
A Systematic and Practical Approach to
Generating Policies from Service Level Objectives

 Yuan Chen, Subu Iyer, Dejan Milojicic Akhil Sahai
Hewlett Packard Laboratory

 Palo Alto, CA, USA
 {firstname.lastname}@hp.com

VMware Inc.
Palo Alto, CA, USA
asahai@vmware.com

Abstract—In order to manage a service to meet the agreed upon
SLA, it is important to design a service of the required capacity
and to monitor the service thereafter for violations at runtime.
This objective can be achieved by translating SLOs specified in
the SLA into lower-level policies that can then be used for design
and enforcement purposes. Such design and operational policies
are often constraints on thresholds of lower level metrics. In this
paper, we propose a systematic and practical approach that
combines fine-grained performance modeling with regression
analysis to translate service level objectives into design and
operational policies for multi-tier applications. We demonstrate
that our approach can handle both request-based and session-
based workloads and deal with workload changes in terms of
both request volume and transaction mix. We validate our
approach using both the RUBiS e-commerce benchmark and a
trace-driven simulation of a business-critical enterprise
application. These results show the effectiveness of our approach.

I. INTRODUCTION

A Service Level Agreement (SLA) captures the agreed upon
guarantees between a service provider and its customer. The
ability to deliver according to a pre-defined SLA is an
increasingly critical need in today’s highly complex and
dynamic IT environments. In order to manage a service to
meet the agreed upon SLA, it is important to design a service
of the required capacity and to monitor the service thereafter
for violations at runtime.

In the past, researchers have made many efforts to address
this problem using techniques such as automated provisioning,
capacity planning, and monitoring [4, 7, 8, 9, 10, 15, 16, 17].
In particular, we proposed an approach to decompose SLOs to
system thresholds on virtualized platforms in [12]. Results
from these research efforts are encouraging. However, these
works made several simplifying assumptions. As a result, the
practicality and effectiveness of these approaches pose major
challenges to their applicability. We have identified four main
problems associated with existing solutions that are described
below.

First, workloads in real applications are dynamic and vary
over time. Unfortunately, most existing solutions take into
account the change in the volume of demand only, and assume
a fixed or stationary transaction mix [12, 16, 17]. Changes in
the volume of transactions (e.g., request rate) or the mixture of
transaction types can dramatically alter an application’s
performance and resource. Hence, a practical approach must
handle workload changes in both the volume and transaction
mix.

Second, existing solutions model enterprise application
workloads as either request-based (open workload) or session-
based (closed workload) [4, 12, 13, 16, 17]. In reality,
workloads are typically semi-open, which is significantly
different than either an open or a closed model [3]. Hence, a
single model approach in most existing solutions is not
sufficient to handle the diversity in realistic workloads. A
practical approach should support multiple models and choose
an appropriate model that is based on the properties of the real
workload.

Third, building accurate performance models typically
requires input parameters such as resource demand. However,
most existing solutions cannot provide the needed model
parameters directly. Instead, such information must be
obtained through application or system instrumentation. In
practice, instrumentation of production applications is rarely
done, as it is difficult, costly, and may introduce overhead that
degrades the application’s performance [2]. Hence, a practical
approach should be non-intrusive and passively utilize data
that is already available on most systems.

Lastly, most existing solutions are not applicable to the
diverse range of design and implementation choices. Many of
them make simplifying assumptions about the application
infrastructure, such as considering only one server per tier
[12,13] or uniformly distributing the requests across the
different tiers [17]. To cope with the diversity and complexity
in real applications, a model must be sufficiently general to
capture the behavior of applications with different
configurations, workloads and performance characteristics.

In this paper, we propose a systematic, non-intrusive and
practical approach to address the above issues. Our approach
combines a fine-grain performance model and a regression-
based profiling technique to translate low-level operational
policies from high-level objectives for multi-tier applications.
We formalize this translation as a constraint optimization
problem, and develop a constraint solver to solve it. Compared
with previous work [12], our approach provides the following
four key contributions. First, it formally characterizes both
request-based and session-based workloads. This enables us to
choose an appropriate model based on the workload
characteristics of the application. Second, our approach
models workload as a transaction mix, and systematically
creates a resource profile for each transaction type. This fine-
grained model enables us to deal with dynamic and non-
stationary workloads. Third, we use regression analysis to
estimate the model parameters. The data used in our approach
is readily available from regular system and application

89978-1-4244-3487-9/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 17:56:40 EST from IEEE Xplore. Restrictions apply.

monitoring and requires no additional instrumentation. It is
hence practical to apply our approach to production
environments. Finally, the proposed modeling technique can
model multi-tier applications with different topologies (i.e.,
any number of tiers and any number of servers at each tier),
and different workloads (open and/or closed). As a result, our
performance model and approach can be applied to a vast
variety of common multi-tier applications.

