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Abstract—In order to manage a service to meet the agreed upon 
SLA, it is important to design a service of the required capacity 
and to monitor the service thereafter for violations at runtime. 
This objective can be achieved by translating SLOs specified in 
the SLA into lower-level policies that can then be used for design 
and enforcement purposes. Such design and operational policies 
are often constraints on thresholds of lower level metrics. In this 
paper, we propose a systematic and practical approach that 
combines fine-grained performance modeling with regression 
analysis to translate service level objectives into design and 
operational policies for multi-tier applications. We demonstrate 
that our approach can handle both request-based and session-
based workloads and deal with workload changes in terms of 
both request volume and transaction mix. We validate our 
approach using both the RUBiS e-commerce benchmark and a 
trace-driven simulation of a business-critical enterprise 
application. These results show the effectiveness of our approach. 

I. INTRODUCTION

A Service Level Agreement (SLA) captures the agreed upon 
guarantees between a service provider and its customer. The 
ability to deliver according to a pre-defined SLA is an 
increasingly critical need in today’s highly complex and 
dynamic IT environments. In order to manage a service to 
meet the agreed upon SLA, it is important to design a service 
of the required capacity and to monitor the service thereafter 
for violations at runtime.  

In the past, researchers have made many efforts to address 
this problem using techniques such as automated provisioning, 
capacity planning, and monitoring [4, 7, 8, 9, 10, 15, 16, 17]. 
In particular, we proposed an approach to decompose SLOs to 
system thresholds on virtualized platforms in [12]. Results 
from these research efforts are encouraging. However, these 
works made several simplifying assumptions. As a result, the 
practicality and effectiveness of these approaches pose major 
challenges to their applicability. We have identified four main 
problems associated with existing solutions that are described 
below. 

First, workloads in real applications are dynamic and vary 
over time. Unfortunately, most existing solutions take into 
account the change in the volume of demand only, and assume 
a fixed or stationary transaction mix [12, 16, 17]. Changes in 
the volume of transactions (e.g., request rate) or the mixture of 
transaction types can dramatically alter an application’s 
performance and resource. Hence, a practical approach must 
handle workload changes in both the volume and transaction 
mix.  

Second, existing solutions model enterprise application 
workloads as either request-based (open workload) or session-
based (closed workload) [4, 12, 13, 16, 17]. In reality, 
workloads are typically semi-open, which is significantly 
different than either an open or a closed model [3]. Hence, a 
single model approach in most existing solutions is not 
sufficient to handle the diversity in realistic workloads. A 
practical approach should support multiple models and choose 
an appropriate model that is based on the properties of the real 
workload.  

Third, building accurate performance models typically 
requires input parameters such as resource demand. However, 
most existing solutions cannot provide the needed model 
parameters directly. Instead, such information must be 
obtained through application or system instrumentation. In 
practice, instrumentation of production applications is rarely 
done, as it is difficult, costly, and may introduce overhead that 
degrades the application’s performance [2].  Hence, a practical 
approach should be non-intrusive and passively utilize data 
that is already available on most systems.  

Lastly, most existing solutions are not applicable to the 
diverse range of design and implementation choices. Many of 
them make simplifying assumptions about the application 
infrastructure, such as considering only one server per tier 
[12,13] or uniformly distributing the requests across the 
different tiers [17]. To cope with the diversity and complexity 
in real applications, a model must be sufficiently general to 
capture the behavior of applications with different 
configurations, workloads and performance characteristics. 

In this paper, we propose a systematic, non-intrusive and 
practical approach to address the above issues. Our approach 
combines a fine-grain performance model and a regression-
based profiling technique to translate low-level operational 
policies from high-level objectives for multi-tier applications. 
We formalize this translation as a constraint optimization 
problem, and develop a constraint solver to solve it. Compared 
with previous work [12], our approach provides the following 
four key contributions. First, it formally characterizes both 
request-based and session-based workloads. This enables us to 
choose an appropriate model based on the workload 
characteristics of the application. Second, our approach 
models workload as a transaction mix, and systematically 
creates a resource profile for each transaction type. This fine-
grained model enables us to deal with dynamic and non-
stationary workloads. Third, we use regression analysis to 
estimate the model parameters. The data used in our approach 
is readily available from regular system and application 
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monitoring and requires no additional instrumentation. It is 
hence practical to apply our approach to production 
environments. Finally, the proposed modeling technique can 
model multi-tier applications with different topologies (i.e., 
any number of tiers and any number of servers at each tier), 
and different workloads (open and/or closed). As a result, our 
performance model and approach can be applied to a vast 
variety of common multi-tier applications. 

