Cluster Comput
DOI 10.1007/s10586-008-0059-6

Translating Service Level Objectives to lower level policies

for multi-tier services

Yuan Chen - Subu Iyer - Xue Liu - Dejan Milojicic -
AKhil Sahai

Received: 4 June 2008 / Accepted: 16 June 2008
© Springer Science+Business Media, LLC 2008

Abstract Service providers and their customers agree on
certain quality of service guarantees through Service Level
Agreements (SLA). An SLA contains one or more Service
Level Objectives (SLO)s that describe the agreed-upon qual-
ity requirements at the service level. Translating these SLOs
into lower-level policies that can then be used for design and
monitoring purposes is a difficult problem. Usually domain
experts are involved in this translation that often necessitates
application of domain knowledge to this problem. In this ar-
ticle, we propose an approach that combines performance
modeling with regression analysis to solve this problem. We
demonstrate that our approach is practical and that it can be
applied to different n-tier services. Our experiments show
that for a typical 3-tier e-commerce application in a virtu-
alized environment, the SLA can be met while improving
CPU utilization by up to 3 times.

Keywords SLA management - Performance modeling -
Multi-tier application - Queueing model

1 Introduction

In a typical scenario, a Service Provider agrees on an SLA
with a customer and then a service administrator on behalf
of the service provider designs the service and then stages it.
Staging is typically an iterative process where the system is

Y. Chen () - S. Iyer - D. Milojicic - A. Sahai
Hewlett Packard Labs, Palo Alto, CA 94304, USA
e-mail: yuan.chen@hp.com

X. Liu
School of Computer Science, McGill University, Montreal,
H3A 2A7, Canada

observed under the desired workload. During this stage, in-
cremental changes are applied to the initial design to obtain
the desired quality levels. Once the system administrator is
satisfied with the performance of the service, it is put into
production.

Multi-tier services are becoming quite common in to-
day’s enterprises. Such services are typically comprised of
a large number of components, which interact with one an-
other in a complex manner. Since each sub-system or com-
ponent potentially affects the overall behavior of the sys-
tem, any high level goal (e.g., performance, availability, se-
curity, etc.) specified for the service potentially relates to
many and in some cases all low-level sub-systems or compo-
nents. One of the key tasks during the design stage of such a
service is to undertake SLA Decomposition—translate high-
level service level objectives to low level system thresholds.
The thresholds can then be used to create efficient designs
to meet the SLA. For example, the system thresholds are
used to determine how much and how many of the resources
should be allocated to satisfy the SLA. With the advent of
virtualization and application sharing techniques, opportu-
nities exist for improving overall system performance and
resource utilization by allocating optimal resources for the
service.

Domain experts bring their knowledge to bear upon the
problem of SLA decomposition. Automatically deriving and
inferring low level thresholds from high level goals and thus
eliminating domain experts from this process is a difficult
tasks due to the complexity and dynamism inherent in build-
ing such systems. The range of design choices in terms of
operating systems, middleware, shared infrastructures, soft-
ware structures etc. further complicate the problem. For ex-
ample, different virtualization technologies (e.g., Xen [1] or
VMware [23]) can be used in a utility data center. Appli-
cations can use different software structure (e.g., 2-tier PHP,

@ Springer

mailto:yuan.chen@hp.com

Cluster Comput

3-tier Servlet, or 3-tier EJB [2]) to implement the same func-
tionality. Different implementations are also available for
each tier (e.g., Apache or IIS for web server; WebLogic,
WebSphere, or JBoss for EJB server; Microsoft SQL Server,
Oracle, or MySQL as database server).

In this article, we have applied our approach to SLOs
that relate to performance. Our approach captures the re-
lationship between high level performance goals (e.g., re-
sponse time of the overall system) and the refined goals for
each component (e.g., CPU shares required for the compo-
nent) through an analytical model. In particular, we present
a queueing network model for multi-tier architecture, where
each tier is modeled as a multi-station queueing center.
Our model is sufficiently general to capture a number of
commonly used multi-tier applications with different ap-
plication topology, configuration, and performance charac-
teristics. Our approach also builds profiles characterizing
per-component performance metrics (e.g., average service
time) as functions of resource allocations (e.g., CPU, mem-
ory) and configuration parameters (e.g., max connections).
We use a two-step approach for SLA Decomposition. First
the analytical models provide relationship between the high
level performance goals and the low level component goals.
Second, the component profiles provide component level re-
source requirements and configuration, which can meet high
level goals. The low level goals can then be used to cre-
ate efficient designs to meet the high level SLA. Some of
the thresholds, such as healthy ranges of lower level met-
rics, are used for monitoring the systems during operation.
The developed models including both analytical models and
component profiles are archived for future reuse.

The remainder of this paper is organized as follows. Sec-
tion 2 describes a motivating scenario for SLA decompo-
sition in a virtualized data center. Section 3 provides an
overview of our approach. We then describe in detail an
analytical performance model for multi-tier applications in
Sect. 4. Section 5 presents the implementation of profiling
and decomposition of a multi-tier application as the experi-
mental validation of our approach. Related work is discussed
in Sect. 6. Section 7 concludes the paper and discusses fu-
ture work.

2 Motivating scenario

Today’s enterprise data centers are designed with on-
demand computing and resource sharing in mind, where
all resources are pooled into a common shared infrastruc-
ture [9]. Virtualization technologies such as VMware ESX
Server [23] and Xen Virtual Machine Monitor [1] enable ap-
plications to share computing resources with performance
isolation. Such a model also allows organizations to flex
their computing resources based on business needs. These

@ Springer

20

15

SLO

10

Average Response Time (sec.)

O T T

20 50 90
Percentage of CPU Assigned to Tomcat

Fig. 1 Performance of a multi-tier application in a virtualized data
center

data centers host multiple applications (often from different
customers).

Consider a typical 3-tier application consisting of a web
server, an application server and a database server in the vir-
tualized data center, each tier hosted on a virtual machine.
Figure 1 shows the application’s average response time with
three different CPU shares assigned to the virtual machine
hosting the application server tier (i.e. Tomcat). Given the
SLO of average response time less than 10 seconds, the con-
figuration with CPU assignment of 20% fails to meet the
SLO while the CPU assignment of 90% meets the SLO.
However, the system is over-provisioned in this case since
CPU assignment of 50% is sufficient to ensure the SLO. One
key task of designing such a system is to determine the re-
source requirement of each tier to meet high level SLA goals
while achieving high resource utilization. For the above ex-
ample, SLA decomposition determines the CPU assignment
to Tomcat, e.g., “CPU assignment = 50%” such that if the
virtual machine is configured that way, the application will
meet the response time requirement with reasonable CPU
utilization.