The remainder of this paper is organized as follows. Section
2 provides an overview of our approach and our workload
model. In Section 3, we describe profiling in detail. We
present an analytical performance model for multi-tier
applications in Section 4 and our approach in Section 5. The
experimental validation of our approach is presented in
Section 6. Related work is discussed in Section 7. Section 8
concludes the paper and discusses future work.

II. OVERVIEW OF THE APPROACH

A. Workload Model
Multi-tier applications are common in modern enterprises.

Such applications are comprised of a large number of
components, which interact with one another in complex
patterns. Typically, multi-tier applications are structured into
multiple logical tiers. Each tier provides certain functionality
to its preceding tier and uses the functionality provided by its
successor to carry out its part of the overall request processing.

Table 1. Workload Definition

There are typically a number of transaction types in any
multi-tier application. For example, an online auction
application has transaction types such as login, browse, bid,
etc. In most cases, different transaction types have different
service demands on resources. For example, bid transactions
in an auction site typically require more CPU time than
browse transactions. As previously discussed, empirical
workloads tend to be partially-open, which means a user
arrives and stays for a certain amount of time (and issues a
number of requests) before they leave. Previous work has
shown that partly-open workloads can be approximated using
an open workload if the number of requests in a session is
small, and a closed workload otherwise [3]. We consider these
two types of workloads in our workload model.

Open Workload. In an open (request-based) workload, a
new request to the application is only triggered by a new user
arrival. The requests are independent of each other and the

arrival rate is not influenced by the number of requests that
have already arrived and are being processed. The number of
users who interact with the application at any time may range
from zero to infinity. An open workload is characterized by an
average arrival rate of requests or more generally by an arrival
distribution. A typical open workload is a transaction mix of
different transaction types. Assume the total number of
transaction types is N. We define an open workload during a
certain interval (e.g., 5 minutes) as a vector (λ1, λ2, … λN)
where λi is the arrival rate of transaction type i during that
interval.

Closed Workload. In a closed (session-based) workload, a
fixed number of users interact with the application and each of
these users issues a succession of requests. A new request
from a user is only triggered after the completion of a previous
request by the same user. A user submits a request, waits for
the response to that request, thinks for a certain time and then
sends a new request. The average time elapsed between the
response from a previous request and the submission of a new
request by the same user is called the “think time”, denoted by
Z. The next request sent by a user is usually determined by a
state transition matrix that specifies the probability to go from
one transaction type to another. Assume the number of
transaction types is N. The state transition matrix has N rows
and N columns where pij represents the transition probability
from transaction type i to transaction type j. Let P denote a
state transition matrix of a closed workload and π = (pi,
p2…pN) denote the stationary transaction distribution in a user
session where pi presents the percentage of requests of
transaction type i sent by the user based on P. We have πP = π
and

1
1

N

i

i

p
=

= . We can use the workload with a stationary

transaction mix π to approximate the behavior of a closed
workload with state transition matrix P [4]. A closed workload
is characterized by the number of concurrent users C, the
stationary distribution of transaction mix π, and the think time
Z.

The open and closed workload models are summarized in
Table 1. Unlike many open workload models that assume a
static transaction mix and hence use an aggregate request rate
to characterize the workload, our transaction vector model
captures request rate per transaction type and hence can
characterize dynamic transaction mixes. This is important
because transaction mixes in real production systems change
over time [13].

B. The Approach
An SLA is comprised of multiple Service Level Objectives

(SLOs). Our aim is to translate SLOs into design parameters
and bounds on low-level system resources such that the high-
level SLOs are met. Given a high-level performance SLO and
a workload for a multi-tier application (in terms of either a
transaction mix for an open workload or a transaction
distribution for a closed workload), our approach provides the
resource requirements (e.g., number of servers) to handle the
workload and meet the specified SLO. It also finds the healthy
state of each component involved in providing the services
(e.g., resource utilization).

Type Workload Parameters

Open

N: number of transaction types
(λ1, λ2, … λN): transaction mix
where λi (i =1 …N) is the arrival rate of
requests of transaction type i during certain time
interval

Closed

N: number of transaction types
C: number of users
Z: think time
π (p1, p2, … pi,…pN) : transaction mix
distribution where pi (i = 1, …N) is the
percentage of requests of transaction type i

90 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 17:56:40 EST from IEEE Xplore. Restrictions apply.

Our approach is illustrated in Figure 1. First, we use
analytical performance models to capture the relationship
between high-level performance goals (e.g., response time of
the overall system), the application topology, and the resource
usage of each component (e.g., CPU utilization). In particular,
we develop two queueing network models for a multi-tier
architecture, where each tier is modeled as a multi-station
queueing center. One of the two models is chosen based on the
properties of the real workload. Second, we profile the
applications and generate the resource demand of each
transaction type at each resource. This is obtained by
performing a statistical regression analysis on the historical or
benchmark data. The profiling results are stored as the
application resource profile in a repository. Finally, we
combine the performance model and the application resource
profile to formulate a constraint satisfaction problem.

