
240 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 4, DECEMBER 2009
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Abstract—Managing application-level performance for multi-
tier applications in virtualized server environments is challenging
because the applications are distributed across multiple virtual
machines, and workloads are dynamic in their intensity and
transaction mix resulting in time-varying resource demands.
In this paper, we present AppRAISE, a system that manages
performance of multi-tier applications by dynamically resizing
the virtual machines hosting the applications. We extend a tra-
ditional queuing model to represent application performance in
virtualized server environments, where virtual machine capacity
is dynamically tuned. Using this performance model, AppRAISE
predicts the performance of the applications due to workload
changes, and proactively resizes the virtual machines hosting the
applications to meet performance thresholds. By integrating feed-
forward prediction and feedback reactive control, AppRAISE
provides a robust and efficient performance management solu-
tion. We tested AppRAISE using Xen virtual machines and the
RUBiS benchmark application. Our empirical results show that
AppRAISE can effectively allocate CPU resources to application
components of multiple applications to meet end-to-end mean
response time targets in the presence of variable workloads,
while maintaining reasonable trade-offs between application
performance, resource efficiency, and transient behavior.

Index Terms—virtualization, performance model, performance
control, resource allocation, workload consolidation.

I. INTRODUCTION

S erver virtualization enables consolidation of applications
onto a shared hardware infrastructure, allowing IT to

increase the agility of the overall IT infrastructure while
reducing hardware, software, power, cooling, real estate, and
other costs. As a result, virtualized server environments have
drawn interest from many businesses. However, workloads for
Internet-facing multi-tier applications can fluctuate consider-
ably, and thus statically-configured virtual resources suffer
much the same fate as dedicated physical resources: they
are often either over-provisioned or over-loaded. To avoid
this problem, popular modern virtualization technologies ex-
pose interfaces that permit rapid and frequent resource re-
allocations. In principle, such interfaces make it possible to
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adjust resource allocations to different applications in response
to workload fluctuations, but it is difficult to do this well in
practice due to the following challenges:

∙ Workload demand is volatile over both short and long
timescales. Workloads frequently show diurnal and sea-
sonal cycles, but also contain irregular patterns including
“flash crowds". Even when transaction rates are steady,
the mix of transaction types reaching the application
can change over time. This characteristic is called non-
stationarity [1] and is significant because it causes re-
source requirements of the application to change, since
different transaction types can have different resource
demands.

∙ Another difficulty lies in the fact that most Internet ap-
plications with multi-tier architectures can be distributed
across multiple virtual machines (VMs) within a virtu-
alized server environment. Since physical servers may
run VMs hosting components from multiple applications,
different applications may compete with one another
for resources in complicated ways across many servers.
Furthermore, these interactions may show complicated
dynamics that vary across both time and space (servers)
because changes in transaction types can cause resource
demands to shift across application tiers.

∙ Finally, management goals are naturally stated in terms
of application-level performance, such as transaction re-
sponse time and throughput. Usually, the relationship
between these performance metrics and the dynamic re-
source allocation controls exposed by virtualization tech-
nologies is non-trivial. While there has been substantial
progress in recent years for application-level performance
modeling of non-virtualized environments [2]–[4], vir-
tualization makes performance modeling fundamentally
harder by allowing available capacities to be changed
over time.

It is thus difficult to properly tune resource allocations
to virtual machines in response to dynamically changing
workloads. While several existing management products [5],
[6] can dynamically size VMs to maintain given resource
utilization targets, unfortunately, the appropriate utilization
target itself is application dependent and varies over time for
a given application as the transaction mix changes.

In this paper, we present AppRAISE, a management system
for application-level performance control in virtualized server
environments. AppRAISE manages application-level objec-
tives (e. g., response time thresholds) based on control theory
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and performance modeling methodologies. When combined
with VM placement and capacity planning tools [7], [8],
AppRAISE can enable high utilization of server resources for
VMs while meeting performance requirements of the managed
applications. This paper focuses specifically on dynamic allo-
cation of CPU resources and application mean response time
guarantee, though the framework can be extended to the allo-
cation of other types of resources (e. g., network bandwidth)
and application performance metrics (e. g., throughput).

We make three contributions in this paper:

∙ First, we develop a hierarchical control architecture that
adjusts CPU allocations of VMs to achieve end-to-end
mean response time targets for the applications hosted
by the VMs. The architecture incorporates an application
controller for each application to tune the utilization tar-
gets of the VMs hosting the application components, and
a node controller for each physical server that provides
local resources to meet the time-varying demand of the
workloads.

∙ Second, we propose a performance model that captures
the effects of CPU capacity, time-varying workload in-
tensity and transaction mix on application mean response
time in virtualized server environments. We take queuing
models and transaction mix models [1] originally pro-
posed for physical servers, and extend them to model ap-
plication performance for virtualized servers. Our models
can be calibrated using only lightweight measurements
that are routinely collected in today’s production en-
vironments, without invasive instrumentation. We apply
the models in the application controller which integrates
proactive control and reactive feedback control for fast
and robust control of the applications.

∙ Third, we validate the performance models and en-
semble of controllers in a Xen-virtualized environment.
Experiments were driven by workloads to mimic the
realistic traces collected from production systems. Our
results demonstrate that AppRAISE automatically adjusts
performance-critical Xen parameters in response to work-
load fluctuations, and maintains application response time
at specified targets without resource over-provisioning.

The remainder of this paper is organized as follows. The
controller architecture is described in detail in Section II.
We present the performance models in Section III. The
implementation of AppRAISE is described in Section IV.
The experimental validation is presented in Section V. We
review related work in Section VI, and conclude the paper in
Section VII.

II. ARCHITECTURE AND CONTROLLER DESIGN

A. Problem Statement

We consider a server environment where multiple appli-
cations are hosted by a common pool of virtualized server
resources. Each application consists of several interacting
components, each of which runs in a virtual machine. Re-
sources shared by virtual machines on a physical server,
including CPU capacity, disk access bandwidth and network
I/O bandwidth, are allocated to the virtual machines at run
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Fig. 1: An example of two 3-tier applications in virtualized
server environments.

time through virtual machine monitors or hypervisors (e. g.,
Xen CPU scheduler).

As an example, Figure 1 shows two 3-tier applications
running on three physical servers. Each application consists of
a web tier, an application tier and a database tier. Each tier runs
in an individual virtual machine. In this example, the virtual
machines hosting the same tier (e. g., web) are placed on the
same physical server. In practice, the virtual machines can be
distributed across servers using any reasonable placement.

Each application is assumed to have its own performance
target or threshold. The actual performance is affected by the
resource capacity available to the application, and the time-
varying demands of the workload due to changes of workload
intensity and/or workload transaction mix. Our goal is to
meet the application-level performance targets for the multiple
applications hosted in the virtualized environment through
dynamic resource allocation, while not over-provisioning the
total amount of resources to the applications.

To avoid confusion in terminology, we define a few critical
concepts used throughout this paper. We use resource capacity
to refer to the total amount of resources that a physical server
provides, e.g., 100 CPU shares for a server with one CPU.
Resource entitlement or allocation 𝑒 refers to the resource
capacity that is allocated to a virtual machine. Resource
consumption 𝑐 means the actual resource consumed by a
virtual machine. We further define the resource utilization 𝑢 of
a virtual machine as the ratio between resource consumption
of the virtual machine and resource entitlement to the virtual
machine 𝑢 = 𝑐/𝑒. In contrast with physical servers, resource
entitlement can be dynamically modified in virtualized servers.
This results different performance models, which will be
discussed more in detail in Section III.