3 SLA decomposition

Given high level goals, SLA decomposition translates these
goals into bounds on low level system metrics such that the
high level goals are met. In other words, the task of SLA de-
composition is to find the mapping of overall service level
goals (e.g., SLOs) to the state of each individual component
involved in providing the service (e.g., resource requirement
and configuration). For example, given SLOs of a typical
3-tier e-commerce environment in terms of response time
and throughput requirement, the decomposition task is to

Cluster Comput

find the following mapping R — (Bhup-cpu> Gapp-cpu> Odb-cpu)
where R denote the response time of the service and 6 is the
CPU share required to meet the response time requirement.
The SLA decomposition problem is the opposite of a typical
performance modeling problem, where the overall system’s
performance is predicted based on the configuration and re-
source consumption of the sub-components.

Multiple system resources (CPU, Memory, Disk, etc.)
can become bottlenecks. We focus on CPU resource in this
work since CPU is often the key resource in determining
the performance of multi-tier applications. The conceptual
architecture of our approach is illustrated in Fig. 2. We
benchmark the application and generate a detailed perfor-
mance profile for each component. For example, for a 3-
tier application consisting of http web server, application
server, and database server, we obtain the service rate as
a function of CPU share that is allocated to the server for
each tier pnup = f1(CPUnyp), tapp = f2(CPUqpp), tap =
f3(CPUgp). An analytical model is built to capture the re-
lationship between the application’s high level goals (e.g.,
application’s response time R) and lower level goals (e.g.,
CPU share assigned to http web server CPUpyy, applica-
tion server CPU,p, and database server CPUq, and work-
load w: R = g (Uhup> Mapps Kdb, w). Given a response time
requirement of R < r and workload w, we then use the pro-
files and analytical models to generate CPU share thresholds
of each tier and response times at each tier: CPUpyp > v,
CPU,pp > vz, CPUg, > v3 where vy, vz, v3 are the mini-
mum CPU shares required for web, app and db tier respec-
tively to meet the response time requirement R < r.

3.1 Component profiling

This step creates detailed profiles of each component.
A component profile captures the component’s performance
characteristics as a function of the resources that are allo-
cated to the component and its configuration. In order to
obtain a component profile, we deploy a test environment
and change the CPU resources allocated to each compo-
nent. We then apply a variety of workloads by changing
the workload intensity (e.g., number of users) and collect
the component’s performance characteristics independent of

Fig. 2 SLA decomposition

other components (e.g., mean service rate p). After acquir-
ing the measurements, general functional mappings from
system metrics to the component’s performance metrics are
derived using either a classification or regression analysis
based approach. For example, Apache Web server’s profile
captures the relationship between an Apache Web server’s
mean service rate and the CPU share allocated to it, i.e.
tnttp = f(CPUpyp) The profiling can be performed either
through operating system instrumentation [10] or estimation
based on application or middleware’s monitoring informa-
tion [21] (e.g., service time recorded in Apache and Tomcat
log file). The former approach can achieve transparency to
the application and component middleware but may involve
changes to the system kernel while the latter approach is
less intrusive. There are typically multiple classes of users
or sessions in realistic applications, representing different
SLAs (e.g., Gold customer, Silver customer and Bronze cus-
tomer) and heterogeneous workloads (e.g., Browsing-heavy
transactions, Purchase-heavy transactions). For an applica-
tion that involves multi-classes of users, we obtain a profile
for each user class by varying the workload intensity for
each class of user.

3.2 Performance modeling

Performance modeling captures the relationship between
each single component and the overall system performance.
For example, given performance characteristics of each of
the components in a 3-tier application, php, tapp, Kdb, and
the workload characteristics of the overall system w, model
R = g (Unttp, Mapp» Mdb, w) predicts the response time of the
3-tier application. We propose a queueing network model
of multi-tier applications. In this model, the server at each
tier is modeled as a multi-station queueing center (i.e.,
G/G/K queue) which represents the multi-threaded ar-
chitecture commonly structured in modern servers (e.g.,
Apache, Tomcat, JBoss, and MySQL). An application with
N tiers is then modeled as a closed queueing network of N
queues Q1, Q», ..., Qn. Each queue represents a tier of the
application and the underlying server that it runs on. Mean
Value Analysis (MVA) [14] is used for evaluating the per-
formance of the queueing network. For applications with

Performance high level goals workload
Modelin R<rX>x characteristics w
9 Performance Model i l
 —— _ >
R = 9(tpgy Happ Loy W) Decomposition
Applications R = g(f (cpuy,,,), [r(cpu,,). fi(cpiey,), w)
Profilina& Component Profiles
rofiling
f —>
Regress_lon Ut =y (CPUpgy) Happ = Tz (CPUypp) l ,
Analysis Uy = F5CpUy Resource Requriment
> = CPU Share thresholds: Cpu,, > Uy CPU,,, > Uy CPU, > Ug

@ Springer

Cluster Comput

multi-class users, we obtain a profile for each class user and
apply a multi-class MVA algorithm. Such a model can han-
dle user sessions-based workloads found in most e-business
applications. Since we explicitly capture the concurrent lim-
its in our model (e.g., max number of concurrent threads),
this model inherently handles concurrent limits at tiers. The
performance model is further discussed in Sect. 4.

3.3 Decomposition

Once we have the component profile, phyp = f1(CPUpyp),
tapp = f2(CPUypp), pap = f3(CPUgp), and the model
R = g(inttps Mapps Mdb, W), the decomposition of high level
goals response time R < r is to find the set of CPUpyp,
CPU,pp, CPUyg, satisfying the following constraint:

8(f1(CPUp), f2(CPUqpp), f3(CPUw), w) <r

Once the equations are identified, the decomposition
problem becomes a constraint satisfaction problem. Various
constraint satisfaction algorithms, linear programming and
optimization techniques are available to solve such problems
[5]. Typically, the solution is non-unique and the solution
space is large. However, for the problems we are studying,
the search space is relatively small. For example, if we con-
sider assigning CPU shares to virtual machines at a granu-
larity of 5%. We can efficiently enumerate the entire solution
space to find the solutions. Also, we are often interested in
finding a feasible solution, so we can stop the search once we
find one. Other heuristic techniques can also be used during
the search. For example, the hint that the service time of the
component typically decreases with respect to the increase
of resource allocated to it can reduce the search space.

If the high level goals or the application structures
change, we only need to change the input parameters of
analytical models and generate new low level operational
goals. Similarly, if the application is deployed to a new en-
vironment, we only need to regenerate a profile for new
components in that environment. Further, given high level
goals and resource availability, we can apply our decompo-
sition approach for automatic selection of resources and for
generation of sizing specifications that could be used dur-
ing system deployment. The generated thresholds are used
for creating an efficient design and by monitoring systems
for proactive assessment of SLOs. The detailed implementa-
tions of modeling, profiling and decomposition of multi-tier
applications in a virtual data center are discussed in the fol-
lowing two sections.

