoff, the latter detected via online monitoring. The basic steps
performed by this adaptor are:
1. search for an alternative broker via the broker information server;
2. send a handoff request to the remote broker; and
3. if the remote broker agrees to accept the request, then execute the broker-

level handoff protocol.
The modulator handoff protocol, described in detail in Section 3.2 and imple-
mented by the adaptor, ensures that the dynamic handoff of a modulator is
performed without losing or duplicating events. The broker information server
lists the available brokers, including their names and certain attributes (e.g.,
CPU and memory loads, IP addresses, network-related parameters,etc.). The
current implementation uses a central broker information server. More detail on
scalable directory services appears in [2].

Two different adaptors are implemented and evaluated in this research. The
‘simple’ adaptor always performs modulator handoff, with the intent of using
the broker that is closest to the current location of the mobile client. A more
realistic adaptor takes into account additional factors. First, it may also consider
the new broker’s load. Second, it evaluates the network path to the new broker.
This is important because the latency from network-1 to network-3 may actually
be larger than the latency of network-1 to network-2 plus network-2 to network-3
shown in Figure 5. Specifically, the ‘complex’ adaptor evaluated next compares
the old path with the potential new path when network handoff is detected. It
schedules the modulator handoff only when the new path is shorter than the
old one. In the current implementation, latency is measured by sending a ping’
message between two nodes and using one-half of the round-trip time as an
approximation. The source of events can be achieved from broker information
server.

3.2 Modulator Handoff

Modulator handoff is illustrated in Figures 6. Our algorithm guarantees correct-
ness properties that include (1) in order event delivery, (2) no lost or duplicate
events, and (3) consistent modulator state in the presence of migration:
1. The source broker initiates a handoff by sending a HANDOFF request to

the destination broker.
2. Upon receiving the handoff request, the destination broker adds the mobile

client to its consumer list and sends an ACK to the source broker.
3. After receiving the ACK from the destination broker, the source broker sends

a DETOUR request, which includes the name of the destination broker, to
all of the event providers.

4. Upon receiving the DETOUR request, each provider atomically replaces the
source broker from its consumer list with the destination broker; it then
sends an ACK to the source broker and the destination broker.

5. The source broker receives events from each provider, applies the client’s
modulator to these event, and forwards them to the client until it receives
the ACK from the provider.



6. The destination broker buffers events from each provider after it receives the
ACK.

7. After ACKs from all providers are received by the source broker, it removes
the client from its consumer list and sends a HANDOFF along with the
current modulator to the destination broker.

8. Upon receiving the HANDOFF, the destination broker applies the modulator
received from the source broker to the buffered events and starts forwarding
events to the client.
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Fig. 6. Modulator Relocation

This protocol ensures that no events are lost or duplicated, since the old broker
processes all events from a provider before receiving the provider’s ACK mark,
while the new broker processes only those events after the ACK message. The
order of events from the same provider is maintained, since both the old broker
and new broker process the events in the order delivered by the provider. Since
modulators are stateful and since event processing may change their states, the
protocol described above also ensures the consistency of modulator state. Finally,
the algorithm is non-disruptive, in that the relocation procedure does not directly
affect the other consumers of the providers handled by a certain broker. This
is because it requires neither the providers nor the brokers to temporarily stop
event delivery.

3.3 Experimental Evaluation

This section establishes the basic performance of opportunistic channels, and it
demonstrates that opportunistic channels can improve the performance of event
delivery in mobile environments.

Relocation Overhead When measured on a cluster of 300Mhz Pentium II
Linux PCs connected with dual 100Mbps fast Ethernet, the times required to
complete a relocation for a varying number of suppliers (see Figure 7) demon-
strate that relocation cost increases linearly with the number of event suppliers.
This is explained by the underlying peer-to-peer communications occurring in



JECho, where brokers are integrated with event suppliers unless otherwise spec-
ified. The intent, of course, is to separate the broker infrastructure from the
remainder of the JECho system, so that solutions like opportunistic channels
can specialize their broker behavior for the target environments being addressed.
Interestingly, even for the simple peer-to-peer interconnections, total relocation
cost remains small even for a moderate number of suppliers (i.e., 16 suppliers).
In these measurements, each supplier is located on a different machine, and the
event consumer moves across two Linux machines in the same cluster.
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Fig. 7. Relocation Overhead