B. Overall Architecture

Figure 2 shows the architecture of AppRAISE. The bottom
part of the figure shows the managed infrastructure. Each
physical server (node) runs multiple virtual machines. Each
virtual machine hosts a component of an application, which
can span multiple hosts. For instance, Figure 2 shows that
components of App 1 are running on at least Server 1 and
Server 2. In the management domain, there are layers of
controllers, taking policies on the applications as inputs, and
deciding the resource entitlement for each virtual machine in
real time. More specially,

∙ The configuration service maintains information on the
configuration of the system, such as the controller pa-
rameters and the location of the virtual machines host-
ing components of applications. The information can

Authorized licensed use limited to: Hewlett-Packard via the HP Labs Research Library. Downloaded on February 10, 2010 at 18:28 from IEEE Xplore.  Restrictions apply. 



242 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 6, NO. 4, DECEMBER 2009

 Management  
 Domain

Application
Controller 1

Node Controller 1

Application 
Controller Q

Node Controller 2 Node Controller S

Utilization Targets

Policy EngineConfiguration 
Service

Physical Server 1

VM

App 1

VM

App Q

Physical Server 2

VM

App 1

VM

App 2

Physical Server S

VM

App 2

VM

App Q

Resource Entitlements

Application 
Controller 2

Performance
Targets

Policy StoreConfiguration 
DB

System
Configuration

Fig. 2: AppRAISE architecture.

be updated dynamically by other services such as a
VM placement service. Application controllers use that
information for control and communication, given that
the mapping between applications and physical servers
can change over time.

∙ The policy engine provides high level policies to the
controllers using a central policy store. Policy examples
include performance targets for the applications, their
priority or associated utility functions.

∙ Each application is managed by an application controller
to maintain its performance target. The controller collects
the application’s performance and statistics on the work-
load, and then periodically determines resource utilization
targets for the virtual machines hosting the application
components.

∙ Each physical server is controlled by a node controller.
It computes the resource entitlement for each VM to
meet the resource utilization target as determined by
the application controller. The needed entitlement can
be dependent on the workload and utilization target. If
the total demand exceeds the server capacity, the node
controller allocates available resources to the VMs based
on the predefined policies.

AppRAISE uses a distributed and hierarchical management
framework. Each application controller only needs to man-
age the components of the associated application and each
node controller addresses only the virtual machines on the
associated node. This layered design allows the architecture
to scale up to accommodate a large number of applications,
servers and virtual machines in data centers. It also permits
integration with migration controllers [9] that can live-migrate
virtual machines to meet the total resource demand of the
applications. Integration can be done through the configuration
service, the policy engine, or other interfaces as defined in [7].

The remainder of this section provides more details on
the architecture and algorithms of the node controller and
application controller.

C. Node Controller

Figure 3 shows the architecture of the node controller. The
role of a node controller is to maintain the utilization targets
for all virtual machines on the node by dynamically adjusting
their resource entitlement. It implements two main functions:
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Fig. 3: Node controller architecture.

the utilization controller and the arbiter. The per-VM uti-
lization controller measures the VM’s resource consumption
𝑐𝑣 , and determines the ideal entitlement, or resource request
req𝑣, that can satisfy the utilization target 𝑢ref

𝑣 provided by
the application controller. However, the total demand, or the
aggregate of the resource requests may exceed the capacity
of the server. The per-node arbiter then determines the actual
entitlement 𝑒𝑣 for each virtual machine, based on both the
resource requests and the policies defined for the servers (e. g.,
whether or not to distribute the excessive capacity) and the
virtual machines (e. g., priorities of the applications).

The CPU utilization controller uses an adaptive controller
described in [10]. For each virtual machine 𝑣, the CPU request
req𝑣 in control interval 𝑘 is set to

req𝑣(𝑘)=𝑒𝑣(𝑘−1)− 𝛾𝑐𝑣(𝑘−1)

𝑢ref
𝑣

(
𝑢ref
𝑣 −𝑢𝑣(𝑘−1)

)
, 0<𝛾<2, (1)

where 𝑢𝑣(𝑘 − 1) = 𝑐𝑣(𝑘 − 1)/𝑒𝑣(𝑘 − 1), and 𝑐𝑣(𝑘 − 1)
and 𝑒𝑣(𝑘 − 1) are the measured CPU consumption and the
CPU entitlement in the last interval (𝑘 − 1) and 𝛾 is the
controller gain parameter. In this controller, the change of
the resource request in the current interval is proportional to
the observed utilization error, but the gain varies along with
the resource consumption and the utilization target. When
the virtual machine is more heavily loaded, CPU capacity
is allocated to the VM more aggressively so that application
performance does not suffer too much. On the other hand, the
controller slowly reduces CPU allocation when the consump-
tion is much less than the entitlement, providing a capacity
buffer for bursty workloads having future demand spikes. The
closed-loop system of utilization control has been shown in
[10] to be stable. Experimental results in [10] also indicated
that, for workloads with time-varying resource demand, this
adaptive controller leads to lower response time and higher
throughput with less amount of CPU resource, when compared
with a fixed-gain integral controller.

The utilization controllers run independently of one another
with all requests being sent to the arbiter. The arbiter decides
how to allocate excess capacity when the aggregate request
is less than capacity, and how resources are shared by the
virtual machines when resources are under contention. As a
special case, the excess capacity can be reserved to accom-
modate other applications that can be migrated to the server
through through live virtual machine migration and workload
consolidation. Alternatively, the capacity of the server can be
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Fig. 4: Feedback and feed-forward application controller.

shared proportionally by the VMs during contention.

D. Application Controller

Figure 4 shows the architecture of the application controller.
It controls a single application composed of a number of
components, each individually hosted inside a virtual machine.
The application controller is responsible for generating an
appropriate utilization target for each virtual machine hosting
an application component to ensure that the performance
goal is met. Each application controller consists of a feed-
forward controller and a feedback controller. The feed-
forward controller estimates the expected utilization targets
𝑈mdl = [𝑢mdl

1 , . . . , 𝑢mdl
𝑉 ] for all of the application components

based on a performance model, the performance target, and
workload prediction derived from historical observations, as
discussed in next section. The feedback controller, which
typically operates at a shorter time-scale, tunes the utilization
targets based on the error between the performance target and
the measured performance.

The application controller can work in three different
modes: feedback only, feed-forward only, and feedback plus
feed-forward. In feedback-only mode, the feedback controller
reacts to the performance error due to the fluctuation of
the workload or other disturbances. There is delay between
the time when performance goes above a threshold and the
time when the controller takes action since it only reacts
to the performance error. In feed-forward-only mode, the
model-based predictive control proactively tunes the resource
allocation based on predictions of workload and performance
in the next interval. It works well if the models are accurate
enough. However, inaccuracy in either performance or work-
load prediction can cause problems. Integration of feedback
and feed-forward controllers provides a more robust solution
than that with either feedback or feed-forward alone. The
feed-forward controller complements the reactive feed-back
controller by immediately adjusting the utilization targets upon
detection of workload or policy changes. On the other hand,
models have inherent limitations in their accuracy, and the
workload may have unpredictable variations. Both can lead
to bias in the prediction of utilization targets, which can be
corrected by the feedback loop. With appropriate settings of
the two controllers, the system can make reasonable trade-offs
between responsiveness and stability over the entire operation
range.