The remainder of this paper is organized as follows. Section 
2 provides an overview of our approach and our workload 
model. In Section 3, we describe profiling in detail. We 
present an analytical performance model for multi-tier 
applications in Section 4 and our approach in Section 5. The 
experimental validation of our approach is presented in 
Section 6.  Related work is discussed in Section 7. Section 8 
concludes the paper and discusses future work.  

II. OVERVIEW OF THE APPROACH

A. Workload Model 
Multi-tier applications are common in modern enterprises. 

Such applications are comprised of a large number of 
components, which interact with one another in complex 
patterns. Typically, multi-tier applications are structured into 
multiple logical tiers. Each tier provides certain functionality 
to its preceding tier and uses the functionality provided by its 
successor to carry out its part of the overall request processing.  

Table 1. Workload Definition 

There are typically a number of transaction types in any 
multi-tier application. For example, an online auction 
application has transaction types such as login, browse, bid, 
etc. In most cases, different transaction types have different 
service demands on resources. For example, bid transactions 
in an auction site typically require more CPU time than 
browse transactions. As previously discussed, empirical 
workloads tend to be partially-open, which means a user 
arrives and stays for a certain amount of time (and issues a 
number of requests) before they leave. Previous work has 
shown that partly-open workloads can be approximated using 
an open workload if the number of requests in a session is 
small, and a closed workload otherwise [3]. We consider these 
two types of workloads in our workload model.  

Open Workload. In an open (request-based) workload, a 
new request to the application is only triggered by a new user 
arrival. The requests are independent of each other and the 

arrival rate is not influenced by the number of requests that 
have already arrived and are being processed. The number of 
users who interact with the application at any time may range 
from zero to infinity. An open workload is characterized by an 
average arrival rate of requests or more generally by an arrival 
distribution. A typical open workload is a transaction mix of 
different transaction types. Assume the total number of 
transaction types is N. We define an open workload during a 
certain interval (e.g., 5 minutes) as a vector (λ1, λ2, … λN)
where λi is the arrival rate of transaction type i during that 
interval.  

Closed Workload. In a closed (session-based) workload, a 
fixed number of users interact with the application and each of 
these users issues a succession of requests. A new request 
from a user is only triggered after the completion of a previous 
request by the same user. A user submits a request, waits for 
the response to that request, thinks for a certain time and then 
sends a new request. The average time elapsed between the 
response from a previous request and the submission of a new 
request by the same user is called the “think time”, denoted by 
Z. The next request sent by a user is usually determined by a 
state transition matrix that specifies the probability to go from 
one transaction type to another. Assume the number of 
transaction types is N. The state transition matrix has N rows
and N columns where pij represents the transition probability 
from transaction type i to transaction type j. Let P denote a 
state transition matrix of a closed workload and π = (pi,
p2…pN) denote the stationary transaction distribution in a user 
session where pi presents the percentage of requests of 
transaction type i sent by the user based on P. We have πP = π
and

1
1

N

i

i

p
=

= . We can use the workload with a stationary 

transaction mix π to approximate the behavior of a closed 
workload with state transition matrix P [4]. A closed workload 
is characterized by the number of concurrent users C, the 
stationary distribution of transaction mix π, and the think time 
Z.

The open and closed workload models are summarized in 
Table 1. Unlike many open workload models that assume a 
static transaction mix and hence use an aggregate request rate 
to characterize the workload, our transaction vector model 
captures request rate per transaction type and hence can 
characterize dynamic transaction mixes. This is important 
because transaction mixes in real production systems change 
over time [13].  

B. The Approach 
An SLA is comprised of multiple Service Level Objectives 

(SLOs). Our aim is to translate SLOs into design parameters 
and bounds on low-level system resources such that the high-
level SLOs are met. Given a high-level performance SLO and 
a workload for a multi-tier application (in terms of either a 
transaction mix for an open workload or a transaction 
distribution for a closed workload), our approach provides the 
resource requirements (e.g., number of servers) to handle the 
workload and meet the specified SLO. It also finds the healthy 
state of each component involved in providing the services 
(e.g., resource utilization).  