4 Modeling multi-tier Web applications
4.1 Basic queueing network model

Modern Web applications and e-Business sites are usually
structured into multiple logical tiers, responsible for distinct

@ Springer

sets of activities. Each tier provides certain functionality to
its preceding tier and uses the functionality provided by its
successor to carry out its part of the overall request process-
ing. Consider a multi-tier application consisting of M tiers,
T1, ..., Ty. In the simplest case, each request is processed
exactly once by each tier and forwarded to its succeeding
tier for further processing. Once the result is processed by
the final tier Ty, the results are sent back by each tier in the
reverse order until it reaches 77, which then sends the results
to the client. In more complex processing scenarios, each re-
quest at tier T;, can trigger zero or multiple requests to tier
T;+1. For example, a static web page request is processed
by the Web tier entirely and will not be forwarded to the fol-
lowing tiers. On the other hand, a keyword search at a Web
site may trigger multiple queries to the database tier.

Given an M-tier application, we model the application
using a network of M queues Q1, O, ..., Oy (see Fig. 3).
Each queue represents an individual tier of the application.
Each queue models the request queue on the underlying
server where it runs on. A request, after being processed at
queue Q); either proceeds to Q; 1 orreturns to Q;_1. A tran-
sition to the client denotes a request complementation (i.e.
response to the client). We use V; to denote the average re-
quest rate serviced by Q;. Our model can handle multiple
visits to a tier. Given the mean service time S; of queue Q;,
the average service demand per user request D; at Q; can
be approximated as S; x V;/ Vp, where V| is average request
rate issued by the users.

4.2 Multi-station queueing network model

Modern servers typically utilize a multi-threaded and/or
multi-process architecture. The server listens in the main
thread for requests. For each request, it allocates a thread
to handle it. For example, the flow of servicing a static
HTTP request is as follows. A request enters the TCP accept
queue where it waits for a worker thread. A worker thread
processes a single request to completion before accepting
another new request. In the most general case, each of the
tiers may involve multiple servers and/or multiple threads.
The application server tier for example may involve one or
more multi-threaded application servers (e.g., Tomcat) run-
ning on multiple processors. A similar notion is applica-
ble to the database tier which may consist of one or more
database servers (e.g., MySQL) which in turn may run on a
multi-threaded/multi-processor system.

V, S, V, S,,V, Sy Vi
User Q, Q, Qy,

Fig. 3 Basic queueing network model

Cluster Comput

Fig. 4 Closed multi-station queueing network

The amount of concurrency may also be determined by
the number of processes or concurrent threads/servers the
tier supports. In order to capture the multi-threaded/server
architecture and the concurrency, we enhance the basic
model by using a multi-station queueing center to model
each tier. In this model, each worker thread/server in the
tier is represented by a station. The multi-station queueing
model thus is the general representation of modern server
architecture.

4.3 Closed multi-tier multi-station queueing network
model

The workload on a multi-tier application is typically user
session-based, where a user session consists of a succes-
sion of requests issued by a user with think time Z in be-
tween. At a time, multiple concurrent user sessions inter-
act with the application. In order to capture the user session
workload and the concurrency of multiple sessions, we use
a closed queueing network, where we model concurrent ses-
sions by N users in the queueing system. Figure 4 shows
the closed multi-station queueing network model (QNM) of
a multi-tier application. Each tier is modeled by a multi-
station queueing center as discussed earlier, with the number
of stations being the server’s total number of worker threads.
We use K; to denote the number of worker threads at tier i.
Similarly, the mean service time at tier i is denoted by S;.
V; denotes the average request rate serviced by Q; triggered
by a user request. A user typically waits until the previous
request’s response returns to send the following request. The
average time elapsed between the response from a previous
request and the submission of a new request by the same
user is called the “think time”, denoted by Z.

4.4 Deriving queueing network performance

Given the parameters {N, Z, V;, M;, S;}, the proposed closed
queueing network model can be solved analytically to pre-
dict the performance of the underlying system. For exam-
ple, an efficient algorithm such as the Mean-value analysis
(MVA) can be used to evaluate the closed queueing network
models with exact solutions [14]. MVA algorithm is itera-
tive. It begins from the initial conditions when the system

Fig. 5 Approximate model for MVA

Fig. 6 Modified MVA
algorithm

Input: N, Z M, K, S, Vi(i=1,..M)
Output: R, X
/finitialization
Ry=Z:Dy=2 0y=0;
fori=1toM {
// Tandem approximations for each tier
0i=0:D=(S*V)/ Vi
qrD; = D/K;; drD;=D; X (K-1)/K;, }
//introduce N users one by one
fori=/toN{
forj=1toM{
R; =qrD; X (I + 0y); // queueing
resource
RR; = drD;;
)

X=

//delay resource
N
Ro+ i(Rl +RRi)
forj = 1 t/(;IM
O;=XX Ry
)

M
R=>"(Ri+RR)
i=1

population is 1 and derives the performance when the popu-
lation is i from the performance with system population of
(i — 1), as follows

Re(i) = Dy delay resource
K= Dy x (1 4+ Q@i — 1)) queueing resource,
i

Y Re(i)

Ok (i) =X x R (i)

X (i) =

where Ry (i) is the mean response time (mean residence
time) at server k when system population is i; Ry (i) includes
both the queueing time and service time; X (i) the total sys-
tem throughput when system population is i; and Q (i) is
the average number of customers at server k£ when system
population is i.

Traditional MVA has a limitation that it can only be ap-
plied to single-station queues. In our model, each tier is
modeled with a multi-station queueing center. To solve this
problem, we adopt an approximation method proposed by
Seidmann et al. [16] to get the approximate solution of per-
formance variables. In this approximation, a queueing center
that has m stations and service demand D! at each station

I D; represents the average service demand per user request at Q;. It
can be approximated as S; x V;/Vp.

@ Springer

Cluster Comput

is replaced with two tandem queues. The first queue being a
single-station queue with service demand D/m, and the sec-
ond queue is a pure delay center, with delay D x (m —1)/m.
It has been shown that the error introduced by this approxi-
mation is small [13]. By using this approximation, the final
queueing network model is shown in Fig. 5 where D; and
D D; are average demands of the regular queueing resource
and the delay resource in the tandem queue respectively.

The modified MVA algorithm used to solve our queue-
ing network is presented in Fig. 6. The algorithm takes the
following set of parameters of a multi-tier application as in-
puts:

N: number of users
Z: think time
M : number of tiers

K;: number of stations at tieri (i =1,..., M)
S;: service time attieri (i =1,..., M)
Vi: mean request rate at tieri (i =1,..., M)

The MVA algorithm computes the average response time
R and throughput X of the application.