TABLE I: Notation for performance modeling

𝑀 number of tiers (e. g., Web, APP, DB)
𝑁 number of transaction types (e. g., Browse, Bid)
𝑟cpu average resident time on CPU resources
𝑟others average resident time on non-CPU resources
𝑟 average user request response time
𝜆𝑛 average request rate of transactions type 𝑛
𝜆 aggregate request rate of all transaction types
𝛽𝑛𝑚 average CPU demand of transaction type 𝑛 at tier 𝑚
𝛼𝑛 average service time of non-CPU resources of transaction type 𝑛
𝑒𝑚 CPU entitlement that is allocated to the virtual server at tier 𝑚
𝑐𝑚 CPU consumption of the virtual server at tier 𝑚
𝑢𝑚 CPU utilization of the virtual server at tier 𝑚

We briefly discuss the design of the feedback controller,
leaving development of the performance model and the design
of the feed-forward controller to the next section.

As shown in Figure 4, the feedback controller is driven by
the error between the measured mean response time 𝑟 and
the response time reference 𝑟ref. The output of the feedback
controller provides adjustments Δ𝑈 to the utilization targets
𝑈mdl determined by the feed-forward controller. In our imple-
mentations, we adopted an integral controller as follows:

Δ𝑈 (𝑗) = Δ𝑈 (𝑗 − 1) +𝐺FB 𝑟
ref − 𝑟 (𝑗 − 1)

𝑟ref
. (2)

Here 𝑗 represents the time index for the current interval,
and 𝐺FB is the gain in the controller. Note that because
the utilization target should fall into the range of [0, 1], the
response time error is normalized by its reference 𝑟ref.

III. PERFORMANCE MODEL AND PROACTIVE CONTROL

Queuing models have previously been applied to model
application-level performance on physical servers. However,
a virtual machine differs from a physical server in that its ef-
fective capacity varies with dynamic resource allocation (e. g.,
CPU shares). This distinguishes VM performance models
from traditional queuing models, because model parameters
such as service times can change significantly in virtualized
servers if the effective server capacity is modified. As a
result, performance models for physical servers cannot be
directly applied to virtualized server environments. In this
section, we extend a traditional queuing model to characterize
the performance of multi-tier applications hosted on virtual
machines. We show how the application performance can
be modeled as a function of workload transaction mix and
resource allocation to the application components. We then
describe how to identify the model parameters using non-
intrusive measurement and linear regression analysis. Finally
we discuss how to use the proposed model to determine the
CPU demand for virtual machines hosting an application in
order to meet the response time target of the application, which
is what the feed-forward controller does in the AppRAISE
architecture.

We introduce many variables and parameters for perfor-
mance modeling. For convenience, Table I summarizes the
notation to be used this section.

A. Multi-tier Application

Modern Internet and e-business applications are usually
structured into multiple logical tiers. Each tier provides certain
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functionality to the preceding tier and uses the functionality
provided by its successor to carry out its part of the overall
request processing. In our model, we consider a general multi-
tier application consisting of 𝑀 tiers. We assume that each tier
𝑇𝑚 runs on a separate virtual machine 𝑉𝑚 (𝑚 = 1, . . . ,𝑀).

Multi-tier applications typically support a number of trans-
action types. For example, an online auction application has
transaction types such as login, browse or bid. At any given
time, a typical application workload is composed of a mix
of different transaction types. In most cases, the transaction
types have different demands for resources. For example, bid
transactions in an auction site typically require more CPU time
than browse transactions.

Our work considers a workload with N transaction types.
Unlike workload models that assume a stationary transaction
mix, and hence use an aggregate request rate to characterize
the workload, we define the intensity of the workload as a
vector (𝜆1, . . . , 𝜆𝑁 ), where 𝜆𝑛 is the average request rate
of transaction type 𝑛 during one time period. We use this
vector model to capture the request rate per transaction type
and thus to characterize non-stationary transaction mixes. This
is important because transaction mixes in real production
systems change over time [1]. We also define the aggregate
rate of the transaction as

𝜆 =
𝑁∑

𝑛=1

𝜆𝑛 . (3)

B. Performance Modeling

Multiple system resources (CPU, memory, disk, etc.) can
become bottlenecks during operation. In this work, we focus
on CPU resources, since business logic processing in multi-tier
applications is often the bottleneck, and workloads are often
processor intensive. In addition, adjusting a virtual server’s
CPU capacity is the most mature resource control knob
available in today’s virtualization technology. In the following
discussion, we assume that CPU is the single bottleneck
resource and that CPU is the only resource to be dynamically
allocated among the virtual machines.

End-to-end response time of a multi-tier application can
be calculated by aggregating the resident times over all re-
sources (e. g., CPU, disk, network) across all tiers (e. g., web,
application, and database tier). We break down the response
time into two parts: the resident time on CPU resources
and the resident time on non-CPU resources. We count both
service and queuing times for CPU. We assume that non-CPU
resources are adequately provisioned and hence the effect of
contention for these resources on the response time (i. e., the
queuing delay) is negligible.

Processor sharing (PS) approximates round-robin schedul-
ing with small quantum size and negligible overhead, and is
representative of scheduling policies in commodity operating
systems [11]. Given the assumption that a Poisson process is a
good approximation of request arrivals, we model CPU as an
M/G/1/PS queue. According to queuing theory, the total CPU
resident time by all the requests served in tier 𝑚 is represented
by 𝑢𝑚/(1− 𝑢𝑚), where 𝑢𝑚 is the CPU utilization of tier 𝑚.
Then the mean CPU resident time of all the transactions with

aggregate rate 𝜆 can be described as follows,

𝑟cpu =
1

𝜆

𝑀∑
𝑚=1

𝑢𝑚

1− 𝑢𝑚
. (4)

By definition, CPU utilization in Equation (4) is the ratio
between the virtual machine’s CPU consumption and its effec-
tive CPU capacity. Note that CPU consumption is independent
of the CPU entitlement, as long as it does not exceed the
entitlement. However, the utilization can change when the
CPU entitlement is changed even for constant workloads. This
is different from physical server environments where CPU ca-
pacity is not dynamically modified and hence CPU utilization
for the same workloads remains the same. Let 𝑐𝑚 and 𝑒𝑚
denote respectively the CPU consumption and entitlement at
tier 𝑚. The response time can then be represented in terms
of CPU consumption and entitlement as follows, by replacing
𝑢𝑚 with 𝑐𝑚/𝑒𝑚 in (4),

𝑟cpu =
1

𝜆

𝑀∑
𝑚=1

𝑐𝑚
𝑒𝑚 − 𝑐𝑚

. (5)

Given a workload with transaction mix 𝜆1, . . . , 𝜆𝑁 , we
can estimate the CPU consumption of the workload based on
the following observation. The resource demands of different
transaction types are usually different, but the resource de-
mand of a single transaction type is relatively fixed irrespective
of the transaction mix of the workload and CPU entitlement
of the virtual machines, since each transaction type usually
has a relatively fixed code execution path and hence a stable
resource demand [1]. In typical multi-tier applications, each
transaction issued by the users can trigger differing numbers
of requests at different tiers. However, for a given transac-
tion type, the number of requests generated in each tier is
proportional to the request rate of this transaction type issued
by users. Hence the CPU consumption 𝑐𝑚 at tier 𝑚 can be
defined as a linear function of the transaction mix as follows,

𝑐𝑚 =

𝑁∑
𝑛=1

𝛽𝑛𝑚𝜆𝑛 , (6)

where 𝛽𝑛𝑚 is the average CPU demand of transaction type 𝑛
at tier 𝑚. We call (6) the utilization model.