Type Workload Parameters 

Open  

N: number of transaction types 
(λ1, λ2, … λN): transaction mix 
where  λi  (i =1 …N ) is the arrival rate of  
requests of transaction type i during certain time 
interval 

Closed 

N: number of transaction types 
C: number of users  
Z: think time 
π (p1, p2, … pi,…pN) : transaction mix 
distribution where pi (i = 1, …N) is the 
percentage of requests of transaction type i
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Our approach is illustrated in Figure 1. First, we use 
analytical performance models to capture the relationship 
between high-level performance goals (e.g., response time of 
the overall system), the application topology, and the resource 
usage of each component (e.g., CPU utilization). In particular, 
we develop two queueing network models for a multi-tier 
architecture, where each tier is modeled as a multi-station 
queueing center. One of the two models is chosen based on the 
properties of the real workload.  Second, we profile the 
applications and generate the resource demand of each 
transaction type at each resource. This is obtained by 
performing a statistical regression analysis on the historical or 
benchmark data. The profiling results are stored as the 
application resource profile in a repository. Finally, we 
combine the performance model and the application resource 
profile to formulate a constraint satisfaction problem.  

Given a performance goal (e.g., response time), a workload 
(open or closed in terms of transaction mix) and any other 
constraints (e.g., CPU utilization < 50%), the solver takes the 
application resource profile and the analytical model as inputs 
and generates a low-level policy setting. The output includes 
the resource requirements, such as how many servers are 
required at each tier to meet the SLO and the healthy bounds 
of resource utilization for each component. The resource 
requirement is then used for the design and reconfiguration of 
the application accordingly, while the healthy range is used for 
monitoring the systems during operation. The developed 
analytical models and application resource profiles are 
archived for future reuse. If the workload or response times 
change, we only need to re-solve the constraint satisfaction 
problem with new parameters to generate a new policy setting.  

III. PROFILING

Profiling creates detailed resource profiles of each 
component in the application. Two key objectives of profiling 
are to accurately estimate the resource demands for the 
application, and to identify the input parameters for the 
performance model. Our regression-based profiling is based 
on the following observations.  

(1) The resource demands of different transaction types are 
usually different but the resource demand of a transaction type 
is relatively fixed irrespective of the transaction mix. Hence, it 
is better to create a profile for each transaction type (e.g., CPU 
demand for browse transaction, bid transaction, etc.) instead of 

creating an aggregated profile for the entire workload. The 
per-transaction type profile remains stable across different 
transaction mix while the aggregated resource demand of all 
obtained for a workload only holds for that particular 
workload with the same transaction mix.  

(2) The average resource demand of a request in a workload 
is determined by the distribution of different transaction types 
in the workload and the service demand of each transaction 
type. Hence, once we have per-transaction type profiles, given 
a new transaction mix, the aggregated resource demand can be 
derived from per-transaction resource demand.  

(3)Few applications are currently instrumented to measure 
fine-grained transaction resource information. Hence, 
accurately measuring the service demand of each component 
requires significant instrumentation of the original application. 
This is unrealistic in practice. Since the resource demand of 
each transaction type is relatively static across different 
transaction mixes, we can derive the parameter of per 
transaction types using regression-based approaches described 
below. 

During a certain interval, a resource’s usage is the sum of all 
transaction types’ demand at that resource, plus a base 
utilization to account for background activities that are present 
in real systems (even when the application is completely idle). 
Hence, a resource’s utilization can be obtained as follows 

1

N

0 i i

i

U U D λ•
=

= +      (1)

where U is the resource utilization, N denotes the number of 
transaction types, U0 represents the background utilization of 
the resource, Di represents the resource demand of a request of 
transaction type i at that resource, and λi is average request 
rate of transaction type i.   

In order to obtain  U0 and the demand Di (i=1,… N) at each 
resource (e.g., CPU, I/O, network), we first collect utilization 
data from each resource as well as the arrival rates of different 
transaction types λi (i=1, …N) in different transaction mixes 
over multiple time intervals (e.g., 5 minutes, 1 hour) either 
from the historical data or through benchmarking. The latter is 
used for new applications where no system and application 
logs are available. We then apply regression analysis to the 
data on a set of Equations (1) at multiple intervals, to derive 
the per transaction-type resource demands [4, 13]. We repeat 
the above steps for each resource and generate the application 
resource profile. The resulting resource profile for the 
application is then stored in a repository.  