Simulation Results For the purpose of simulation, a 100 node network is
generated using the BRITE (Internet topology generator developed at Boston
University [21]). Nodes are assumed to be geographically distributed, and each
link is assigned a cost corresponding to the distance between the nodes it con-
nects. The cost of sending a message between any pair of nodes is the cost of the
shortest path between the nodes, computed with Dijkstra’s algorithm. There are
multiple fixed sources and one mobile host in the network, all located on net-
work nodes. Brokers also reside on these nodes. In the simulation, the mobile host
stays on the same node for some varying time period, which is generated from
an exponential distribution. When the period expires, the mobile host moves
to the ‘next’ location, according to the mobility model used. In the simulation,
four mobility models characterize different user behaviors. The random model
chooses the next location randomly. The traveling salesman model moves to one
of its neighbors, which is randomly chosen. The pop-up model is similar to the
traveling salesman one, except that it sometimes roams to a randomly chosen
remote node. The fixed model has two fixed locations which the mobile host
visits more frequently than others. The mobile host moves between these two
locations most of the time. Occasionally, the mobile host roams to a different
node. More detail about the client behavior models used in our experimentation
appears in [30].

The simulation uses a mobility-to-communication ratio to measure the mo-
bile host’s movement speed. This ratio captures the rate at which a mobile
host changes its location to the rate at which it receives messages.The higher
the mobility-to-communication ratio, the faster the mobile host’s movement.
For each relocation, adaptation cost is measured by multiplying the number
of messages used by the relocation protocol by the distance between suppliers,
consumer, source brokers or destination broker.

The first simulation uses one fixed source and a single mobile client. We
compare the performance of using a ‘normal’ channel, a ‘simple’ opportunistic
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Fig. 8. Simulation Results for Single Supplier

channel (oc1) and a ‘complex’ opportunistic channel (oc2). oc1 uses a simple
adaptor, which always performs a modulator handoff when the mobile client
moves to a new location. oc2’s adaptor compares the distances of old path and
new path when the mobile client moves to a new location. If the new path
is shorter, the adaptor relocates the modulator to the new broker. Otherwise,
the old broker is used. Figure 8 shows the average cost per message of three
channels, respectively, using the random model, traveling salesman and fixed
model. In the figure, the X-axis indicates the mobility/communication ratio, and
the Y-axis indicates the average cost of receiving a message. The results show
that opportunistic channels achieve better performance than normal ones, even
for random walks with very high mobility. In all cases, complex opportunistic
channels (oc2) perform better than simple ones (oc1). In general, when the
mobility/communication ratio increases, relocation cost and hence, average cost,
increases accordingly.

The second simulation involves five fixed sources and one mobile client. The
results are shown in Figure 9. They demonstrate that the opportunistic channel
with the complex adaptor has the best performance, and that even the simple
adaptor still outperforms non-opportunistic channels.
End-to-End Delay To substantiate our claims, experiments are performed
with a microbenchmark used in three different locations on the Georgia Tech
campus, as shown in Figure 10. The achieved end-to-end delays using oppor-
tunistic vs. normal channels are compared, with an event publisher running on a
SUN Ultra 30 machine (H1) at subnet1. An IPAQ is the event consumer, and it
accesses the network via 802.11a access points (802.11a devices offer a maximum
of 56Mb bandwidth). Initially, the mobile client runs in subnet2 and connects to
the event broker running on H2, with network connectivity provided via a wire-
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less network access point attached to subnet2. When the mobile client moves to
another location (subnet3), with non-adaptive channels, the mobile client con-
tinues to connect to the old broker (H2), whereas the opportunistic channel uses
a local broker (H3). With opportunistic channels, the mobile client and its bro-
ker have access to the same local network (subnet2), hence resulting in a shorter
path between them. The experiment is performed at midnight in order to avoid
high levels of variation in network usage. The results presented here are the av-
erage performance achieved over 50,000 events. The standard deviation for the
measurements is less than 10% of the average latency.
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The experiment measures the end-to-end delay with data of size 25KB in two
different locations, as shown in Figure 11. Since the opportunistic channel can
always connect the mobile client to a local broker, the latency is nearly iden-
tical after moving to new location. In comparison, with the non-opportunistic
channel, latency increases by more than 20% after migration. This is due to
the fact that event delivery for a non-opportunistic channel follows the path