4.5 Handing multiple classes of users

There are typically multiple classes of users or sessions
in realistic applications, representing different SLAs (e.g.,
Gold customer, Silver customer and Bronze customer) and
heterogeneous workloads (e.g., Browsing-heavy transac-
tions, Purchase-heavy transactions). Constructing multiple-
class models for heterogeneous workload can accurately
model heterogeneous workloads and differentiate SLA re-
quirements of different classes. We extend our model to
handle multiple classes of users. Let C be the number of
classes. Each class C has a fixed number of users N, with
think time Z.. Let S.; denote the service time of class C; at
tier i and V. ; denote request rate of class C; at tier i. The
multi classes closed queueing network can be analytically
solved by using an extension of the single class MVA algo-
rithm [7]. The extended algorithm is presented in Fig. 7. The
algorithm takes the following set of parameters of as inputs
and computes the per-class response time R, and throughput
Xe.

C': number of classes

N.: number of users of class ¢ (c=1,...,C)
Z.: think time of class ¢ (c=1,...,C)

M : number of tiers

K;: number of stations attieri (i =1,..., M)

S¢,i: service time of class c at tieri (c=1,...,C,
i=1,....,.M)

V..i: mean request rate of tieri (c=1,...,C,
i=1,....,.M)

The time complexity of the algorithm is CM]_[f:1 (N.+ 1)
where CM is the time complexity of the computations for

@ Springer

Input: N, Z, MK, S.;, Vei(i=1..M c=1..C)
Output: R, X, (¢ =1,... C)

//initialization

Op=0;
N=) N
i=l

fori=1toM Q;=0;
forc=1t0C {R.0=Zy;D.,o=Z.}

forc=I1to C
fori =1toM{
// Tandem approximations for each tier
Dei = (Sei * Ve / Vio:
qrD.;=D./K;; drD.;=D.; X (K-1)/K;;
}
for n=1toN
for each feasible population with total number of n =
(ny,...n¢c)
{
forc=1toC {
fori=1toM{
R.;=qrD.; X (1 + Qy); I queueing resource
RR.; = drD,; /ldelay resource
}

forc=1to C

ne
Xe=

M
Re.o+ Y (Re.i+ RRe.i)
=1

fori=1toM

p
0= XRe.
e=1l
)
forc=1to C

M
Re=Y"(Re.i+RRe.;)
par

Fig. 7 Multi-class MVA algorithm

one feasible population, and the product term is the total
number of feasible populations [7]. The space complexity is
M]_[le (N¢ + 1). The time and space complexities are pro-
portional to the number of feasible populations and hence
it can require excessive time and space for the large number
of classes or large number of users. Approximate algorithms
are often used in practice [7]. It has been demonstrated that
approximate algorithms are quite accurate and require much
less storage than the exact algorithm. The saving in time is
considerable empirically though it is harder to quantify be-
cause of the iterative nature of the approximate algorithms.
Parallel MVA algorithms have been proposed in [8, 24].

4.6 Discussion

There are several limitations in our performance model.
First, our queueing model captures system operation under
steady-state conditions, and hence may not work well if the
workload characteristics change very fast. Another limita-
tion is that our model is we only calculate the mean re-
sponse time which could be misleading. An enhancement
of the model for handling bursty workloads and estimating
probability distributions of response time is the subject of
future work. Finally, one of assumption of queueing net-
work model is resources held at exactly one tier. So our
approach won’t apply to certain internet applications where

Cluster Comput

a request could hold multiple resources simultaneously at
multiple tiers/servers such as a video streaming application.

5 Profiling and SLA decomposition
5.1 Profiling

One of the key objectives of profiling is to accurately es-
timate the service time of each component since the accu-
racy of a model depends directly on the quality of its in-
put parameters. When the scheduling discipline is processor
sharing (PS) that is representative of scheduling policies in
commodity operating systems such as Linux, the MVA al-
gorithm works without making any assumptions about the
service time distributions [7], hence it is sufficient to just
capture mean service times without considering the vari-
ance. To effectively measure service time for each compo-
nent, the time stamp is recorded either when a new thread
is created or an idle thread is assigned. Similarly, we record
the timestamp when the thread is returned to the thread pool
or destroyed. The time interval between the two time stamps
is the time spent in each component. This time also includes
the waiting time for its neighbor’s reply. The time spent on
waiting from next tier is measured in a similar way. The dif-
ference between the two time intervals is the actual service
time. This approach works for both lightly loaded as well
as overloaded systems. Details of measurement implemen-
tation can be found in [12].

During profiling, we also collect the workload character-
istics, including the average visit rate on each tier V;. This
number is used to derived the average service demand D;
per user request such as D; = V;/Vy * S;, where S; is the
mean service time and Vj is the average user request rate.

For the purpose of profiling, we change the configura-
tions of each virtual machine hosting the application includ-
ing assignment of CPU share to each virtual machine host-
ing a tier from 10% to 100% in 5% increments. We then ap-
ply workloads with different intensity (i.e., number of users)
to each tier and measure the service time of that tier. When
we profile a tier, we configure other tiers at their maximum
capacity to prevent them from becoming performance bot-
tlenecks. This ensures that interdependencies do not affect
the accuracy of the profile. After collecting the service times
for different CPU share, in general, we can apply statistical
analysis techniques, such as regression analysis, to derive
the relationship between the service times of a tier and its
respective configuration. In our current implementation, we
record (service time, CPU share) pair in a table as the tier’s
profile. For an application with multi-class users, the above
process is repeated for each class of user and a profile is
generated to store resource demand for each class of user.

A guideline regarding resource utilization for practition-
ers in real world is to keep peak utilizations of resources,

such as CPU, below 70% [4]. Actually, in practice, enter-
prise system operators are typically even more cautious than
this conservative guideline. As shown in [19], service times
remain relatively stable when the workload is not very in-
tense and the CPU is not saturated though they become more
sensitive to workload intensity when the server is heavy-
loaded, for example, when CPU utilization reaches 75% on
the application server. If we assume that the system is not
overloaded, then service times won’t change with the change
of the workload intensity. As a result, the profile we obtained
is valid for different workload intensity.

Our current profiling takes into account the change in the
volume of demand only (i.e., number of users), and assumes
a fixed or stationary transaction mix. So the service time in a
profile is actually an aggregated value for certain transaction
mix and is only valid for that type of transaction mix. A more
practical approach must handle workload changes in both
the volume and transaction mix. To address this limitation,
T. Kelly et al. proposed an approached to capture resource
demand per transaction type [15]. We plan to apply this idea
to estimate service times for non-stationary workloads. Fi-
nally, in order to apply our approach to SLA management, it
is necessary to integrate automated profiling/benchmarking
tools into our approach to simplify and automate the profil-
ing process.