The data required by the regression analysis includes system 
resource utilization, such as CPU usage, and the application 
workload information, such as transaction mix. The data is 
readily available from system and application monitoring logs. 
This way, our profiling does not require changes to existing 
applications and systems for instrumentation purposes and 
hence avoids most of the disadvantages of instrumenting the 
application. Further, our fine-grained profiles capture the 
resource demand at per-transaction level and can be used to 
drive resource demand for different transaction mixes. Hence 
this approach can be applied to realistic workloads where the 
percentage of transaction types changes over time. 

Figure 1.  Conceptual Architecture 
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IV. PERFORMANCE MODEL

We utilize a queuing network model of multi-tier 
applications. An M/M/1 queuing network model is used to 
evaluate the performance for open workloads, while closed 
queueing network model is used for closed workloads. Our 
model is sufficiently general to model any commonly used 
multi-tier e-commerce application with different application 
topologies and workloads. The performance model is 
discussed in detail next.

A. Performance Model for Open Workload  
An application with M tiers is modeled as a network of M 

queues Q1, Q2, ...QM. Each queue represents an individual tier 
of the application and the underlying server it runs on. A 
request, after being processed at queue Qi either proceeds to 
Qi+1 or returns to Qi-1. A transition to the client denotes a 
request completion (i.e., response to the client). We use Vi to 
denote the average number of visits to queue Qi by a request. 
Given the user request arrival rate λ, the request arrival rate at 
tier i can be approximated as Vi*λi. Given the service demand 
Di of a request per visit to tier i, the average service demand 
per user request at tier i can be approximated as Vi*Di.
Realistic multi-tier applications typically utilize a multi-
server/processor architecture to handle a large number of 
requests. The application server tier for example may involve 
one or more application servers (e.g., JBoss). A similar notion 
is applicable to the database tier which may consist of one or 
more database servers (e.g., MySQL). In order to capture the 
multi-server/processor architecture, we use a multi-queue 
center to model each tier. In this model, each server/processor 
in the tier is represented by a queue. The multi-queue model 
thus is a general representation of a tier. We use Ki to denote 
the number of servers at tier i. This model shown in Figure 2 
represents the multi-server architecture commonly utilized by 
multi-tier applications. 

Consider the following notations. 
i: index of transaction type   (i =1, … N)
j: index of resource type     (j = 1, … R)
k: index of tier               (k = 1, … M)
M: number of tiers (e.g., Web, APP, DB)
N: number of transaction types (e.g., Browse, Bid)
R: number of resources types (e.g., CPU, DISK)
ηk: number of servers at tier k (k = 1, … M)
(λ1, λ2 … λN): workload where λi is the average request rate 
of transactions type i
Dik: service demand of transaction type i at a server of tier k
Ukj: utilization of resource type j at tier k

Assume we have a perfect load balancer that evenly 
distributes the load among all servers of each tier. We model a 
tier with K servers as K M/M/1 queues. The total service time 
of a request at tier k is the weighted sum of each transaction 

type’s service time 
1

N
i

ik
ki

Dλ
η •

=

. The waiting time on a resource 

type k at tier j is
2

1 1

R
jk

jkj

U
U= −

.  The total residence time of all 

requests at tier k is the service time plus the waiting 
time 2

1 1 1

N R
jki

ik
k jki j

UD
U

λ
η •

= =
+

−
. The average response time is the sum of 

the residence times at each tier divided by the overall request 
rate.

1 1

1

2

1

1
N R

i j

N
i

i

jki ikm jkk

k k

UD U
RT

λ
η

λη

= =

=

• +
−

=
=

  (2) 

Given the application profile, the utilization U of each 
resource can be obtained as follows 

1

N
i0 i

i

U U D λ
η•

=
= +     (3) 

The overall resource demand D of a transaction type at a 
server is the sum of all resource demands (e.g., CPU, DISK) at 
that server.  This model is sufficiently general to capture 
typical multi-tier applications with multiple transaction types 
and multiple servers at each tier. Given the parameters of the 
applications, the application resource profile and an open 
workload M, N, R, ηk Dik and (λ1, λ2 … λN)  (k = 1, … M, 
j=1,…R), Equation (2) is used to predict the response time and 
Equation (3) is used to derive the resource utilization. Unlike 
most performance models, our model takes into account the 
multi-server structure and represents multi-tier applications at 
a fine-granular level (i.e., per transaction type per resource 
characterization). As a result, our performance model can be 
applied to general multi-tier applications with different 
application topology and open workload with dynamic 
transaction mix.  