Given a performance goal (e.g., response time), a workload
(open or closed in terms of transaction mix) and any other
constraints (e.g., CPU utilization < 50%), the solver takes the
application resource profile and the analytical model as inputs
and generates a low-level policy setting. The output includes
the resource requirements, such as how many servers are
required at each tier to meet the SLO and the healthy bounds
of resource utilization for each component. The resource
requirement is then used for the design and reconfiguration of
the application accordingly, while the healthy range is used for
monitoring the systems during operation. The developed
analytical models and application resource profiles are
archived for future reuse. If the workload or response times
change, we only need to re-solve the constraint satisfaction
problem with new parameters to generate a new policy setting.

III. PROFILING

Profiling creates detailed resource profiles of each
component in the application. Two key objectives of profiling
are to accurately estimate the resource demands for the
application, and to identify the input parameters for the
performance model. Our regression-based profiling is based
on the following observations.

(1) The resource demands of different transaction types are
usually different but the resource demand of a transaction type
is relatively fixed irrespective of the transaction mix. Hence, it
is better to create a profile for each transaction type (e.g., CPU
demand for browse transaction, bid transaction, etc.) instead of

creating an aggregated profile for the entire workload. The
per-transaction type profile remains stable across different
transaction mix while the aggregated resource demand of all
obtained for a workload only holds for that particular
workload with the same transaction mix.

(2) The average resource demand of a request in a workload
is determined by the distribution of different transaction types
in the workload and the service demand of each transaction
type. Hence, once we have per-transaction type profiles, given
a new transaction mix, the aggregated resource demand can be
derived from per-transaction resource demand.

(3)Few applications are currently instrumented to measure
fine-grained transaction resource information. Hence,
accurately measuring the service demand of each component
requires significant instrumentation of the original application.
This is unrealistic in practice. Since the resource demand of
each transaction type is relatively static across different
transaction mixes, we can derive the parameter of per
transaction types using regression-based approaches described
below.

During a certain interval, a resource’s usage is the sum of all
transaction types’ demand at that resource, plus a base
utilization to account for background activities that are present
in real systems (even when the application is completely idle).
Hence, a resource’s utilization can be obtained as follows

1

N

0 i i

i

U U D λ•
=

= + (1)

where U is the resource utilization, N denotes the number of
transaction types, U0 represents the background utilization of
the resource, Di represents the resource demand of a request of
transaction type i at that resource, and λi is average request
rate of transaction type i.

In order to obtain U0 and the demand Di (i=1,… N) at each
resource (e.g., CPU, I/O, network), we first collect utilization
data from each resource as well as the arrival rates of different
transaction types λi (i=1, …N) in different transaction mixes
over multiple time intervals (e.g., 5 minutes, 1 hour) either
from the historical data or through benchmarking. The latter is
used for new applications where no system and application
logs are available. We then apply regression analysis to the
data on a set of Equations (1) at multiple intervals, to derive
the per transaction-type resource demands [4, 13]. We repeat
the above steps for each resource and generate the application
resource profile. The resulting resource profile for the
application is then stored in a repository.

The data required by the regression analysis includes system
resource utilization, such as CPU usage, and the application
workload information, such as transaction mix. The data is
readily available from system and application monitoring logs.
This way, our profiling does not require changes to existing
applications and systems for instrumentation purposes and
hence avoids most of the disadvantages of instrumenting the
application. Further, our fine-grained profiles capture the
resource demand at per-transaction level and can be used to
drive resource demand for different transaction mixes. Hence
this approach can be applied to realistic workloads where the
percentage of transaction types changes over time.

Figure 1. Conceptual Architecture

Regression-based
Profiling

transaction
mix

resource
utilization

resource demand
per transaction type

Historical or Benchmark Data

Performance Modeling

Queuing Network

Model

Constraint
Optimization Solver

model parameters model
open or closed
workload
SLOs
(e.g., resp. time)

resource
requirements
(e.g. number
of servers)

resource
utilizationother

constraints

design

monitoring

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 91

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 17:56:40 EST from IEEE Xplore. Restrictions apply.

IV. PERFORMANCE MODEL

We utilize a queuing network model of multi-tier
applications. An M/M/1 queuing network model is used to
evaluate the performance for open workloads, while closed
queueing network model is used for closed workloads. Our
model is sufficiently general to model any commonly used
multi-tier e-commerce application with different application
topologies and workloads. The performance model is
discussed in detail next.