subnet1→subnet2→subnet3, whereas an opportunistic channel directly delivers
the event from subnet1 to subnet3. The figure also shows a breakdown of the
costs involved in event latency. The portions labeled ‘wired’ represent the la-
tencies from the event publisher to the wireless access points. The ‘wireless’
times are the delays in transmitting data from access point to mobile client.
This breakdown is useful for understanding the performance differences between
non-adaptive and opportunistic channels. Namely, in all of these scenarios, the
wireless times are nearly identical, since all network accesses use the same 802.11a
devices. The difference is the time from the publisher to the access point, that is,
the ‘wired’ times. In this scenario, therefore, the opportunistic channel optimizes
‘wired’ times.
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Clearly, even in realistic scenarios within a campus like Georgia Tech, per-
formance advantages can be derived from using opportunistic channels. The
numeric benefits attained here are somewhat small, however, because the domi-
nant factor in the scenario studied is the communication between broker (access
point) and the mobile client. Even with 802.11a, this wireless communication
is more than 2 times slower than the wired communications. This will not be
the case for wide area mobility or in adhoc wireless networks, with potentially
large delays between the publisher and the broker. Actually, in ad-hoc wireless
networks, the delay between a publisher and a broker should be comparable to
the delay between a broker to a mobile client, since both communications use
wireless links. Finally, even the relatively modest 20% improvement in latency
shown here can be important to applications that require real-time response. Ex-
amples include web portals [27] and the interactive virtual workbench for remote
machine monitoring and control [6] evaluated in our previous research.

4 Load Balancing in Opportunistic Channels

Mobile hosts are known to be limited in computing power, storage, display, net-
work bandwidth, etc. One approach to dealing with such limitations is per client
service differentiation, that is, to customize service delivery to the needs of indi-
vidual clients. JECho enables such customization by deploying modulators into
event sources and/or brokers, where modulators range from simple event filters



to complex time-consuming event transcoding engines. With consumers and sup-
pliers joining and leaving dynamically, broker loads are also subject to runtime
variation, including overloads caused by modulator migration in opportunistic
channels. One reason is the arrival of a large numbers of local users, as when
many mobile units converge, such as during meetings. Another reason is the use
of complex modulators by ‘thin’ clients, such as modulators that implement the
flexible data transcoding required by such clients [38].
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modulators

broker1

consumer consumer consumer

modulators

broker1
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Fig. 12. Modulator Relocation for Load Balancing

4.1 Adaptations for Load Balancing

Opportunistic channels use a load balancing adaptor that permits a broker to
distribute its load (i.e., modulator execution) to a less heavily loaded broker.
This adaptor works as follows. The broker monitors the total execution time
of all modulators in its address space, using broker-resident timers maintained
by the resource monitoring service (RMS) described in Section 2. When the
broker’s modulator execution time exceeds some limit, which can be specified
when the broker is started, it will try to find a less loaded broker and relocate
some of its load (i.e., modulators) to that broker. In the current implementation,
adaptors simply contact a directory service to identify a lightly loaded broker.
The directory service finds a lightly loaded broker as follows. First, it has infor-
mation about each broker’s location, current load, status indicating whether it
can receive the load balancing request and network distances between all pairs
of brokers. Second, using the RMS, it collects information that includes remote
brokers’ CPU loads, modulator execution times, and total execution times. The
frequency with which such monitoring information is exchanged is also set when
the broker is started. Third, given this information, the directory executes the
following, simple algorithm to identify a suitable broker:

- check all available brokers in the order of the distance from the request-
ing broker;

- if a less loaded broker is found, stop the search and return the broker’s
id;

- if no such broker exists, terminate with failure.



The broker initiating the request contacts the target broker and executes the
relocation protocol described in Section 3.2. To reduce the frequency with which
relocations are performed, our current implementation simply relocates half of
the modulators from the overloaded broker to the target broker. The result of
these actions is depicted in Figure 12.