B. Performance Model for Closed Workloads  
Consider a closed workload with C users and think time Z.

In order to capture the closed workload and the concurrency of 
multiple users, we use a closed queueing network, where we 
model C concurrent users as C delay resources with each of 
them exhibiting a service demand Z. Each tier is modeled as a 
multi-station queueing center, with the number of stations 
being the tier’s total number of servers and each user is a delay 
center with service time equaling think time Z. We use Ki to 
denote the number of servers at tier i. Similarly, the service 
demand at a server of tier i is denoted by Di.

Figure 3. Closed Queueing Network Model 
Users
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Figure 2.  Open Queuing Network 
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Given  any closed workload in terms of number of users C
and the transaction mix percentage π = (pi, p2…pK), the 
average service demand of the workload D can be computed 
from the application profile as the weight average of the 
service demand of each individual transaction 

1

N

i i

i

D p D•
=

= .

Given the parameters {C, Z, M, Ki, Di}, the proposed closed 
queueing network model can be solved analytically by using 
the Mean-Value Analysis (MVA) [5, 14]. MVA algorithm is 
iterative. It begins from the initial conditions when the system 
population is 1 and derives the performance when the 
population is i from the performance with system population 
of (i-1), as follows  

delay resource
( )

(1 ( 1) queueing resource
k

k
k k

D
R i

D Q i
=

× + −

1

( )
( )

K

k
k

iX i
R i

=

=

( ) ( )k kQ i X R i= ×
Where Rk(i)is the mean response time at server k when system 
population is i; Rk(i) includes both the queueing time and 
service time; X(i) the total system throughput when system 
population is i; and Qk(i) is the average number of customers 
at server k when system population is i.

Traditional MVA has a limitation that it can only be applied 
to single-station queues. In our model, each tier is modeled 
with a multi-station queueing center. To solve this problem, 
we adopt an approximation proposed by Seidmann et al. [5] to 
get the approximate solution of performance variables. In this 
approximation, a queueing center that has K stations and 
service demand D at each station is replaced by two tandem 
queues. The first queue being a single-station queue with 
service demand D/K, and the second queue is a pure delay 
center, with delay D×(K-1)/K. It has been shown that the error 
introduced by this approximation is small. By using this 
approximation, the queueing network model is shown in 
Figure 3. The MVA algorithm is used to solve our queueing 
network takes the following set of parameters of a multi-tier 
application as inputs and computes the average response time 
R and throughput X of the application.    

C: number of users 
Z:  think time 
M: number of tiers 
Ki: number of stations at tier i (i = 1,…, M)
Di: service demand of a server at tier i (i = 1,…, M)

V. DECOMPOSITION

Given an SLO (e.g., response time) and a workload, the goal 
of decomposition is to determine the design parameters (e.g., 
number of servers at each tier) to guarantee that the system has 
enough capacity for processing the specified workload and 
meeting the proposed SLO. The output of decomposition 
contains operational policy settings such as  

• How many servers are required for each tier? 
• What’s the CPU, Memory, IO utilization of each 

server? 
As we discussed before, we generate the profile based on 

the historical data or benchmarking data with varying 

workloads. The service demand of each individual transaction 
type is retrieved from the archive, as shown in Figure 1. Given 
any workload and a response time requirement, the task of 
decomposition is then to find the set of model input 
parameters such as number of servers that satisfy the response 
time requirement and further derive the resource utilization. 
Decomposition thus becomes a constraint satisfaction 
problem.  We have developed a simple constraint satisfaction 
solver to solve this problem. The solver takes the performance 
goal, workload, resource profiles and performance model as 
inputs and constructs a set of constraint equations. Various 
constraint satisfaction algorithms, such as linear programming 
and optimization techniques, are available to solve such 
problems [15]. Typically, the solution is non-deterministic and 
the solution space is large. However, for the problems we are 
studying, the search space is relatively small. For example, if 
we consider assigning the number of servers at each tier, we 
can efficiently enumerate the entire solution space to find a 
solution. Also, we are often interested in finding a single 
feasible solution (rather than the optimal solution), so we can 
stop the search once one is found. Other heuristic techniques 
can also be used during the search. For example, the hint that 
the response time typically decreases with respect to the 
increase of allocated resources can also reduce the search 
space. 

One advantage of our approach is that once the profile and 
model are created, they can be repeatedly used to perform 
decomposition for different SLOs and workloads. That is, if 
the response time or workload changes, we only need to 
resolve the constraint satisfaction problem with the new 
parameters. Similarly, if the application is deployed to a new 
environment, we only need to regenerate the profile in that 
environment using regression analysis.  