A. Performance Model for Open Workload
An application with M tiers is modeled as a network of M

queues Q1, Q2, ...QM. Each queue represents an individual tier
of the application and the underlying server it runs on. A
request, after being processed at queue Qi either proceeds to
Qi+1 or returns to Qi-1. A transition to the client denotes a
request completion (i.e., response to the client). We use Vi to
denote the average number of visits to queue Qi by a request.
Given the user request arrival rate λ, the request arrival rate at
tier i can be approximated as Vi*λi. Given the service demand
Di of a request per visit to tier i, the average service demand
per user request at tier i can be approximated as Vi*Di.
Realistic multi-tier applications typically utilize a multi-
server/processor architecture to handle a large number of
requests. The application server tier for example may involve
one or more application servers (e.g., JBoss). A similar notion
is applicable to the database tier which may consist of one or
more database servers (e.g., MySQL). In order to capture the
multi-server/processor architecture, we use a multi-queue
center to model each tier. In this model, each server/processor
in the tier is represented by a queue. The multi-queue model
thus is a general representation of a tier. We use Ki to denote
the number of servers at tier i. This model shown in Figure 2
represents the multi-server architecture commonly utilized by
multi-tier applications.

Consider the following notations.
i: index of transaction type (i =1, … N)
j: index of resource type (j = 1, … R)
k: index of tier (k = 1, … M)
M: number of tiers (e.g., Web, APP, DB)
N: number of transaction types (e.g., Browse, Bid)
R: number of resources types (e.g., CPU, DISK)
ηk: number of servers at tier k (k = 1, … M)
(λ1, λ2 … λN): workload where λi is the average request rate
of transactions type i
Dik: service demand of transaction type i at a server of tier k
Ukj: utilization of resource type j at tier k

Assume we have a perfect load balancer that evenly
distributes the load among all servers of each tier. We model a
tier with K servers as K M/M/1 queues. The total service time
of a request at tier k is the weighted sum of each transaction

type’s service time
1

N
i

ik
ki

Dλ
η •

=

. The waiting time on a resource

type k at tier j is
2

1 1

R
jk

jkj

U
U= −

. The total residence time of all

requests at tier k is the service time plus the waiting
time 2

1 1 1

N R
jki

ik
k jki j

UD
U

λ
η •

= =
+

−
. The average response time is the sum of

the residence times at each tier divided by the overall request
rate.

1 1

1

2

1

1
N R

i j

N
i

i

jki ikm jkk

k k

UD U
RT

λ
η

λη

= =

=

• +
−

=
=

 (2)

Given the application profile, the utilization U of each
resource can be obtained as follows

1

N
i0 i

i

U U D λ
η•

=
= + (3)

The overall resource demand D of a transaction type at a
server is the sum of all resource demands (e.g., CPU, DISK) at
that server. This model is sufficiently general to capture
typical multi-tier applications with multiple transaction types
and multiple servers at each tier. Given the parameters of the
applications, the application resource profile and an open
workload M, N, R, ηk Dik and (λ1, λ2 … λN) (k = 1, … M,
j=1,…R), Equation (2) is used to predict the response time and
Equation (3) is used to derive the resource utilization. Unlike
most performance models, our model takes into account the
multi-server structure and represents multi-tier applications at
a fine-granular level (i.e., per transaction type per resource
characterization). As a result, our performance model can be
applied to general multi-tier applications with different
application topology and open workload with dynamic
transaction mix.

B. Performance Model for Closed Workloads
Consider a closed workload with C users and think time Z.

In order to capture the closed workload and the concurrency of
multiple users, we use a closed queueing network, where we
model C concurrent users as C delay resources with each of
them exhibiting a service demand Z. Each tier is modeled as a
multi-station queueing center, with the number of stations
being the tier’s total number of servers and each user is a delay
center with service time equaling think time Z. We use Ki to
denote the number of servers at tier i. Similarly, the service
demand at a server of tier i is denoted by Di.

Figure 3. Closed Queueing Network Model
Users

N , Z, V0

Q1

V1, D1, DD1

Q2
QM

…
…

…

V2, D2, DD2 VM, DM, DDM

Figure 2. Open Queuing Network

Q1

K1 , D1 , V1

…

…

… …

…

Q2 QM

K2 , D2 , V2 KM , DM , VM

…
…

92 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 17:56:40 EST from IEEE Xplore. Restrictions apply.

Given any closed workload in terms of number of users C
and the transaction mix percentage π = (pi, p2…pK), the
average service demand of the workload D can be computed
from the application profile as the weight average of the
service demand of each individual transaction

1

N

i i

i

D p D•
=

= .