4.2 Experimental Evaluation

Benchmarks Figure 13 compares the performance of event distribution for op-
portunistic vs. normal channels. The events being passed are arrays of 100 floats.
A for() loop is used to emulate the behavior of complex modulator runtimes.
When brokers and consumers reside on different machines, with opportunistic
channels, one intermediate broker is added after 6 consumers have joined the
channel, and a second broker is added after 14 consumers have joined. In com-
parison, with the non-opportunistic channel, all consumers use the same broker
for the entire duration of the experiment. The results clearly establish the im-
portance of dynamic load distribution across brokers.
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Fig. 13. Load Balancing Microbenchmark Results

Performance of a Video Player A more realistic experiment is one that
measures the frame rate of a video player, varying the number of players and
comparing the results with a single broker vs. dynamically ‘split’, multiple bro-
kers. In the experiment, a video server runs on a Linux machine and multiple
players each running on a different Linux machine receive video stream from the
server. The results are shown in Figure 14. For 8 players, opportunistic channel
permits the frame rate to be improved by a factor of 3.

5 Related Work

5.1 Publish/subscribe Systems

Most current publish/subscribe systems permit subscribers to specify their in-
terests, storing these interests at providers or intermediate brokers. Typical in-
terest expressions result in predicate-based event filtering, sometimes also en-
abling limited forms of event transformation. However, most such subscription
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are stateless and therefore, do not support the general event processing needed
for the complex data conversions occurring in multimedia, business, or scientific
applications. In addition, a client’s subscriptions cannot be changed at runtime.
JECho and opportunistic channels generalize upon these systems’ capabilities
in our support for dynamic broker creation, load balancing across brokers and
most importantly, in our ability to make broker behavior platform-aware, by
dynamically monitoring and adapting to changes in platform capabilities and
client behaviors.

There has been substantial research on interconnection topologies, event rout-
ing, and event matching (to eliminate redundant event transmission) in order to
scale publish/subscribe systems to large numbers of publishers, subscribers, and
events. Typically addressing wide area networks (e.g., Gryphon [24], SIENA [3],
JEDI [7], READY [11]), The main goal in such work is to ‘send’ an event only to-
wards brokers with consumers that are currently interested in that event, and to
use shortest such path available. In comparison to our work, fixed topologies are
used for broker interconnection, and there is no dynamic support for changing
topologies or broker locations. More specifically, JEDI offers moveout and movein
operations to change its dispatching system somehow, but the applications have
to explicitly call those operations [8]. Elvin supports disconnection and recon-
nection in a mobile environment by using proxies, but the mobile client must
connect to the same proxy even after it moves to a new location [33]. Neither
system provides general adaptation support for dynamic reconfiguration and re-
deployment of the event system itself. [16] discusses general ideas about how to
adapt a publish/subscribe system to mobile environments, but does not describe
an implementation. Solar [5] provides a flexible and scalable data-fusion infras-
tructure for delivering context information in ubiquitous computing systems.
Its concept of operator is similar to modulators in our systems, but modulator
in JECho can perform more general operations. Furthermore, Solar focuses on
how to delivery context information efficiently, whereas JECho is a general event
system.

5.2 Mobile IP and its Location Management

Optimization of location management for Mobile IP [19] is similar to the way in
which opportunistic channels operate. Namely, both attempt to optimize event
routing paths after a mobile host changes its location, by changing the ‘trian-
gle’ delivery to direct delivery. Multiple handoff algorithms have been proposed
for Mobile IP [19, 13], all of which require location registration with clients’



home agent or a regional agent. In comparison, opportunistic channels use di-
rectory services in place of home or regional agent, which implies that handoff
performance depends on that of the directory service. Furthermore, modula-
tor handoff is somewhat more complex than link handoff, especially for stateful
modulators. Finally, since opportunistic channels are realized on top of Mobile
IP, its performance benefits and overheads depend on the underlying Mobile IP
implementation.