Replacing 𝑐𝑚 in (5) by (6), the resident time on CPU has
the following form

𝑟cpu =
1

𝜆

𝑀∑
𝑚=1

∑𝑁
𝑛=1 𝛽𝑛𝑚𝜆𝑛

𝑒𝑚 −∑𝑁
𝑛=1 𝛽𝑛𝑚𝜆𝑛

. (7)

Let 𝑟others denote the mean resident time spent on all non-
CPU resources, and 𝛼𝑛 represent service times of transaction
type 𝑛 on all non-CPU resources of all tiers on the execution
path of that transaction type. Then the mean resident time on
non-CPU resources can be approximated by the weighted sum
of each transaction type’s service time,

𝑟others =
1

𝜆

𝑁∑
𝑛=1

𝛼𝑛𝜆𝑛 . (8)

Let 𝑟 denote the end-to-end mean response time of the
application. Combining (7) and (8), the mean response time
can be represented by a function of the transaction mix
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and the resource entitlement as follows, which we call the
performance model:

𝑟=𝑟cpu+𝑟others=
1

𝜆

(
𝑀∑

𝑚=1

∑𝑁
𝑛=1 𝛽𝑛𝑚𝜆𝑛

𝑒𝑚−∑𝑁
𝑛=1 𝛽𝑛𝑚𝜆𝑛

+
𝑁∑

𝑛=1

𝛼𝑛𝜆𝑛

)
. (9)

Note that the CPU demand 𝛽𝑛𝑚 for each transaction does
not vary with the CPU entitlement 𝑒𝑚. The CPU entitlement
has no effect on the service time of non-CPU resources either,
assuming that it depends on the capacity of non-CPU resources
only. Thus once we obtain 𝛼𝑛 and 𝛽𝑛𝑚 values, the model (9)
can be used to predict the response times for given transaction
mixes and CPU entitlements as discussed in the next section.

C. Model Parameter Identification

Multi-tier applications from enterprise applications to large
e-commerce sites share a crucial characteristic: the relative
frequencies of transaction types in their workloads are non-
stationary [1]. That is, the frequencies of the transaction types
vary over time. This property makes possible a non-intrusive
approach to identify the parameters of the performance model.

We divide time into non-overlapping intervals and measure
the mean response time 𝑟, transaction mix 𝜆1,. . . ,𝜆𝑁 , the CPU
entitlement 𝑒𝑚 and CPU consumptions 𝑐𝑚 (𝑚 = 1, . . . ,𝑀)
of the tiers for each time interval. Since the transaction mix
changes over time in a non-stationary way, and the relationship
between 𝑐𝑚 and 𝜆𝑛 are linear, 𝛽𝑛𝑚 can be estimated through
linear regression using (6) over multiple measurement inter-
vals. The model (9) can then be used to obtain 𝛼𝑛 using linear
regression analysis.

D. Proactive Control

In the architecture shown in Figure 4, the feed-forward
controller provides proactive control to meet the specified
response time target by dynamically adjusting the CPU uti-
lization targets of virtual machines hosting the application
components. This is achieved by first translating the response
time target to a utilization target based on the performance
model (9).

By combining Equations (4) and (8), we re-formulate the
performance model as follows,

𝑟 =
1

𝜆

(
𝑀∑

𝑚=1

𝑢𝑚

1− 𝑢𝑚
+

𝑁∑
𝑛=1

𝛼𝑛𝜆𝑛

)
, (10)

from which the utilization targets 𝑢𝑚 (𝑚 = 1, . . . ,𝑀) for
each tier can be derived for a given response time target 𝑟ref

and transaction mix 𝜆𝑛 (𝑛 = 1, . . . , 𝑁). Note that 𝛽𝑛𝑚 are
required to derive 𝛼𝑛 though they are not used directly in (10).

When the number of tiers is greater than one, we have
more than one variable 𝑢𝑚 in (9), and the solution becomes
indeterminate. In that case, we can define an objective function
(e. g., a cost function of CPU capacity allocated to the virtual
machines) and cast the problem into an optimization problem
with a constraint defined by (10). Other constraints (e. g.,
𝑢𝑚 < 80%) may also be specified by operator policy.

It is also possible to assume that the utilization targets of all
tiers are the same. This does not imply resource entitlements
are the same across the tiers, since the resource consumptions

of the tiers can be significantly different. In that case, (10) can
be solved directly to obtain the utilization target for each tier
as follows,

𝑢ref
𝑚 =

𝑟ref𝜆−∑𝑁
𝑛=1 𝛼𝑛𝜆𝑛

𝑀 + 𝑟ref𝜆−∑𝑁
𝑛=1 𝛼𝑛𝜆𝑛

. (11)

We use this approach in the evaluation experiments dis-
cussed in next section.

Note that, the utilization targets necessary to meet the
response time threshold also depend on the transaction mix,
which is not available until the end of the measurement inter-
val. A number of prediction algorithms such as those proposed
to capture the trends or patterns of the workloads [12] can be
used for this purpose. In this paper, we use a simple one-step
predictor to predict the transaction mix in the current interval
from the transaction mix in the previous interval. Integration of
our model with more advanced workload prediction techniques
is left for future work.

E. Discussion

Our performance model has several desirable features. First,
our model can predict performance of multi-tier applications
running on virtualized servers with variable CPU entitlements.
Once we obtain a set of model parameters, we can use them for
different configurations and scenarios. Second, our modeling
approach is non-intrusive in the sense that the process of model
parameter identification requires no additional instrumentation
and the data used in our approach is readily available from
standard system and application monitoring. Thus our model
parameter identification does not require changes to existing
applications and systems for instrumentation purposes and
hence can avoid expensive benchmarking. Finally, our model
captures the resource demand at per-transaction type and per-
resource levels and can be used to derive resource demand
for different transaction mixes. Hence this approach can be
applied to realistic workloads where both the frequencies of
transaction types and request volume rates can change over
time.

The performance model also has several limitations. First,
although CPU is often the key resource in multi-tier ap-
plications, in reality multiple system resources can become
bottlenecks. The model presented in this paper currently
handles only a single bottleneck resource, and does not
capture the utilization of multiple resources. It is possible to
enhance our model to include other temporal resources (e. g.,
network bandwidth) using queuing networks. This will be the
subject of future work. Modeling spatial resources such as
virtual memory or buffer caches requires different approaches.
Another limitation is that we only calculate the mean response
time, which can be misleading. We are interested in exploring
the enhancement of the current model for handling bursty
workloads and estimating probability distributions of response
time in our future work. We can use Markov’s Inequality
to estimate a loose upper-bound for the tail distribution of
response time. An alternative approach is percentile regression
analysis [13]. Finally, the model assumes that resources are
held at exactly one tier at a time as a request proceeds through
the system. Thus, our model does not handle applications
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Fig. 5: Testbed design for experiments.

such as video streaming, where a request can hold resources
simultaneously at multiple tiers or servers.

IV. IMPLEMENTATION

To evaluate the effectiveness of AppRAISE, we imple-
mented the architecture and algorithms on a testbed that
hosted multiple multi-tier applications in a virtualized server
environment. Experimental results showed that our proposed
models are valid in such an environment and that AppRAISE
provides a solution for robust application level performance
control for the hosted applications.

A. Testbed

As shown in Figure 5, our testbed consists of five HP
ProLiant servers. Each has 2 CPUs, 4 GB of RAM, one
Gigabit Ethernet interface card, two local SCSI disks, and a
SUSE Linux distribution with a Xen-enabled Linux 2.6 kernel.

Three of the servers were used to host two three-tier appli-
cations, called Application A and Application B, respectively.
Both applications were comprised of a front-end Apache Web
server (v. 2.2.9), a middle-tier JBoss application server (v.
4.0.2), and a back-end MySQL database server (v. 5.0.26).
Each application component was run inside one virtual ma-
chine. In our experiment, each physical server hosted two
virtual machines containing one tier from the two applications.