5.2 Decomposition

Our performance model can be represented as follows:

R=g(N,Z,M,K;,S;,Vi) i=1,....M

where variables R and N denote response time and the num-
ber of concurrent users respectively. Please see Sect. 4 for
the definitions of the other variables. We also obtain the ser-
vice time profile S; = f; (CPU;) profile at tier i that captures
the relationship between service time and CPU share as-
signed to tier i, the number of stations K; for each ticker and
the workload characteristics such as average visiting rate V;
and think time Z via profiling.

Given high level goals of R < r and N of a M-tier appli-
cation, the decomposition problem is to find a set of CPU;
(i=1,..., M) that satisfies the following constraint:

§(N,Z, M, K;, fi(CPU;), Vi) <r (i=1,....M)

To find the solution to the above equation, we simply enu-
merate all combinations of CPU assignments, CPU; = 10%
to 100%, in 5% unit increments that satisfy the constraints.
fi(CPU;) can be obtained by looking up the profile table
created during profiling phase. We then choose the combi-
nations of CPU; such as the sum of CPU; (i =1,..., M)
is minimized. For complex decomposition problem that in-
volves large number of variables, a more advanced algo-
rithm can be applied [25].

@ Springer

Cluster Comput

For an application with multi-classes users and different
SLOs, we use multi-class MVA to construct the following
constraints:

g1(N,M,C,Z,K;, fji(CPU,), V;;) <ri,
i=1..M,j=1...C

&(N,M,C,Z, K;, fji(CPU;), V;;) <ra,
i=1..M, j=1...C

gc(N.M,C,Z,K;, f;i(CPU), V;;) <rc,
i=1..M,j=1...C

where C is the number of classes and f; ; (CPUj;) is the class
J’s profile at tier i and V; ; is the visit rate of class j at tier
i, and r; denotes the response time requirement of class i.
We apply a similar enumeration algorithm to find a feasible
CPU assignment that can meet all classes’ response time.

6 Experiment evaluation

Our experimental testbed consists of a virtual data center
where multiple applications share a common pool of re-
sources. We use a cluster of dual processor x86 based servers
with Xen virtual machines (VMs) to simulate such a vir-
tual data center. The testbed consists of multiple HP Proliant
servers, each running Fedora 4, kernel 2.6.12, and Xen 3.0-
testing. Each of the server nodes has two processors, 4 GB
of RAM, and 1G Ethernet interfaces. Each server has a set
of VM images, database images, and swap images. These
hardware resources are shared between the virtual machines
that host the application.

6.1 Performance model

To validate the correctness and accuracy of our model, we
experimented with two open-source 3-tier applications run-
ning on a virtualized Linux-based server testbed. The test-
bed is composed of four machines. One of them is used as
client workload generator and the other three machines are
used as Apache 2.07 web server, Tomcat 5.5 Servlet server
and MySQL 5.0 database server respectively. Although the
grouping of application tiers on each physical server can be
arbitrary in principle, we specifically chose the design where
different servers host different application tiers for two rea-
sons. First, this is a natural choice for many consolidated
data centers for potential savings in software licensing costs.
Second, we want to evaluate our performance model by iso-
lating possible interferences between virtual machines and
minimizing the overhead introduced by Xen.

We measure the service time for each tier by computing
the elapsed time when a thread is dispatched to process a
new request at that tier and when it finishes the task. An-
other required parameter for our model is the number of sta-
tions for each queue or tier. For Apache and Tomcat, the

@ Springer

total number of stations is determined by the size of thread
pool (i.e., maxClients in Apache and maxThreads in Tom-
cat). MySQL manages threads in a more dynamic fashion.
Depending on the server configuration settings and current
status, the thread may be either created new, or dispatched
from the thread cache. The average number of all worker
threads during a run is used to approximate the number of
stations. This approximate model enables us to use load-
independent multi-station queueing to model thread cache
based server. Average visit rate of each tier is obtained from
log files.

The first application we use is TPC-W [5], an indus-
try standard e-commerce application. TPC-W specifies 14
unique Web interactions. The database is configured for
10,000 items and 288,000 customers. Session based work-
load is generated from a client program to emulate concur-
rent users. The think time is exponential distribution with a
mean of 0.035 seconds. The max clients of Apache and max
threads of Tomcat are set as 50. We change workload by
varying the number of concurrent sessions generated by the
workload generator. Each run lasts 200 seconds after 60 sec-
onds of warm-up period. We measure different model in-
put and output parameters during each run. We then apply
MVA algorithm described in Sect. 4.4 to derive the response
time and throughput. Figure 8 shows the results of the re-
sponse time predicted by the model and directly measured
for sessions varying from 1 to 200. From the figures, we can
see that the analytic model does predict the performance of
TPC-W accurately. The results predicted by our model are
close to the measurement under different workloads.

To further validate the effectiveness of our performance
model, we experimented with RUBiS. RUBIS defines 26 in-
teractions and has 1,000,000 users and 60,000 items. The
think time is exponential distribution with a mean of 3.5 sec-
onds. We vary the workload from 100 to 300 and each run
lasts 300 seconds with a 120 seconds warm up. Unlike the

model ———
measurement
7t -
7
o
~ 6} -
w v
©
&
2 S o
2
[’.
E 4 p
=
@ *./
w
§ 3 -
(=8 g
w
(] i
r 2| -
e
s
y
1 v
e
O / i i i i i i I L Il

0 20 40 60 80 100 120 140 160 180 200
Number of Sessions

Fig. 8 TPC-W performance

Cluster Comput

TPC-W experiments, we use the same set of input parame-
ters obtained during profiling to predict the performance for
different workloads. The results of response time are de-
picted in Fig. 9. Even using the same set of model input
parameters, the model can still predict the performance for
different workloads.

6.2 Multi-class performance model

In this set of experiments, we create two classes of RU-
BiS users: Browse user and Bid user. A browse user ses-
sion is browse transactions intensive while a bid user session
mainly involves bidding-related transactions. In the first ex-
periment, we fix the number of bid users at 50 and vary the
number of browse users from 20 to 100. We calculate the
average response time of browse users using the extended
performance model and compare the results with the actual
measurement. The results are shown in Fig. 10. The pre-
dicted response times match the measurements well. In the
second experiment, we fix the number of browse users at 50
and change the number of bid users from 20 to 100. Simi-
larly, we compare the predicted response times with the ob-
served values for bid users. The results in Fig. 10 show that

T
model ——
measurement

Response Time (Seconds)
[=>]
A

0 50 100 150 200 250 300

Number of Sessions

Fig.9 RUBIS performance

Browse User

Fig. 10 Multi-class RUBiS

1000

our model can accurately predicate the performance of bid
users as well.