Figure 4. Performance Prediction for Closed Workloads 

Figure 5.Performance Prediction for Open Workloads  
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Table 2. Decomposition Results for Closed Workloads 

Table 3. Decomposition Results for Open Workloads 

VI. EXPERIMENT EVALUATION

We evaluated our approach with two applications, the 
popular RUBiS e-commerce application with synthetic 
workloads and a real business-critical service with real traces.   

A.  RUBiS Testbed 
RUBiS is an eBay-like online auction site developed at Rice 

University [1]. We use a 3-tier EJB-based implementation of 
RUBiS consisting of an Apache Web server 2.0, a JBOSS 
4.0.2 application server, and a MySQL 5.0 database server, 
each running on different servers. The RUBiS implementation 
defines 26 interactions, has 1,000,000 users and 60,000 items. 
The testbed includes multiple Linux servers. Each server has 
2.4 GHz CPU, 4 GB of RAM, and a 1Gb/s Ethernet interface. 
We developed a workload generator that can produce both 
open and closed workloads. For open workloads, the workload 
generator sends requests according to a specified request rate 
and transaction mix. For closed workloads, the workload 
follows a given transition matrix to simulate multiple 
concurrent users interactions with RUBiS. The workload 
generator runs on a separate server node from any of the 
RUBiS systems.  

B.  Performance Prediction 
 To validate the correctness and accuracy of our model, we 

compare the response times predicted by our model and actual 
measurements with different workloads under different 
configurations.  

We use the workload generator to produce variable 
workloads with fluctuations in request rate and transaction 
mix. Application data is obtained from the Apache and JBoss 
log. System utilization is collected every one minute using the 
SAR monitor. The data set records two kinds of data about 
RUBiS, application-level data such as transaction request rate 
of each transaction type, and system level resource utilization 

(e.g., CPU utilization). We then apply the regression analysis 
described in Section 3 to generate the application’s resource 
profile. Given any open or closed workload, we use the 
resource demand information obtained during profiling as 
model input parameters, and apply the performance model 
described in section 4 to derive the response time.  

In the experiment, we evaluate the effectiveness of our 
approach for different mixes of browse and bid transactions. 
First, we define three typical closed workloads of 200 users 
with different transaction mixes: CW1: browse dominant, 
CW2: balanced and CW3: bid dominant. For each workload, 
we use the profile and model to predict the average response 
time, and then compare the results with the actual 
performance. The results are depicted in Figure 4. The results 
show that our model can accurately predict the performance 
for different closed workloads with different transaction 
mixes. Similarly, we define three typical open workloads with 
different transaction mixes: OW1, OW2 and OW3 and 
compare the accuracy of response time predicted by our model 
for each workloads. The results depicted in Figure 5 indicate 
that our model can also work well with open workloads. These 
results clearly demonstrate that our model can use the same 
profiling results (i.e., model input parameters) obtained during 
profiling to predict the performance of any unforeseen 
transaction mixes.   

We also conducted a similar evaluation of the RUBiS 
configuration with 2 JBOSS servers. We obtained similar 
results, and thus do not include the figures here. 

C. Decomposition Effectiveness 
 In this section, we evaluate the effectiveness of our 

approach. Given any workload and SLOs, our decomposition 
module constructs a set of constraints and then solves the 
corresponding constraint satisfaction problem. The output of 
decomposition contains the number of servers required at each 
tier to meet the response time requirements, as well as the 
resource utilization of the configuration. In the following 
experiments, given any SLO in terms of workload and a 
response time requirement, we generate the number of 
application servers needed, and predict the average CPU 
utilization. We then configure RUBiS based on these derived 
settings. We validate our design by applying the workload, and 
measuring the actual performance of RUBiS and comparing 
the results with the SLO. We also compare the predicted CPU 
utilization with the actual CPU utilization. A guideline 
regarding resource utilization is to keep peak utilizations of 
resources, such as CPU, below 70% [14]. In practice, 
enterprise system operators are typically even more cautious 
than this conservative guideline. Hence, we also put additional 
constraints of CPU utilization to be less than 60% in our 
evaluation.  

 In these experiments, we first consider the high level SLOs 
in terms of the number of concurrent users, the transaction mix 
and the average response time. Table 2 summarizes the input 
and output of decomposition for four different SLOs. The first 
column shows the input to our decomposition and the second 
column describes the output of decomposition such as the 
system design parameter (i.e., number of JBOSS servers) and 
the healthy range of CPU utilization under the proposed 

Input Output  Measurement 

Workloads and SLOs 
Num. of
App. 
Servers 

Resp. 
Time 

CPU  
Utili. 