Inside the management domain (Domain-0) of each physical
server, the “Node Agent" exposed APIs for monitoring the
host and the virtual machines, and allocating the resources to
the virtual machines. To get CPU statistics, the agent collected
the hypervisor counters that accumulated the CPU time (or
cycles) consumed by each domain. These counters were
sampled at fixed intervals, yielding a sensor metric of the CPU
consumption. The Xen hypervisor also provides interfaces that
allow runtime adjustment of scheduling parameters such as
CPU entitlement to each domain. In our experiments, the Xen
Credit Scheduler was employed in the capped mode, which
assures a straightforward guarantee on the CPU entitlement to
domains while the maximum capacity available to the virtual
machines is also capped by the entitlement.

The workload generators of the two applications were run
in the fourth server. The “Client Agent" collected data on

the workload, including the URL and the end-to-end response
time of each transaction. The agent also exposed APIs for
the controllers to access the application data. In production
environments, the performance data may not be measured
directly from the clients but a proxy can be used for that
purpose in the front end.

The fifth server hosted the application controllers, each
managing one application. Each physical server was managed
by a node controller, running inside Domain-0. Communica-
tion among the agents and the controllers was implemented
using the XML-RPC protocol.

We did not implement the configuration service and the
policy engine shown in Figure 2. Instead, XML files were used
to configure the topology (i. e., the placement of VMs), define
the applications (i. e., their component VMs, performance
metrics and targets), and configure the controllers (i. e., control
and sampling intervals, parameter values).

B. Workload

Our test application is a modified version of the Rice Uni-
versity Bidding System (RUBiS) [14], [15], which is an online
auction benchmark with 22 transaction types, such as browsing
for items and viewing user information. In our testbed, the
EJB_BMP version of the application server is deployed, which
has higher CPU demand than other implementations. We
employ a RUBiS database with 500000 users, 55000 items,
550000 comments, and 3.7 million bids.

Like other benchmark workload generators, the default
RUBiS client produces stationary workloads, that is, the
relative frequencies of the different transaction types remain
constant over time. To emulate real applications with highly
non-stationary transaction mixes, we used a custom workload
generator that allowed us to replay transaction traces collected
from production systems.

The transaction traces that we used in our experiments
were collected from a globally-distributed business-critical
internal HP application called “VDR". The transactions of this
enterprise application involved case and data management for
both external customers and HP users. The RUBiS application
was used in our experiments to emulate the VDR application
as follows. The RUBiS transactions were first ranked based
on their popularity in the workload generated by the default
RUBiS generator. Synthetic traces were then created by replac-
ing VDR transactions in the original traces with the RUBiS
transaction of the same popularity rank. These traces were
then fed to the custom workload generator, which sent out
the requests to the RUBiS application with exponential inter-
arrival times. More information on the workload can be found
in [1].

To illustrate the non-stationarity of the synthetic workload
of RUBiS that mimicked the VDR application, Figure 6a
shows the individual intensities plotted versus time for the
top three transaction types while the aggregate arrival rate of
all the transactions was hold constant at 2,400 transactions
per minute or 40 transactions per second. In our tests, the
transaction mix data were collected every 90 seconds. In
this experiment, 100% of CPU capacity was available to the
application. The time series show fluctuation in the rates of the
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Fig. 6: Non-stationarity of the workload.

individual transaction types. Moreover, the relative intensity of
the transactions significantly changed over time. The transac-
tion types also consume different CPU resources. Figure 6b
shows the aggregate CPU consumption of the transactions on
the application tier. Even with constant aggregate rate, the
workload has time-varying demand on CPU.

The CPU consumption shown in Figure 6b follows a pattern
similar to the intensity of Transaction C that is shown in
Figure 6a. This is mainly due to the very high frequency
and significant CPU demand of that transaction type. In fact,
Transaction C accounts for 21% of all the transaction types
and is the third most expensive transaction in terms of CPU
demand. Transaction A and B are slightly more popular than
Transactions C, accounting for 23% and 28% respectively, but
they have much lower CPU demand. Two other transactions
types, not shown in the figures, consume more CPU than
Transaction C on the application tier , but account for only
3% each of the total number of transactions, while all the
remaining transactions have very low CPU demand.

C. Control Algorithms for AppRAISE

Figure 7 shows the pseudo code of the algorithms for
the feed-forward controller, the feedback controller and the
utilization controller utilized in AppRAISE, as described in
Section II and Section III.

The three controllers worked continuously, each with their
own sampling and control intervals notated as 𝑇FF, 𝑇FB, and
𝑇Util, respectively. It is challenging to determine appropriate
values for the sampling intervals for guaranteed convergence
of the system with nested loops. However, the rule of thumb
is to set 𝑇Util ≪ 𝑇FB ≪ 𝑇FF so that the three loops can
work at different time scales. In that case, the inner loops can
be deemed to be in their respective steady states for stability
analysis of the outer loops. In our experiments, 𝑇Util, 𝑇FB and
𝑇FF were set to 10, 30 and 90 seconds respectively. These
intervals were used to balance the overhead associated with re-
source actuation and the tracking properties of the controllers

//Feed-forward Control
For the 𝑖th control interval {

1) Get transaction mix 𝜆1(𝑖− 1), . . . , 𝜆𝑁 (𝑖− 1)
2) Estimate current transaction mix

�̂�𝑛(𝑖) = 𝜆𝑛(𝑖− 1), 𝑛 = 1, . . . , 𝑁
3) Predict utilization target

𝑈mdl = 𝑓(�̂�1(𝑖), . . . , �̂�𝑁 (𝑖), 𝛼1, . . . , 𝛼𝑁 , 𝑟ref)

}
// Feedback Control
For the 𝑗th control interval {

1) Get mean response time 𝑟(𝑗 − 1)
2) Calculate utilization adjustment

Δ𝑈 (𝑗) = Δ𝑈 (𝑗 − 1) +𝐺FB
(
𝑟ref − 𝑟 (𝑗 − 1)

)
/𝑟ref

3) Update utilization targets
𝑈 ref(𝑗) = 𝑈mdl +Δ𝑈 (𝑗)
with 𝑈 ref(𝑗) = 𝑢ref

1 (𝑗) = . . . = 𝑢ref
𝑀 (𝑗)

}
// Utilization Control
For the 𝑘th control interval of virtual server 𝑣 of tier 𝑚 {

1) Get consumption 𝑐𝑣(𝑘 − 1) and entitlement 𝑒𝑣(𝑘 − 1)
2) Calculate new entitlement

𝑒𝑣(𝑘) = 𝑒𝑣(𝑘−1) − 𝛾𝑐𝑣(𝑘−1)
(
𝑢ref
𝑣 − 𝑢𝑣(𝑘−1)

)
/𝑢ref

𝑣

with 𝑢𝑣(𝑘) = 𝑐𝑣(𝑘−1)/𝑒𝑣(𝑘−1)

}

Fig. 7: Pseudo code of AppRAISE controllers.

as the workload fluctuates. First, in a Xen environment, the
response time of the application can suffer if the scheduler
parameters are modified too frequently. As Xen matures and
improves its efficiency, utilization control can be executed
at shorter intervals. Second, since the workload fluctuated
significantly, the predictability of the feed-forward controller
can be compromised if longer time intervals are used for the
predictive controller. We plan to experiment in the future with
other intervals to improve control performance.

Two additional parameters were needed for the controllers:
the gain for the utilization controller and that for the feedback
controller. Note that there is a non-linear relationship between
response time and utilization. A larger feedback control gain
can cause larger deviation of the response time. On the other
hand, a larger gain can help the controller to react more
quickly to sharp changes in workload. The gain parameter 𝛾 of
the utilization controller was set to 1.0, which is in the middle
of the stability range. The gain of the feedback controller 𝐺FB

was 0.1 based on our earlier experience [16].
For comparison, we also evaluated scenarios in which one or

two of the three controllers were disabled, but the parameters
of the controllers were otherwise kept the same. This will be
described in more detail in the next section.