6.3 Profile

For capturing profiling information, we use a 3-tier Servlet
based implementation of RUBiS consisting of an Apache
Web server 2.0, a Tomcat 5.5 Servlet container, and a
MySQL 5.0 database server, running on virtual machines
hosted on different servers. A synthetic workload generator
runs on the fourth server. To isolate performance interfer-
ence, we restrict the management domain to use one CPU
and virtual machines to use the other CPU.

Using the steps mentioned above, we have built profiles
for Apache, Tomcat and MySQL with different CPU assign-
ments to each tier. We used SEDF (Simple Earliest Deadline
First) algorithm for controlling the percentage of total CPU
assigned to a virtual machine. We used the capped mode of
SEDF to enforce the fact that a virtual machine cannot use
more than its share of the total CPU. We changed the CPU
assignment from 10% to 100% to measure the service times
with different CPU assignments.

Figure 11 shows the service time of Tomcat and MySQL
as a function of the percentage of CPU assignment to the
virtual machine hosting them. As shown in the figure, both
Tomcat and MySQL demonstrate similar behavior. As the
CPU assignment increases, the service time drops initially
and remains constant after getting enough CPU. The results
are then saved as Tomcat and MySQL’s profiles.

6.4 SLA decomposition

We apply SLA decomposition to design RUBIS, an eBay
like auction site developed at Rice University [15]. We also
experiment with various configurations of RUBiS systems
with different SLA goals and software architectures. Given
high level SLA goals, we generate low level CPU require-
ments through SLA decomposition and then configure the
VMs based on the derived low level CPU requirements.
We then validate our design by measuring the actual per-
formance of the system and comparing the results with the

Bid User

model — ! model
Q00 - measurement 4500 - measurement
800 | 4000 -
_ ot _ 3500 |
3 g
T 600t T 3000 |
£ £
N 500 b o 2500 |
2 g
2 400 - & 2000
b g
& &
300 | 1500 -
200 | 1000
100 500 -
,-/
0 i i 0 b i i i
0 20 40 80 80 100 0 20 40 60 80 100

Number of Sessions Number of Sessions

@ Springer

Cluster Comput

Fig. 11 Service time profiles , Temeal Profle MySOL Profie
f 18 [
6+ 16
5 14}
- 5t &
$ E 12t
g 4 5 1
3 2| 5 06 F
% o4
! 02 b
o 1]
10 20 30 50 60 10 20 30 40 60
CPU Assignment (% of Total CPU) CPU Assignment(% of Total CPU)
Table 1 Decomposition results B -
of 3-tier RUBIS SLOs Design CPU assignment to Actual VM CPU
VMs performance utilization
Tomcat MySQL resp. Tomcat MySQL
(sec)
Users = 300 Optimal 40% 25% 9.79 67% 70%
Resp. < 10 sec System(45% 30% 9.89 61% 67 %
System1 20% 20% 15.93 99% 92%
System2 90% 90% 8.86 23% 21%
Users = 100 System(15% 15% 4.83 71% 69%
Resp. < 5 sec
Table 2 Decomposition results - -
of 2-tier RUBIS SLOs Design CPU assignment to Actual VM CPU
VMs performance utilization
Apache MySQL resp. Apache MySQL
(sec)
Users = 100 SystemOQ 10% 15% 4.83 65% 53%
Resp. <5
Users = 500 SystemO 35% 30% 8.2 68% 61%
Resp. < 10s
Table 3 Decomposition results)
of RUBIS with two classes of SLOs CPU assignment Actual response VM CPU
users to VMs (sec) utilization
Tomcat MySQL Tomcat MySQL
Class 1 Users = 100 Class 1 042s
Resp. < 1s 52% 47%
Class 2 Users = 20 30% 415% Class 2 1.60 s
Resp. <2

SLA goals. In the experiments, we consider the high level
SLA goals defined as number of concurrent users, average
response time. We use 5% of the total CPU capacity as a unit

for CPU assignments.

@ Springer

In the first experiment, we use a 3-tier implementation
of RUBIS, an Apache Web server, a Tomcat server and a
MySQL database server hosted on VMs on different servers.
Table 1 summarizes the results of different CPU assign-

Cluster Comput

ments for two different SLA goals. The first column shows
the SLA goals in terms of number of users and response time
requirements. The column of CPU assignment describes the
system design parameters in terms of the CPU share (in per-
centage of total physical CPU capacity) allocated to a virtual
machine hosting an application tier. The column of Perfor-
mance show the actually measured response time and the
column of VM CPU utilization denotes the virtual machine’s
CPU utilization of the actual system.

For the SLA goal of 300 users, response time < 5 sec-
onds, optimal system ensures the SLA using the minimum
CPU resource (i.e., assigned 40% CPU share to the VM
hosting Tomcat and 25% to the VM hosting MySQL). Sys-
temO is the system designed based on the proposed SLA
decomposition approach and the assignment of CPU share
45% to Tomcat VM and 30% CPU share to MySQL VM is
very close to the optimal solution. System0O meets the SLAs
with reasonable CPU utilization, i.e., the utilization of Tom-
cat VM and MySQL VM are 61% and 67% respectively.
Two other systems (system1 and system?2) are used for the
purpose of comparisons, too. System1 is under-provisioned
while system?2 is over-provisioned. From the table, we ob-
serve that systeml fails to meet the SLA since the virtual
machine hosting Tomcat is completely overloaded with CPU
utilization 99% while system2 meets the SLAs but both vir-
tual machines hosting Tomcat and MySQL are highly under-
utilized with less than 25% CPU utilization. We also exper-
imented with a less demanding SLA of /00 users and re-
sponse time < 5 seconds. These results are also summarized
in Table 1, too. From the results, we can see that SystemO,
which is designed based on the low level system thresholds
derived by our approach, can meet the high level SLA with
efficient CPU usage.

In order to further check the applicability of our ap-
proach, we applied the decomposition to design a 2-tier RU-
BiS implementation consisting of an Apache Web server and
a MySQL database server. The 2-tier application runs PHP
script at Web server tier and puts much higher load on Web
tier than 3-tier. We evaluated our approach with two differ-
ent SLAs. The results in Table 2 show that our approach can
be effectively applied to design such a 2-tier system with
different SLA requirements.

Finally, we experiment with RUBIS that involves two
classes of users with different workloads and SLOs. The re-
sults are summarized in Table 3. As shown in the results, the
design based on the SLA decomposition approach can meet
both users” SLOs while maintaining reasonable CPU usage.

7 Related work

Previous studies have utilized performance models to guide
resource provisioning and capacity planning [3, 22, 25]. Ur-
gaonkar et al. propose a dynamic provisioning technique for

multi-tier applications [22]. Our work is different from theirs
in several aspects. First, their model only takes into account
the request rate and number of servers at each tier while our
model can estimate how performance is affected by differ-
ent workloads, resource allocations, and system configura-
tions and can handle general SLAs, such as response time,
throughput and the number of concurrent users. Second,
they assume an open queueing network for request-based
transactions whereas we assume a closed network for user
session based interactions. Third, our approach has been
applied in virtualized environments, managing resource as-
signment in a more fine-grained manner than just determin-
ing the number of servers for each tier. Zhang et al. present
a nonlinear integer optimization model for determining the
number of machines at each tier in a multi-tier server net-
work [25]. The techniques to determine the bounds can be
applied to solve our general decomposition problem.