Resp. 
Time 

CPU  
Utili. 

User=100 Browse Intensive 
Response time<5 sec    1 3.49 s 21.8% 3.03 s 24.5%
User=100 Bidding Intensive 
Response time< 5 sec   1 4.03 s 35.6% 4.36 s 33.2%
User=200 Browse Intensive 
Response time < 5 sec. 1 4.77s 43.2% 4.67 s 47.8%
User=200 Bidding Intensive 
Response time< 5 sec. 2 4.24 s 37.4% 4.43 s 32.9%

Input Output  Measurement 

 Workloads and SLOs 
Num. of  
App.  
Servers 

Resp. 
Time 

CPU  
Utili. 

Resp. 
Time

CPU 
Utili.

30 reqs/s Browse Intensive  
Response time<5 sec    1 3.88 s 23.4% 3.67 s 25.1%
30 reqs/s Bidding Intensive
Response time< 5 sec   1 4.53 s 37.3% 4.75 s 42.0%
40 reqs/s Browse Intensive   
Response time < 5 sec. 1 4.47s 40.1% 4.81 s 44.5%
40 reqs/s Bidding Intensive 
Response time< 5 sec. 2 3.94 s 32.3% 4.33 s 36.7%
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configuration. The measurement column shows the actual 
measurement of response time and the CPU utilization of the 
system with the design. 

 As shown in the first row, for the SLO of 100 users with 
browse-intensive transaction mix and response time < 5 
seconds, decomposition determines that only one server is 
required to ensure the SLO and the response time and CPU 
utilization are 3.49 seconds and 21.8% respectively. The actual 
measurements of response time and CPU utilization are 3.03 
seconds and 24.5%.  This shows that the design can meet 
SLOs and the utilization prediction is close to real system 
measurement. The second SLO has 100 users but with a 
different transaction mix (i.e., bidding intensive). We can see 
from this experiment that the decomposition results are close 
to the actual measurements.  The third input involves 200 
concurrent users and browsing intensive transactions, the 
decomposition result shows that only one server is needed to 
meet the SLO. The fourth input has 200 users with bidding 
intensive workload, which is more resource demanding. The 
decomposition module determines that 2 servers are required 
to handle the workload and meet the response time 
requirement. The actual performance shows that the design 
can meet the requirement and the prediction of response time 
and CPU utilization are relatively accurate. From the above 
results, we can see that our decomposition approach can be 
effectively applied to design and monitor such multi-tier 
applications with different SLOs. 

In order to further check the applicability of our approach, 
we also apply the decomposition to SLOs involving open 
workloads. We experimented with four different SLOs. In the 
experiment, the workload is specified in terms of request rate 
and transaction mix. These results are summarized in Table 3. 
The results show that our approach can also work well with 
open workloads.  

E. Production Application 
We also evaluate the ability of our decomposition approach 

to generate low-level resource utilization policies for a real 
business-critical enterprise application. This service consists of 
roughly 20 servers and processes tens of millions of 
application-level transactions per day. The service is CPU and 
network intensive and its performance is crucial to many other 
services. In the evaluation, we run the service with a 24 hour 
request trace from one of the production servers. As described 

in Section 3, the profile captures the CPU and network 
demand for each transaction type. We then extract two typical 
workloads with different transaction mixes: a lightweight one 
and a heavyweight one. Given these two workloads, we apply 
the decomposition approach to generate the CPU and network 
bounds and further create monitoring policies based on the 
derived CPU and network bounds.  The monitoring policies 
are according to the utilization predicted by the decomposition 
model. We apply the workloads and measure the actual CPU 
and network utilization. The actual CPU and network resource 
utilization and the monitoring policies are shown in Figure 6 
and Figure 7 respectively. As shown in these figures, the 
monitoring policies accurately capture the healthy range of the 
application for different workloads. These policies can be 
continuously used to assess how the system is performing and 
evaluate whether it will violate any of the goals it was 
designed for. For example, for the first workload, it should 
warrant CPU Utilization to be around 20%. This metric has to 
be monitored to make sure that the higher level SLA is met. 
For example, appropriate actions can be taken when the 
threshold is violated. This can be defined in an operational 
policy. In addition, such monitoring policies will also provide 
a mechanism using which we could predict or even avoid 
future SLA violations by provisioning the system accordingly 
in design or capacity planning phase.  