5.3 Adaptations in Mobile Environments

Several network-level efforts address mobility issues. As already mentioned, Mo-
bile IP (e.g., Mobile IPv6 [25, 17]) enables a mobile user to stay connected when
moving across network boundaries without changing its IP address. Berkeley’s
BARWAN project [20] provides seamless roaming across heterogeneous networks.
Furthermore, BARWAN enables data forms to be changed to suit end system or
wireless network limitations, by permitting application-level, type-specific data
transformation and data compression [20]. JECho offers the same functionality,
but in addition, provides dynamic support for handler partitioning [37]. Zhao,
Castelluccia and Baker [36] describe a general-purpose mechanism at the network
level, which supports multiple packet delivery methods and multiple network in-
terfaces, where the system adaptively selects the most appropriate method and
interface. Similarly, the CMU Monarch project aims to enable adaptive mobile
host communications, to make the most efficient use of the network connectiv-
ity available to the mobile host at any time [18]. The adaptors used in oppor-
tunistic channels would interact with such network-level mechanisms. Resilient
Overlay Networks [1] optimize application-specific routing metrics, by monitor-
ing the functioning and quality of network paths. Opportunistic channels could
implement the same mechanisms, if appropriate. Finally, there are several TCP
enhancements for wireless networks [4].

Our work focuses on middleware-level and application-level adaptations, and
it can benefit from the network level research mentioned above. Since such adap-
tations require information about network-level changes, we can also benefit
from the substantial ongoing work on real-time network monitoring, including
the work performed in the Monarch [18] and net100 [22] projects.

At application-level, the Odyssey projects extends the Unix System call in-
terface to support flexible application-aware adaptations [23], as also done in our
own work addressing interactive applications [29]. The system monitors resource
levels, notifies applications of relevant changes, and enforces resource allocation
decision. Each application independently decides how best to adapt when noti-
fied. This is similar to JECho’s adaptations where an application can be notified
of resource changes and responds to such changes according to its adaptation
strategy defined in a modulator.

Some adaptations based on application semantics can be provided only at
application level. For example, datatype-specific data transformation and data
compression must depend on the application. Similarly, HRL’s Intelligent in-
formation dissemination services use bandwidth-aware filtering to adapt infor-



mation streams to resource bandwidth availability [32]. Our own previous work
with JECho has addressed these problems by supporting general application-
level adaptations via the dynamic deployment and partitioning of event modula-
tors [38]. Opportunistic channels, as well as our related research on coordinating
network- with application-level adaptations [14] complement these efforts, by
providing models and mechanisms for linking network- or broker-level changes
in resource availability with suitable application- and middleware-level adapta-
tions.

6 Conclusions and Future Work

This paper describes how a content-based event dispatching system may be ex-
tended to cope with end user mobility and with the changing computational
resources and network conditions of mobile systems. Our approach is to dynam-
ically deploy and reconfigure the underlying event distribution infrastructure
(i.e., the ‘broker’ overlays). The approach is realized with the novel abstraction
of opportunistic event channels. Their implementation involves dynamically cre-
ated event brokers, the runtime installation of event modulators in brokers, and
the dynamic relocation of such modulators. Adaptation policies are realized by
adaptors that interact with a runtime resource monitoring system. Essentially,
opportunistic channels implement a middleware-level analogue of the channel
handoff protocol used in wireless communications. More importantly, by coor-
dinating network- with middleware-level handoffs, opportunistic channels can
attain substantial performance improvements over non-adaptive event channels.
Such improvements are due to their use of shorter network paths and the better
balancing of loads across event brokers.

Future work should address some deficiencies of our current implementation,
as well as generalize upon the basic concept of opportunistic channels. First,
the current implementation assumes that there is only one intermediate broker
between a provider and a consumer and therefore, cannot handle multi-level bro-
ker topologies. We are extending our implementation and algorithm to address
this limitation. Second, our current experimentation uses wireless networks that
employ base stations, with only the last hop being a wireless link. Future work
will use opportunistic channels over ad-hoc wireless networks. In addition, the
current implementation assumes a reliable network environment and therefore,
does not consider dynamic disconnection and reconnection. Our intent is to add
application-specific failure recovery to brokers, an example being the mirroring
and failure recovery described for business transaction systems in [10].
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