V. EVALUATION

We ran extensive experiments to evaluate AppRAISE. In
this section, we focus on modeling and dynamic control of the
system. By comparing different controller options and control
algorithms, we demonstrate how AppRAISE can achieve a
reasonable tradeoff between tracking a performance target and
reducing resource consumption.

A. Model Parameter Identification and Validation

To validate the transaction-mix-based utilization model (6)
and performance model (9), we ran experiments on the
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Fig. 8: Model validation.

testbed using a standard “training and testing" process. In
these experiments, the applications were driven by the traces,
and the virtual machines that hosted application components
were statically allocated constant shares of CPU capacity.
The parameters of the models were identified through linear
regression, using the time series of the metrics, including
consumption, entitlement, transaction mix, and response time.
The robust linear regression tool in MATLAB, which has been
shown to be less sensitive to outliers than traditional least-
square regression, was used to obtain the model parameters.
The models were then validated using data sets collected in
other experiments run under different conditions (e. g., using
different resource entitlements and/or workload intensity).

Figure 8 shows part of the data collected from an exper-
iment, from which the model parameters including 𝛼𝑛 and
𝛽𝑛𝑚 for all the transactions were identified. The experiment
was run for 10 hours, and 100% of the CPU was available to
each of the three virtual machines that hosted the three tiers
of the application. The model was then validated using the
data collected from another experiment, in which only 50%
of CPU was available.

Figure 8a shows the validation results where the experimen-
tal data were compared with those predicted using models (6)
and (9) and exact transaction mix values. Note that only two
hours of the time series are shown. In Figure 8a, the time series
of the utilization metric of the application tier were compared
with those predicted using the utilization model (6). Figure 8b
shows the mean response times collected from the same
experiment, versus those predicted by the performance model
(9). Not surprisingly, the prediction error for response time
appears much higher than that for the utilization. To evaluate
how accurate the models are, we introduce the normalized
error 𝜀 that is defined as

𝜀 =
∑

𝑖 ∣𝑦𝑖 − 𝑦𝑖∣/
∑

𝑖 ∣𝑦𝑖∣ , (12)

where 𝑦𝑖 and 𝑦𝑖 are the estimated and measured values respec-
tively of the metric 𝑦 in the 𝑖th interval. The normalized errors

TABLE II: Statistics on utilization and performance prediction

CPU caps of tiers Norm. utilization Norm. MRT
(Web, App, DB) error (app tier) error
(100, 100, 100) 2.6% 9.3%

(90, 90, 90) 4.0% 11.9%
(70, 70, 70) 9.1% 12.8%
(50, 50, 50) 3.1% 14.9%
(40, 40, 40) 4.0% 12.3%
(30, 60, 40) 4.9% 15.1%
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Fig. 9: Response time under high utilization.

for the utilization and response time shown in Figure 8 were
3.1% and 14.9% respectively. From its cumulative distribution,
90 percent of response time prediction errors were actually
below 25%.

Table II shows statistics on the prediction errors of the
models in a series of experiments when the CPU entitlement
to the application was varied. In all six cases, the model
parameters, 𝛼’s and 𝛽’s, were the same as that derived from
the first experiment where 100% of capacity was available to
all the three tiers, notated as (100, 100, 100). The models were
then tested in the other five cases where the CPU entitlements
were varied as in the first column. Overall, the utilization
model can predict the utilization level with errors less than
10%. For prediction of MRT, which is more challenging than
that of utilization, the errors are no more than 15%.

We note that the trends versus time of both utilization
and response time shown in Figure 8 are similar as that of
the CPU consumption shown in Figure 6b. For utilization,
this is due to the workload intensities being the same in the
two experiments. However, the amplitude of the utilization in
Figure 8a is almost doubled since only half of CPU capacity
was allocated to the application in the experiment. If we
decompose CPU resident time into CPU service time and
queuing time, the first part is actually proportional to the CPU
demand since the resource entitlement was constant. Given the
relatively low utilization (25% most of the time), the queuing
time only contributed approximately 10% of the total response
time. That explains why the response time followed similar
trend as that of the CPU demand.

To validate our model under relatively high utilization, we
created another trace with transaction mixes different from
those of VDR and ran another experiment driven by that
trace. Compared with VDR, which had high demand on the
application tier, the new workload put more demand on the
database tier. In the experiment, the database server utilization
varied between 30% and 65% with a mean utilization of
around 50%. From queuing theory, the queuing time in this
experiment contributes 50% of the resident time for CPU.
Figure 9 shows the response time measurement, and those
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predicted using the same models as in previous experiments.
The normalized prediction error is only 7.7%.

B. Experimental Configuration for Dynamic Control

We focus on the dynamic behavior of the system in this
section. We ran two series of experiments. In the first series,
only one application was used with the three tiers hosted in the
three virtualized servers. In the second series, two applications
were run in parallel as shown in Figure 1. All the applications
were driven by the VDR traces. For each series, four control
options were tested.

Case 1: Fixed utilization targets (“FixedUtil"). In this
case, CPU capacity was dynamically allocated to meet the
specified utilization target, which was held constant over time.
This approach is widely used in production systems. The
controller is similar to the functionality offered by some com-
mercial workload management products, such as HP’s gWLM
[5] and IBM’s Enterprise Workload Manager [6]. In our
experiment setup, the feedback and feed-forward controllers
were disabled so that the utilization controller tracked a fixed
utilization target configured through the configuration file.

Case 2: Feedback plus utilization control (“FB+Util").
The feed-forward controller was disabled in this case. The
feedback controller was modified to directly tune the utiliza-
tion targets, rather than adjusting output from the feed-forward
controller.

Case 3: Feed-forward plus utilization control
(“FF+Util"). In this case, the feedback controller was
disabled. With accurate enough performance models and
workload predictors, the feed-forward controller should track
the performance target upon predictable changes of workload
demand faster than the feedback controller does.

Case 4: Integrated control (“FB+FF+Util"). With inte-
grated feedback and feed-forward control, this option should
provide fast and stable tracking of the response time target as
workload demands change.

In each experiment, time series of the response times, CPU
consumption and allocation of each tier of the applications
were collected and analyzed. By comparing the results from
the four options, we expect to understand the effects of
feedback and/or feed-forward control on the resource usage
and performance guarantee of the applications, and show how
AppRAISE can achieve a reasonable tradeoff between tracking
a performance target and reducing the required resources.

C. Experiment Results for a Single Application Running in
Three Virtual Machines

In the first series of experiments, each of the four ex-
periments ran 90 minutes with a mean arrival rate of 30
transactions/second. For all four cases, the sampling intervals
of the utilization controller and feedback controller were 10
and 30 seconds respectively. In the case “FF+Util", the feed-
forward controller updated the utilization targets every 30
seconds, based on the workload history in the past 30 seconds.
In the case “FB+FF+Util", the feed-forward controller reset
the utilization targets every 90 seconds, but only based on the
history of the past 30 seconds. In all the cases, the minimum
CPU share of each virtual machine is set to 20% of a CPU.

TABLE III: Steady-state performance for one application

Control MRT Mean entitlement
cases (ms) (shares of CPUs)

Mean Std Below Web App DB
target tier tier tier Total

FixedUtil 103.4 60.4 23% 20 21.0 22.6 63.6
FF+Util 33.9 14.6 76% 20 35.5 32.1 87.6
FB+Util 38.5 19 59% 20 35.3 32.1 87.5

FB+FF+Util 37.1 16 60% 20 35.0 31.7 86.7

One question is how to set up the utilization target in the
first case, and the response time targets in the other three cases.
In production environments, the operators of the systems
usually do not know how to set up the utilization target of
workload managers, and often use the default settings provided
by the manufactures, for instance, 75% in the HP gWLM.
Previous analysis has also shown that it’s highly undesirable
for interactive applications to operate above 70% [1]. An ideal
utilization target depends on the performance target of the
application, how bursty the workload demand could be, and
the capacity of the system available to the application. In
our experiments, we set the utilization target to 50% in the
“FixedUtil" case, without considering the properties of the
applications and the systems.