Given the parameters {C, Z, M, Ki, Di}, the proposed closed
queueing network model can be solved analytically by using
the Mean-Value Analysis (MVA) [5, 14]. MVA algorithm is
iterative. It begins from the initial conditions when the system
population is 1 and derives the performance when the
population is i from the performance with system population
of (i-1), as follows

delay resource
()

(1 (1) queueing resource
k

k
k k

D
R i

D Q i
=

× + −

1

()
()

K

k
k

iX i
R i

=

=

() ()k kQ i X R i= ×
Where Rk(i)is the mean response time at server k when system
population is i; Rk(i) includes both the queueing time and
service time; X(i) the total system throughput when system
population is i; and Qk(i) is the average number of customers
at server k when system population is i.

Traditional MVA has a limitation that it can only be applied
to single-station queues. In our model, each tier is modeled
with a multi-station queueing center. To solve this problem,
we adopt an approximation proposed by Seidmann et al. [5] to
get the approximate solution of performance variables. In this
approximation, a queueing center that has K stations and
service demand D at each station is replaced by two tandem
queues. The first queue being a single-station queue with
service demand D/K, and the second queue is a pure delay
center, with delay D×(K-1)/K. It has been shown that the error
introduced by this approximation is small. By using this
approximation, the queueing network model is shown in
Figure 3. The MVA algorithm is used to solve our queueing
network takes the following set of parameters of a multi-tier
application as inputs and computes the average response time
R and throughput X of the application.

C: number of users
Z: think time
M: number of tiers
Ki: number of stations at tier i (i = 1,…, M)
Di: service demand of a server at tier i (i = 1,…, M)

V. DECOMPOSITION

Given an SLO (e.g., response time) and a workload, the goal
of decomposition is to determine the design parameters (e.g.,
number of servers at each tier) to guarantee that the system has
enough capacity for processing the specified workload and
meeting the proposed SLO. The output of decomposition
contains operational policy settings such as

• How many servers are required for each tier?
• What’s the CPU, Memory, IO utilization of each

server?
As we discussed before, we generate the profile based on

the historical data or benchmarking data with varying

workloads. The service demand of each individual transaction
type is retrieved from the archive, as shown in Figure 1. Given
any workload and a response time requirement, the task of
decomposition is then to find the set of model input
parameters such as number of servers that satisfy the response
time requirement and further derive the resource utilization.
Decomposition thus becomes a constraint satisfaction
problem. We have developed a simple constraint satisfaction
solver to solve this problem. The solver takes the performance
goal, workload, resource profiles and performance model as
inputs and constructs a set of constraint equations. Various
constraint satisfaction algorithms, such as linear programming
and optimization techniques, are available to solve such
problems [15]. Typically, the solution is non-deterministic and
the solution space is large. However, for the problems we are
studying, the search space is relatively small. For example, if
we consider assigning the number of servers at each tier, we
can efficiently enumerate the entire solution space to find a
solution. Also, we are often interested in finding a single
feasible solution (rather than the optimal solution), so we can
stop the search once one is found. Other heuristic techniques
can also be used during the search. For example, the hint that
the response time typically decreases with respect to the
increase of allocated resources can also reduce the search
space.

One advantage of our approach is that once the profile and
model are created, they can be repeatedly used to perform
decomposition for different SLOs and workloads. That is, if
the response time or workload changes, we only need to
resolve the constraint satisfaction problem with the new
parameters. Similarly, if the application is deployed to a new
environment, we only need to regenerate the profile in that
environment using regression analysis.

Figure 4. Performance Prediction for Closed Workloads

Figure 5.Performance Prediction for Open Workloads

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 93

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 17:56:40 EST from IEEE Xplore. Restrictions apply.

Table 2. Decomposition Results for Closed Workloads

Table 3. Decomposition Results for Open Workloads

VI. EXPERIMENT EVALUATION

We evaluated our approach with two applications, the
popular RUBiS e-commerce application with synthetic
workloads and a real business-critical service with real traces.

A. RUBiS Testbed
RUBiS is an eBay-like online auction site developed at Rice

University [1]. We use a 3-tier EJB-based implementation of
RUBiS consisting of an Apache Web server 2.0, a JBOSS
4.0.2 application server, and a MySQL 5.0 database server,
each running on different servers. The RUBiS implementation
defines 26 interactions, has 1,000,000 users and 60,000 items.
The testbed includes multiple Linux servers. Each server has
2.4 GHz CPU, 4 GB of RAM, and a 1Gb/s Ethernet interface.
We developed a workload generator that can produce both
open and closed workloads. For open workloads, the workload
generator sends requests according to a specified request rate
and transaction mix. For closed workloads, the workload
follows a given transition matrix to simulate multiple
concurrent users interactions with RUBiS. The workload
generator runs on a separate server node from any of the
RUBiS systems.

B. Performance Prediction
 To validate the correctness and accuracy of our model, we

compare the response times predicted by our model and actual
measurements with different workloads under different
configurations.