Stewart et al. present a profile-driven performance model
for multi-component online service [18]. Similar to ours,
their approach builds profiles per component and uses the
model to predict average response time and throughput.
However, the basic assumption and the focus are different.
They use the model to discover component placement and
replication that achieve high performance in a cluster-based
computing environment while our work is focused on en-
suring SLAs are met with optimized resource usage. They
profile component resource consumption as a function of
different workloads while we profile the component perfor-
mance characteristics as a function of low level goals such
as resource assignments and configurations. As a result, our
approach can support a more fine grained resource share
and management. Additionally, their approach uses a sim-
ple M/G/1 queue to model service delay at each server,
which is less accurate than general G/G/1 closed queue-
ing network we used. Though our approach can incorporate
different resources, we have not taken into account the I/O
and memory profile as they did. Their model explicitly cap-
tures communication overhead which is not included in our
current model.

A lot of research efforts have been undertaken to de-
velop queueing models for multi-tier business applications.
Many such models concern single-tier Internet applications,
e.g., single-tier web servers [6, 11, 17, 20]. A few recent
efforts have extended single-tier models to multi-tier appli-
cations [12, 21, 22]. The most recent and accurate perfor-
mance model for multi-tier applications is proposed by Ur-
gaonkar [21]. Similar to our model, their model uses a closed
queueing network model and mean value analysis (MVA)
algorithm for predicating performance of multi-tier applica-
tions. Despite the similarities, the two models are different
in the following aspects. First, our model uses multi-station
queues to capture the multi-thread architecture, hence ex-
plicitly handling the concurrency limits. Use of multi-station

@ Springer

Cluster Comput

queues also enables us to model multi-server tier the same
way as single server tier. The approximate MVA algorithm
for multi-station queue is more accurate than simply adjust-
ing the total workload. Second, our measurement method-
ology can work well for both light load as well as heavily
load conditions. Finally, we systematically study the perfor-
mance and validate our models in a virtualized environment.
These unique features enable us to model the application in a
more fine-grained manner and handle various workload and
conditions in a consistent way. Though our model can be
adjusted to handle imbalance across tier replicas based on
queueing theory, we have not explored these areas yet. An
early result of our performance model was presented at [12].
The model used in this work makes numerous enhancements
to our earlier model, including general model for any tier ap-
plications, an integrated MVA analysis with SLA decompo-
sition and additional new experiments for model validation.

Kelley et al. present an approach to predicting response
times as a function of workload [10]. The model does not
require knowledge of internal application component struc-
ture and uses only transaction type information instead. It
has been shown that the approach works well for realistic
workload under normal system load, but it’s not clear how
well it will perform under high system load, which is crucial
for our work. The specific performance model used in this
paper is based on queueing model. Conceptually, any model
which can help determine the performance (e.g., response
time) of applications can be incorporated into our solution.
It would be interesting to investigate how to integrate other
models into our solution.

8 Conclusion and future work

It is a prerequisite for next generation data centers that com-
puting resources are available on-demand and that they are
utilized in an optimum fashion. One of the most impor-
tant steps towards building such systems is to automate the
process of designing and thereafter monitoring systems for
meeting higher level business goals. These are intriguing but
difficult tasks in IT automation. In this paper, we propose an
SLA decomposition approach that combines performance
modeling with performance profiling to solve this problem
by translating high level goals to more manageable low-level
sub-goals. These sub-goals feature several low level system
and application level attributes and metrics which are used
for creating an efficient design to meet high level SLAs.
We have built a testbed to validate our methodology using
a number of multi-tier business applications. The evaluation
results show the efficacy of our approach.

In the future, we plan to address some limitations of our
approach by extending the performance model to handle
non-stationary dynamic workload, and multiple-resources in

@ Springer

addition to CPU usage and by deriving probability distrib-
ution of response time other than mean response time. An-
other interesting research topic is to apply the proposed ap-
proach to online SLA management by dynamically translat-
ing SLOs to resource requirements at runtime. We are also
planning to incorporate deployment/benchmarking tool into
our approach to simplify/automate the profiling process.

References

1. Barham, P, et al.: Xen and the art of virtualization. In: Proc. of the
Nineteenth ACM SOSP, 2003

2. Cecchet, E., Chanda, A., Elnikety, S., Marguerite, J., Zwaenepoel,
W.: A comparison of software architectures for E-business appli-
cations. In: Proc. of 4th Middleware Conference, Rio de Janeiro,
Brazil, June 2003

3. Chandra, A., Gong, W., Shenoy, P.: Dynamic resource allocation
for shared data centers using online measurements. In: Proc. of
International Workshop on Quality of Service, June 2003

4. Cockeroft, A., Walker, B.: Capacity Planning for Internet Services.

Sun Press, Cleveland (2001)

Council, T.P.C.: TPC-W. http://www.tpc.org/tpcw

Doyle, R., Chase, J., Asad, O., Jin, W., Vahdat, A.: Model-based

resource provisioning in a Web service utility. In: Proc. of the 4th

USENIX USITS, Mar. 2003

7. Edward, D., Lazowska, J., Zahorjan, G., Graham, S., Sevcik, K.C.:
Quantitative System Performance: Computer System Analysis Us-
ing Queueing Network Models. Prentice-Hall, Englewood Clifts
(1984)

8. Gennaro, C., King, P.J.B.: Parallelising the mean value analy-
sis algorithm. Simulation 72(3), 148 (1999). doi:10.1177/
003754979907200304

9. Graupner, S., Kotov, V., Trinks, H.: Resource-sharing and service
deployment in virtual data centers. In: Proc. of the 22nd ICDCS,
pp. 666-674, July 2002

10. Kelley, T.: Detecting performance anomalies in global applica-
tions. In: Proc. of Second USENIX Workshop on Real, Large Dis-
tributed Systems (WORLDS 2005), 2005

11. Levy, R., Nagarajarao, J., Pacifici, G., Spreitzer, M., Tantawi, A.,
Yousse, A.: Performance management for cluster based Web ser-
vices. In: Proc. of IFIP/IEEE 8th IM, 2003

12. Liu, X., Heo, J., Sha, L.: Modeling 3-tiered Web applications. In:
Proc. of 13th IEEE MASCOTS, Atlanta, Georgia, 2005

13. Menasce, D., Almeida, V.: Capacity Planning for Web Services:
Metrics, Models, and Methods. Prentice-Hall PTR, Englewood
Cliffs (2001)