Setting the response time target is a more challenging
issue. It has been found that the response time requirement
for real user-interactive Internet services is very demanding.
For example, Amazon found that every additional 100ms
of latency cost it 1% loss in sales; Google noticed that an
extra 0.5 seconds in search page generation time reduced the
access traffic by 20% [17]. In our experiments, most of the
transactions of our workload have low CPU demands. We thus
set the response time target to 40ms. Given the smaller testbed
and simpler applications than that in production environments
like Google and Amazon, the response time target we set
should be reasonable.

Table III shows the statistics of the experimental results in
the four cases. For performance, we show the mean and stan-
dard deviation of the MRT (mean response time as measured
every 90 seconds) samples, and the percentage of the MRT
samples with values less than the target. The table also shows
the mean CPU entitlement to each of the three tiers, and the
total entitlement to the application. Overall, best performance
was achieved in “FF+Util" case: the lowest mean response
time and comparable total resource entitlement.

To better understand the results, we show in Figure 10 the
time series for MRT and the CPU entitlement in the four cases.
Detailed discussion follows based on the data in the table and
the information in the time series.

“FF+Util" achieves best tradeoff between performance
and resource entitlement. Compared with the other three
cases, the least CPU was allocated to the application under
control of the utilization controller (“FixedUtil"), but the
application experienced the worst response time. Although the
time series for response time in Figure 10a follows a similar
pattern as for the other cases in Figure 10b, the magnitude
of the samples is much higher than the others. As argued
before, in general the highest utilization threshold to maintain
a given response time reference depends on many factors. It
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(c) CPU entitlement to the application tier in the four scenarios

Fig. 10: Transient effect of the controllers.

may be derived with good models and workload predictor. In
our case, a utilization target of about 25% is actually needed
for the 40ms response time target.

Among the other three cases, the application under control
of “FF+Util" has the lowest response time, in terms of both
mean and standard deviation. “FB+Util" has the largest mean
response time, and also the largest variance of MRT. Although
the total CPU shares allocated to the applications are very
close to one another in the three cases, the tradeoff between
CPU entitlement and response time is still maintained in the
three cases as shown in the table.

The table shows that the mean response times in the three
cases with FB and/or FF controllers are all below the target
40ms. This is mainly because the response time is much lower
than the target, as shown in Figure 10b for about 10 minutes
in the middle of the experiments and for a few intervals at
the end. During those time periods, the workload had very
light CPU demand, but the CPU capacity was over-provisioned
because the virtual machines were maintained at 20 shares
even when the requested entitlement was lower.

If we remove the samples in the time periods when CPU
was significantly over-provisioned, the mean response times
for the three cases become 39ms, 43ms, and 42ms, and the
standard deviations become 13ms, 16ms, 13ms, respectively.
That means the response time target is still tracked the best
in the case “FF+Util". In the “FB+Util" case, the controller is
too aggressive in compensating for the MRT error. Oscillation
exists in the time series for MRT in the case “FB+Util", as

shown in Figure 10b. This also explains why its response time
metric has the largest variance among the three cases. Using
a smaller control gain should alleviate the issue.

Similar results were observed in a second experiment driven
by the traces utilized in the modeling experiment for data
shown in Figure 9. In that experiment, the mean utilization of
the application server was 40%, and that of database server
was 48%. Both were relatively higher than that in the above
experiments. In the case “FF+Util", the average MRT was
55ms for a target of 60ms, and 92% of the samples were
below the target.

Prediction errors can be compensated by feedback
controller. The results in Table III imply that the models are
reasonable, and that the model based feed-forward controller
can maintain performance at its target level. However, these
results do not mean that the feedback controller is useless. In
the work presented in [16], we have validated the benefits of
feedback control through experiments run on another testbed.
In those experiments, the “FF+Util" controller was shown
to be sensitive with respect to modeling errors, which can
result in over or under provisioning of CPU capacity, and
poor response time in the latter case. However, the integrated
controllers were shown to be more robust with respect to
modeling errors, and maintained the performance at its target
even in the presence of prediction errors.

Proactive control can improve the transient process of
feedback loop significantly. What is the effect of introducing
feed-forward control into the feedback loop? In general, it
should help the controller to respond to transient changes more
quickly and more smoothly because of the proactive action.
From Table III, we know that the variance of response time in
the case “FB+FF+Util" is less than that in the case “FB+Util".
As seen in Figure 10b, even with the same gain of the feedback
controller, the integrated control results in a much smoother
response time curve than “FB+Util" does.

To study the problem further, note that in the case
“FB+FF+Util", resetting the utilization target by the feed-
forward controller moves the operation of the feedback loop
closer to the equilibrium. Even with the same feedback gain,
which is too aggressive in the case “FB+Util", the integrated
controller resulted in less variance. As another example,
shown in Figure 10b and 10c, the demand of the workload
sharply increased at around the 50th minute. The “FB+Util"
controller responded with delay, causing a large overshoot of
the response time. With integrated proactive control, as in the
“FB+FF+Util" case, the response time was driven closer to
the reference with much less overshoot. More examples are
shown in [16] to demonstrate the effect of proactive control
on transient processes.

To summarize the results shown in Table III and Figure 10,
and those presented in [16], our performance model is rea-
sonable and is able to predict the performance based on the
transaction history of the workload. Although the feed-forward
controller works well given good models, the integrated con-
troller can be more robust. On one side, introducing proactive
control into a feedback loop can help the system to respond
quickly to changing workload demands. On the other side,
introducing feedback to predictive control can compensate for
errors in the feed-forward loop due to modeling biases or
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TABLE IV: Steady-state performance for two applications.
(Application I, 30 transaction/sec, MRT target 40ms)

Control MRT Mean allocation
cases (ms) (shares of CPUs)

Mean Std Below Total
FF+Util 34.4 9.8 78% 91.8
FB+Util 38.3 19.1 58% 87.5

FB+FF+Util 36.8 13.3 66% 88.9

TABLE V: Steady-state performance for two applications.
(Application II, 20 transaction/sec, MRT target 60ms)

Control MRT Mean allocation
cases (ms) (shares of CPUs)

Mean Std Below Total
FF+Util 50.3 19.6 74% 54.4
FB+Util 58.0 23.3 50% 54.1

FB+FF+Util 55.6 22.8 60% 53.8

workload prediction inaccuracies.

D. Experimental Results for Two Applications Running in Six
Virtual Machines

The objective of these experiments was to demonstrate that
the performance models we proposed are still valid when the
physical resources are shared by multiple applications, and
that AppRAISE is still able to provide robust performance
control. In the experiments, there were two 3-tier applications
running in parallel, as shown in Figure 1. They were driven by
the same VDR traces, but with different rates and performance
targets. Application I, the same as that in the previous section,
was driven by the client with a rate of 30 transactions/sec, and
its MRT target was set to 40 ms. The rate of Application II
was set to 20 transactions/sec, and its MRT target was 60ms,
higher than that of Application I. The cases with FF and/or FB
controllers were tested under this new scenario, each running
for 90 minutes.

The statistics on the two applications are shown in Table IV
and V, respectively. We note that the models are still valid,
the performance targets of both applications are met, and
the “FF+Util" case achieves the lowest response time with
slightly higher resource entitlement. By comparing the entries
in Table III and Table IV, we can see that Application I has
almost the same statistics under the two scenarios, especially
in the cases using the “FF+Util" controller.