We use the workload generator to produce variable
workloads with fluctuations in request rate and transaction
mix. Application data is obtained from the Apache and JBoss
log. System utilization is collected every one minute using the
SAR monitor. The data set records two kinds of data about
RUBiS, application-level data such as transaction request rate
of each transaction type, and system level resource utilization

(e.g., CPU utilization). We then apply the regression analysis
described in Section 3 to generate the application’s resource
profile. Given any open or closed workload, we use the
resource demand information obtained during profiling as
model input parameters, and apply the performance model
described in section 4 to derive the response time.

In the experiment, we evaluate the effectiveness of our
approach for different mixes of browse and bid transactions.
First, we define three typical closed workloads of 200 users
with different transaction mixes: CW1: browse dominant,
CW2: balanced and CW3: bid dominant. For each workload,
we use the profile and model to predict the average response
time, and then compare the results with the actual
performance. The results are depicted in Figure 4. The results
show that our model can accurately predict the performance
for different closed workloads with different transaction
mixes. Similarly, we define three typical open workloads with
different transaction mixes: OW1, OW2 and OW3 and
compare the accuracy of response time predicted by our model
for each workloads. The results depicted in Figure 5 indicate
that our model can also work well with open workloads. These
results clearly demonstrate that our model can use the same
profiling results (i.e., model input parameters) obtained during
profiling to predict the performance of any unforeseen
transaction mixes.

We also conducted a similar evaluation of the RUBiS
configuration with 2 JBOSS servers. We obtained similar
results, and thus do not include the figures here.

C. Decomposition Effectiveness
 In this section, we evaluate the effectiveness of our

approach. Given any workload and SLOs, our decomposition
module constructs a set of constraints and then solves the
corresponding constraint satisfaction problem. The output of
decomposition contains the number of servers required at each
tier to meet the response time requirements, as well as the
resource utilization of the configuration. In the following
experiments, given any SLO in terms of workload and a
response time requirement, we generate the number of
application servers needed, and predict the average CPU
utilization. We then configure RUBiS based on these derived
settings. We validate our design by applying the workload, and
measuring the actual performance of RUBiS and comparing
the results with the SLO. We also compare the predicted CPU
utilization with the actual CPU utilization. A guideline
regarding resource utilization is to keep peak utilizations of
resources, such as CPU, below 70% [14]. In practice,
enterprise system operators are typically even more cautious
than this conservative guideline. Hence, we also put additional
constraints of CPU utilization to be less than 60% in our
evaluation.

 In these experiments, we first consider the high level SLOs
in terms of the number of concurrent users, the transaction mix
and the average response time. Table 2 summarizes the input
and output of decomposition for four different SLOs. The first
column shows the input to our decomposition and the second
column describes the output of decomposition such as the
system design parameter (i.e., number of JBOSS servers) and
the healthy range of CPU utilization under the proposed

Input Output Measurement

Workloads and SLOs
Num. of
App.
Servers

Resp.
Time

CPU
Utili.

Resp.
Time

CPU
Utili.

User=100 Browse Intensive
Response time<5 sec 1 3.49 s 21.8% 3.03 s 24.5%
User=100 Bidding Intensive
Response time< 5 sec 1 4.03 s 35.6% 4.36 s 33.2%
User=200 Browse Intensive
Response time < 5 sec. 1 4.77s 43.2% 4.67 s 47.8%
User=200 Bidding Intensive
Response time< 5 sec. 2 4.24 s 37.4% 4.43 s 32.9%

Input Output Measurement

 Workloads and SLOs
Num. of
App.
Servers

Resp.
Time

CPU
Utili.

Resp.
Time

CPU
Utili.

30 reqs/s Browse Intensive
Response time<5 sec 1 3.88 s 23.4% 3.67 s 25.1%
30 reqs/s Bidding Intensive
Response time< 5 sec 1 4.53 s 37.3% 4.75 s 42.0%
40 reqs/s Browse Intensive
Response time < 5 sec. 1 4.47s 40.1% 4.81 s 44.5%
40 reqs/s Bidding Intensive
Response time< 5 sec. 2 3.94 s 32.3% 4.33 s 36.7%

94 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 17:56:40 EST from IEEE Xplore. Restrictions apply.

configuration. The measurement column shows the actual
measurement of response time and the CPU utilization of the
system with the design.