14. Reiser, M., Lavenberg, S.S.: Mean-value analysis of closed
multichain queueing networks. J. ACM 27, 313-322 (1980).
doi:10.1145/322186.322195

15. RUBIS: Rice University Bidding System. http://www.cs.rice.edu/
CS/Systems/DynaServer/rubis

16. Seidmann, A., Schweitzer, P.J., Shalev-Oren, S.: Computerized
closed queueing network models of flexible manufacturing sys-
tems. Large Scale Syst. 12, 91-107 (1987)

17. Slothouber, L.: A model of Web server performance. In: Proc. of
Int’l World Wide Web Conference, 1996

18. Stewart, C., Shen, K.: Performance modeling and system manage-
ment for multi-component online services. In: Proc. of USENIX
NSDI, 2005

19. Stewart, C., Kelly, T., Zhang, A.: Exploiting nonstationarity for
performance prediction. In: Proc. of EuroSys, 2007

20. Urgaonkar, B., Shenoy, P.: Cataclysm. Handling extreme over-
loads in Internet services. In: Proc. of ACM SIGACT-SIGOPS
PODC, July 2004

S

http://www.tpc.org/tpcw
http://dx.doi.org/10.1177/003754979907200304
http://dx.doi.org/10.1177/003754979907200304
http://dx.doi.org/10.1145/322186.322195
http://www.cs.rice.edu/CS/Systems/DynaServer/rubis
http://www.cs.rice.edu/CS/Systems/DynaServer/rubis

Cluster Comput

21. Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.:
An analytical model for multi-tier Internet services and its appli-
cations. In: Proc. of ACM SIGMETRICS, June 2005

22. Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, O.P.: Dynamic
provisioning of multi-tier Internet applications. In: Proc. of IEEE
ICAC, June 2005

23. VMware, Inc., VMware ESX Server User’s Manual Version 1.5,
Palo Alto, CA, April 2002

24. Yaikhom, G., Cole, M., Gilmore, S.: Combining measurement and
stochastic modelling to enhance scheduling decisions for a paral-
lel mean value analysis algorithm. In: Proc. of International Con-
ference on Computational Science (ICCS 2006), LNCS. Springer,
Berlin (2006)

25. Zhang, A., Santos, P., Beyer, D., Tang, H.: Optimal server re-
source allocation using an open queueing network model of re-
sponse time. HP Labs Technical Report, HPL-2002-301

Yuan Chen is a researcher at HP
Labs in Palo Alto, CA and has over
10 years of research and develop-
ment experience in the design, im-
plementation and management of
distributed and enterprise systems.
Yuan received a B.S. from Univer-
sity of Science and Technology of
China, a M.S. from Chinese Acad-
emy of Sciences, and a Ph.D. from
Georgia Institute of Technology, all
in computer science. Yuan joined
HP Labs in 2005. Yuan’s current re-
search has been in the area of auto-
mated management of large scale, complex enterprise systems and ser-
vices with a focus on SLA based management. His past work includes
policy-based management, adaptive monitoring, distributed event sys-
tems and middleware, Internet storage systems and high performance
computing. Yuan has published over 30 technical papers and filed 3
patents.

Subu Iyer is a senior researcher at
HP Labs, Palo Alto, CA. Subu en-
gages in research associated with
enterprise systems and in particular
automation of large distributed sys-
tems including data centers. His re-
cent interests are in the areas of dis-
tributed systems, operating systems,
and computer networks with a cur-
rent focus on model based automa-
tion. Subu joined HP in 2002 from
Compaq Computer Corp where he
was a research engineer at Com-
paq’s Western Research Laboratory
(WRL) in Palo Alto, CA. Prior to that, Subu worked at DEC’s Net-
work Systems Laboratory (NSL) since 1997. During his tenure at HP,
Subu has contributed to research and development in the areas of per-
formance monitoring, virtualization, power management, multimedia
and automation. He has authored more than 25 peer reviewed papers
in the area of multimedia and enterprise systems and has been granted
one U.S. patent, with 15 pending. He is a member of ACM.

Xue Liu received the B.S. degree
in applied mathematics and the
M.Eng. degree in control theory and
applications from Tsinghua Uni-
versity in 1996 and 1999, respec-
tively. He received the Ph.D. de-
gree in computer science from the
University of Illinois at Urbana-
Champaign in 2006. He is currently
an assistant professor in the School
of Computer Science at McGill Uni-
versity. He is also affiliated with the
McGill Center for Intelligent Ma-
chines. His research interests in-
clude real-time and embedded computing, performance and power
management of server systems and data centers, sensor networks, fault
tolerance, and control. He has authored/coauthored more than 40 ref-
ereed publications in leading conferences and journals in these fields.
He is a member of the ACM and the IEEE.

Dejan Milojicic is a senior re-
searcher manager at HP Labs. He
has worked in the area of operating
systems and distributed systems for
more than 20 years. He has been the
program chair of the IEEE Agent
Systems and Applications Sympo-
sium (ASA/MA’99) and of the first
USENIX Workshop on Industrial
Experiences with System Software
(WIESS’2000). Dr. Milojicic pub-
lished in many journals and at var-
ious events. He is currently editor
.. IEEE Computing Now portal. He
has been engaged in various standardization bodies, such as OMG and
Global Grid Forum. He is a member of the ACM, IEEE, and USENIX.
He received his B.Sc. and M.Sc. from University of Belgrade and
his PhD from University of Kaiserslautern. Prior to HP Labs, Dejan
worked at Institute “Mihajlo Pupin”, Belgrade and at OSF Research
Institute, Cambridge, MA.

AKkhil Sahai is a senior product
manager at VMware. He manages
the Virtual Appliance product offer-
ings. He was a senior researcher at
HP Laboratories from 2000-2007.
He has a Ph.D. from INRIA-IRISA
and an MBA from Wharton School
of Business. He has over 75 refereed
publications, 4 book chapters, and
has authored a book “Web Services
in the Enterprise: Concepts, Stan-
dards, Solutions and Management”.
He has 3 granted patents with 19
pending. He has been in the Tech-
nical program Committees and co-
chairs of large number of IEEE Conferences.

pr -

@ Springer

	Translating Service Level Objectives to lower level policies for multi-tier services
	Abstract
	Introduction
	Motivating scenario
	SLA decomposition
	Component profiling
	Performance modeling
	Decomposition

	Modeling multi-tier Web applications
	Basic queueing network model
	Multi-station queueing network model
	Closed multi-tier multi-station queueing network model
	Deriving queueing network performance
	Handing multiple classes of users
	Discussion

	Profiling and SLA decomposition
	Profiling
	Decomposition

	Experiment evaluation
	Performance model
	Multi-class performance model
	Profile
	SLA decomposition

	Related work
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