E. Discussion

A few additional issues about the implementation of
AppRAISE and the experiments are worth discussion. First,
the prediction of the workload, including the transaction
mix and aggregate intensity, is critical to the feed-forward
controller. Inappropriate prediction can cause relatively large
errors in the output of the feed-forward controller. A better
predictor than the “one-step" approach may be adopted, for
instance, to exploit the seasonal pattern of the transaction rate
using predictors such as those in [12].

Second, the experimental results can be affected by the
control parameters, including the control intervals and the
feedback controller gains. For instance, shorter sampling
periods can maintain the utilization target better when the

consumption changes very quickly, but a shorter interval
could cause the utilization controller to change the entitlement
too fast resulting in unstable behavior. For the feed-forward
controller, the performance model works better for larger
intervals, but a larger interval also makes the prediction of
the workload and the CPU consumption less accurate. The
performance overhead of sampling and control actions has to
be considered as well. Our future work includes understanding
these trade-offs and optimizing the parameters.

VI. RELATED WORK

A. Feedback Control in Computing Systems

Feedback control theory has been applied to solve a number
of performance and quality of service (QoS) problems in
computing systems in the past several years (see [18], [19]
and the references therein for a detailed survey). In these
applications, we see two major challenges for appropriate
system modeling and effective controller designs: the complex
behaviors of computing systems themselves, and the time-
varying demands placed on these systems by stochastic and
sometimes bursty workloads.

In [9], Wood et al. considered black and gray box ap-
proaches for managing VMs in a Xen-based testbed. They only
considered resource utilization for the black box approach, and
added OS and application log information for the gray box
approach. They found that the additional information helps to
make more effective decisions.

Most early work in this area assumed that the system under
control is linear, and that the parameters can be identified of-
fline. However, due to the wide variation of demands observed
in computing systems, the parameters or even the structure of
the models could change over time. To deal with time-varying
parameters in linear models, adaptive control theory has been
applied to systems in the context of, for instance, caching ser-
vices [20] and resource containers [21]. This approach allows
the parameters of the model to automatically adapt to changes
in operating conditions using online system identification.

In [10], the system’s nonlinear and bimodal behavior in
different operating regions was studied quantitatively, and
controllers that could adapt to the bimodal behavior were
developed. In [22], a queuing model based feed-forward pre-
dictor was used to capture the non-linear relationship between
system response time and resource allocation. They evaluated
this idea by controlling the number of web server processes
allocated to a class of transactions, whereas we have extended
it to the more general-purpose control of CPU allocations for
virtualized, multi-tier applications. To manage the increased
complexity, we have introduced the conceptual architecture of
application and node controllers. We have also incorporated a
more sophisticated queuing-theoretic performance model that
considers non-stationary transaction mixes.

Other researchers have studied potential conflicts that can
arise when running multiple automation policies indepen-
dently without coordination. In [23], Kephart et al. studied
the scenario where a performance manager, that dispatches
workloads to a set of blades, runs in parallel with a power
manager that controls processor frequency. They demonstrated
that oscillations can occur in both autonomic managers. The
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paper also showed how this problem can be fixed by explicit
communication between the two managers. In [24], Heo et
al. identified the incompatibility between a DVFS adaptation
policy and a server on/off policy when they are not coordi-
nated in a server farm, and they presented a co-adaptation
approach that can resolve such conflicts. Neither study dealt
with resource management in virtualized data centers, as is
considered in this article.

In [25], Xu et al. presented a two-layered approach to
managing resource allocation of virtual containers sharing
a server pool in a data center, and evaluated the scheme
in a testbed running VMware ESX Server [26]. Their local
and global controllers together offer a solution similar to the
management approach studied in this paper using fuzzy logic
instead of feedback control.

In previous work [7] we provided an integrated capacity
and workload management concept for next generation data
centers. In that work we did not consider applications that
span multiple VMs as the present application controller does.
The application and node controllers presented in this work
can be easily integrated with those higher level controllers.

Utilization controllers are relatively straightforward to im-
plement. Maintaining the utilization at a target level only
requires that the resource consumption is collected in real time
and is generally available through local system-level instru-
mentation. Entitlement actuation can be done inside the server
as well, using interfaces available from the virtual machine
monitors or hypervisors. Utilization controllers have also been
implemented in a few workload management products [5], [6]
for dynamic sizing of virtual containers like process groups
and virtual partitions of processors, although they generally
use standard integral controllers unlike the adaptive controller
used in our work.

For most workload managers, a default utilization target,
e. g., 75%, is used. However, this default is rarely ideal
for individual customer environments when application-level
performance guarantees are expected. For instance, depending
on how bursty a workload might be, this default utilization
level can result in bad application-level performance or over
provisioning of resources. It remains challenging for operators
to determine the appropriate values for a given application.
AppRAISE addresses this issue by automatically determining
the appropriate utilization target values for virtual machines

B. Performance Models

In [3], Stewart & Shen used finer-grained resource con-
sumption profiles of components within an application, in
conjunction with a queuing model to guide component place-
ment decisions. Urgaonkar et al. employed a closed network
of queues to model multi-tier applications under processor
sharing (PS) scheduling in [2]. They assumed that service
times and think times are exponentially distributed so that
mean value analysis can be used to solve the model. In [27],
Bennani & Menasce demonstrated how analytic performance
models can be used to design controllers for the live migration
of servers. They used a combination of a multi-class open
queuing network model to track transactional workloads and
a closed queuing network model, similar to that in [2], to
model batch workloads.

Transaction mix models are a new approach to modeling
performance in transaction-oriented applications, e.g., modern
enterprise applications [1]. Important attractions of transaction
mix models for our present purposes are that they are simple,
applicable to open network models, readily able to compose
with queuing-theoretic extensions, and easy to calibrate using
only lightweight, passive measurements that are routinely
collected in today’s production environments. An extensive
evaluation of transaction mix models has shown that they
yield remarkably accurate application-level performance pre-
dictions in real production applications and in a wide range
of challenging lab test scenarios [1]. Transaction mix models
leverage naturally-occurring workload irregularities for model
calibration, thereby circumventing the need for controlled
benchmarking or invasive instrumentation.

The performance models described in Section III combine
transaction mix models with novel queuing-theoretic exten-
sions. Our approach is noteworthy in several respects:

∙ It explicitly considers the transaction mix, recognizing
that different types of transactions may incur very dif-
ferent resource consumption rates. Since real production
work-loads have time-varying transaction mixes, incorpo-
rating transaction mix into the model enhances accuracy.

∙ Our performance model is relatively straightforward to
apply. It uses open-queuing results, with a simple for-
mula for queuing time that applies to both M/M/1 and
M/G/1/PS queues. Simplicity allows for quick compu-
tation (in comparison to the closed-queuing network
approach); it also allows us to invert the equation easily
to solve for the target utilization of the application
components.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented AppRAISE, a distributed man-
agement system for application performance control and dy-
namic resource allocation in virtualized server environments.
We evaluated the queueing models for applications hosted on
virtualized servers, and used the models for prediction of re-
source demand to meet application-level performance require-
ment based on workload transaction-mix history. Empirical
results showed that AppRAISE integrates the benefits of both
feedback and feed-forward control techniques, and provides
a reasonable trade-off between performance guarantee and
resource efficiency for applications under control.

We are continuing to study the performance models for
virtualized servers for more complicated cases and different
virtualization technologies. As future work, further improve-
ments could be achieved through more robust and accurate
prediction for the workload, online modeling, and parameter
optimization.
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