 As shown in the first row, for the SLO of 100 users with
browse-intensive transaction mix and response time < 5
seconds, decomposition determines that only one server is
required to ensure the SLO and the response time and CPU
utilization are 3.49 seconds and 21.8% respectively. The actual
measurements of response time and CPU utilization are 3.03
seconds and 24.5%. This shows that the design can meet
SLOs and the utilization prediction is close to real system
measurement. The second SLO has 100 users but with a
different transaction mix (i.e., bidding intensive). We can see
from this experiment that the decomposition results are close
to the actual measurements. The third input involves 200
concurrent users and browsing intensive transactions, the
decomposition result shows that only one server is needed to
meet the SLO. The fourth input has 200 users with bidding
intensive workload, which is more resource demanding. The
decomposition module determines that 2 servers are required
to handle the workload and meet the response time
requirement. The actual performance shows that the design
can meet the requirement and the prediction of response time
and CPU utilization are relatively accurate. From the above
results, we can see that our decomposition approach can be
effectively applied to design and monitor such multi-tier
applications with different SLOs.

In order to further check the applicability of our approach,
we also apply the decomposition to SLOs involving open
workloads. We experimented with four different SLOs. In the
experiment, the workload is specified in terms of request rate
and transaction mix. These results are summarized in Table 3.
The results show that our approach can also work well with
open workloads.

E. Production Application
We also evaluate the ability of our decomposition approach

to generate low-level resource utilization policies for a real
business-critical enterprise application. This service consists of
roughly 20 servers and processes tens of millions of
application-level transactions per day. The service is CPU and
network intensive and its performance is crucial to many other
services. In the evaluation, we run the service with a 24 hour
request trace from one of the production servers. As described

in Section 3, the profile captures the CPU and network
demand for each transaction type. We then extract two typical
workloads with different transaction mixes: a lightweight one
and a heavyweight one. Given these two workloads, we apply
the decomposition approach to generate the CPU and network
bounds and further create monitoring policies based on the
derived CPU and network bounds. The monitoring policies
are according to the utilization predicted by the decomposition
model. We apply the workloads and measure the actual CPU
and network utilization. The actual CPU and network resource
utilization and the monitoring policies are shown in Figure 6
and Figure 7 respectively. As shown in these figures, the
monitoring policies accurately capture the healthy range of the
application for different workloads. These policies can be
continuously used to assess how the system is performing and
evaluate whether it will violate any of the goals it was
designed for. For example, for the first workload, it should
warrant CPU Utilization to be around 20%. This metric has to
be monitored to make sure that the higher level SLA is met.
For example, appropriate actions can be taken when the
threshold is violated. This can be defined in an operational
policy. In addition, such monitoring policies will also provide
a mechanism using which we could predict or even avoid
future SLA violations by provisioning the system accordingly
in design or capacity planning phase.

VII. RELATED WORK

Our previous work proposes an SLA decomposition
approach based on profiling and a queueing network model
[12]. Although it shares some common features with the
approach presented in this paper, the basic assumption and
modeling techniques are quite different. Our early work
focused on managing resource assignment of virtual machines,
and the profiling and modeling were relatively simple. The
approach presented in this paper aims to develop a practical
and advanced model that can be applied to real multi-tier
applications with complex, dynamic, non-stationary
workloads. Compared to our earlier work, the novel
contributions and significant enhancements can be
summarized as follows. First, the new performance model is
much more advanced and it models multi-tier applications in a
much finer-grain manner. Through explicitly modeling per-
transaction resource demand, the new approach can handle any
unforeseen workloads with different transaction mixes.

Figure 7. Network Utilization
Figure 6. CPU Utilization

2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009) 95

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 17:56:40 EST from IEEE Xplore. Restrictions apply.

Second, our new approach is non-intrusive. The profiling in
our early work requires significant efforts to instrument the
system and conduct controlled benchmarking in order to
collect monitoring data, while our new approach can perform
profiling from readily available monitoring data. Third, by
defining the workload as transaction mix and introducing open
queueing and closed queuing models, our approach can handle
both open and closed workloads in a consistent manner.
Fourth, our model can directly derive the healthy range of low
level system metrics and further develop monitoring policies
from the profiles. We also increased the number of system
metrics considered. Finally, we evaluate our approach with a
real production application. It has been shown that the
approach works well for realistic workload under normal
system load.

Stewart et al. present an approach to predicting performance
as a function of workload [13]. Their model explicitly models
non-stationary transaction mix and shares some features with
our open workload model. The main difference is that they
model the aggregated service time across all tiers, while our
model associates service times at a per-tier level. Their model
works well for the purpose of performance prediction, but for
the purpose of decomposition, it’s necessary to model the
application in a finer-grained manner. Another improvement
from our open workload model is that we generalize M/M/1
queue to K M/M/1 queues and hence can handle general multi-
server configuration in typical multi-tier applications. This
extension is required by the decomposition. In addition, our
model explicitly models the visit rate at each tier, and hence
can handle non-uniform requests distribution across tiers. The
regression-based profiling presented by Zhang et al. [4] is
similar to our profiling, but we model multi-tier applications at
a much finer-granularity. Schroeder et al. considered open and
closed workloads as part of a separate study [3], but their
focus is on the workloads themselves.