VII. RELATED WORK

Our previous work proposes an SLA decomposition 
approach based on profiling and a queueing network model 
[12]. Although it shares some common features with the 
approach presented in this paper, the basic assumption and 
modeling techniques are quite different. Our early work 
focused on managing resource assignment of virtual machines, 
and the profiling and modeling were relatively simple. The 
approach presented in this paper aims to develop a practical 
and advanced model that can be applied to real multi-tier 
applications with complex, dynamic, non-stationary 
workloads. Compared to our earlier work, the novel 
contributions and significant enhancements can be 
summarized as follows.  First, the new performance model is 
much more advanced and it models multi-tier applications in a 
much finer-grain manner. Through explicitly modeling per-
transaction resource demand, the new approach can handle any 
unforeseen workloads with different transaction mixes. 

Figure 7. Network Utilization  
Figure 6. CPU Utilization  
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Second, our new approach is non-intrusive. The profiling in 
our early work requires significant efforts to instrument the 
system and conduct controlled benchmarking in order to 
collect monitoring data, while our new approach can perform 
profiling from readily available monitoring data. Third, by 
defining the workload as transaction mix and introducing open 
queueing and closed queuing models, our approach can handle 
both open and closed workloads in a consistent manner. 
Fourth, our model can directly derive the healthy range of low 
level system metrics and further develop monitoring policies 
from the profiles. We also increased the number of system 
metrics considered. Finally, we evaluate our approach with a 
real production application. It has been shown that the 
approach works well for realistic workload under normal 
system load. 

Stewart et al. present an approach to predicting performance 
as a function of workload [13]. Their model explicitly models 
non-stationary transaction mix and shares some features with 
our open workload model. The main difference is that they 
model the aggregated service time across all tiers, while our 
model associates service times at a per-tier level. Their model 
works well for the purpose of performance prediction, but for 
the purpose of decomposition, it’s necessary to model the 
application in a finer-grained manner. Another improvement 
from our open workload model is that we generalize M/M/1 
queue to K M/M/1 queues and hence can handle general multi-
server configuration in typical multi-tier applications. This 
extension is required by the decomposition. In addition, our 
model explicitly models the visit rate at each tier, and hence 
can handle non-uniform requests distribution across tiers. The 
regression-based profiling presented by Zhang et al. [4] is 
similar to our profiling, but we model multi-tier applications at 
a much finer-granularity. Schroeder et al. considered open and 
closed workloads as part of a separate study [3], but their 
focus is on the workloads themselves.  

A lot of research efforts have been undertaken to develop 
queueing models for multi-tier business applications. Many 
such models concern single-tier Internet applications, e.g., 
single-tier web servers [9, 10, 11]. A few recent efforts have 
extended single-tier models to multi-tier applications [6, 16, 
17]. The most recent and accurate performance model for 
multi-tier applications is proposed by Urgaonkar et al. [17].  
Similar to our closed workload model, their model uses a 
closed queueing network model and Mean Value Analysis 
(MVA) algorithm for predicating performance of multi-tier 
applications. The main differences are that we explicitly model 
the service demand or resource demand per transaction type. 
and use a multi-station queue while their model assumes a 
stationary workland and single-station queue. Their model 
takes into account congestion effects, but we have not 
addressed that yet partly because it is undesirable for a 
production application to operate under high system load.  

VIII. CONCLUSION AND FUTURE WORK

One of the most important tasks towards SLA management 
is to automate the process of designing and monitoring 
systems for meeting higher level business goals. It is an 
intriguing but difficult task due to the complexity and 

ynamism inherent in today’s multi-tier applications. In this 
paper, we propose a systematic and practical approach that 
combines performance modeling with performance profiling 
to solve this problem by translating high-level goals to more 
manageable low-level sub-goals. These sub-goals feature 
several low-level system metrics and application level 
attributes which are used for creating, designing, and 
monitoring the application to meet high level SLAs. We 
believe that our approach has several desirable advantages 
over prior solutions. Our approach can deal with dynamically 
changing workloads in terms of change in both request volume 
and transaction mix. It is non-intrusive in the sense that it 
requires no instrumentation and the data used in our approach 
is readily available from standard system and application 
monitoring. It can also process both request-based and session-
based workloads. In the future,  we are also interested in 
investigating the dynamic selection of an appropriate workload 
and performance model for real semi-open workloads.  
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