A lot of research efforts have been undertaken to develop
queueing models for multi-tier business applications. Many
such models concern single-tier Internet applications, e.g.,
single-tier web servers [9, 10, 11]. A few recent efforts have
extended single-tier models to multi-tier applications [6, 16,
17]. The most recent and accurate performance model for
multi-tier applications is proposed by Urgaonkar et al. [17].
Similar to our closed workload model, their model uses a
closed queueing network model and Mean Value Analysis
(MVA) algorithm for predicating performance of multi-tier
applications. The main differences are that we explicitly model
the service demand or resource demand per transaction type.
and use a multi-station queue while their model assumes a
stationary workland and single-station queue. Their model
takes into account congestion effects, but we have not
addressed that yet partly because it is undesirable for a
production application to operate under high system load.

VIII. CONCLUSION AND FUTURE WORK

One of the most important tasks towards SLA management
is to automate the process of designing and monitoring
systems for meeting higher level business goals. It is an
intriguing but difficult task due to the complexity and

ynamism inherent in today’s multi-tier applications. In this
paper, we propose a systematic and practical approach that
combines performance modeling with performance profiling
to solve this problem by translating high-level goals to more
manageable low-level sub-goals. These sub-goals feature
several low-level system metrics and application level
attributes which are used for creating, designing, and
monitoring the application to meet high level SLAs. We
believe that our approach has several desirable advantages
over prior solutions. Our approach can deal with dynamically
changing workloads in terms of change in both request volume
and transaction mix. It is non-intrusive in the sense that it
requires no instrumentation and the data used in our approach
is readily available from standard system and application
monitoring. It can also process both request-based and session-
based workloads. In the future, we are also interested in
investigating the dynamic selection of an appropriate workload
and performance model for real semi-open workloads.

REFERENCE

1. Rice University Bidding System,
http://www.cs.rice.edu/CS/Systems/DynaServer/rubis.

2. S. Agarwala, et al., “QMON: QoS- and Utility-Aware
Monitoring in Enterprise Systems”. In Proc. of the 3rd ICAC
(ICAC 2006), 2006.

3. B. Schroeder, et al., “Open Versus Closed: A Cautionary Tale”.
Proc. of the 3rd NSDI (NSDI 2006), 2006.

4. Q. Zhang, et al., “A Regression-Based Analytic Model for
Dynamic Resource Provisioning of Multi-Tier Applications”. In
Proc. of the 4th ICAC (ICAC 2007), 2007.

5. M. Reiser and S. S. Lavenberg, "Mean-Value Analysis of Closed
Multichain Queueing Networks". J. ACM, vol. 27, pp 313-322,
1980.

6. X. Liu, et al., "Modeling 3-Tiered Web Applications". In Proc.
of 13th IEEE MASCOTS, Atlanta, Georgia, 2005.

7. D. Menasce, et al., “Capacity Planning for Web Services:
Metrics, Models, and Methods”. Prentice Hall PTR, 2001.

8. W. Gong Chandra, et al., “Dynamic Resource Allocation for
Shared Data Centers Using Online Measurements”. In Proc. of
International Workshop on Quality of Service, June 2003.

9. R. Doyle, et al., “Model-Based Resource Provisioning in a Web
Service Utility”. In Proc. of the 4th USENIX USITS, Mar. 2003.

10. R. Levy, et al., “Performance Management for Cluster Based
Web Services”. in Proc. of IFIP/IEEE 8th IM, 2003.

11. L. Slothouber, “A Model of Web Server Performance”. In Proc.
of Int’l World Wide Web Conference, 1996.

12. Y. Chen, et al., SLA Decomposition: Translating Service Level
Objectives (SLOs) to Low-level System Thresholds. In Proc. of
the 4th ICAC (ICAC 2007), June 2007.

13. C. Stewart, et al., “Exploiting Nonstationarity for Performance
Prediction”. In Proc. of EuroSys 2007.

14. E. D. Lazowska, et al., “Quantitative System Performance:
Computer System Analysis Using Queueing Network Models”.
Prentice-Hall, Inc., 1984.

15. A. Zhang, et al., “Optimal Server Resource Allocation Using an
Open Queueing Network Model of Response Time”. HP Labs
Technical Report, HPL-2002-301.

16. B. Urgaonkar,et al., “Dynamic Provisioning of Multi-tier
Internet Applications”. In Proc. of IEEE ICAC, June 2005.

17. B. Urgaonkar, et al., “An Analytical Model for Multi-tier
Internet Services and its Applications”. In Proc. of ACM
SIGMETRICS, June 2005.

96 2009 IFIP/IEEE International Symposium on Integrated Network Management (IM 2009)

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 16,2010 at 17:56:40 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

