Connection-Based Adaptive Routing Using Dynamic Virtual Circuits

Yoshio F. Turner and Yuval Tamir Concurrent Systems Laboratory UCLA Computer Science Department

System Model

Network with up to thousands of nodes

Input-buffered, virtual cut-through, $N \times N$ switch.

Connection-Based Routing

- Defn: In *connection-based routing*, network resources are reserved in advance of communication.
- Potential Advantages
 - * Reduced processing for packet interpretation/routing.
 - * Reduced addressing/control information transmitted with each packet.
 - * Efficient network resource utilization.
- Connection setup must be fast or infrequent relative to communication.
- →Examples: circuit switching, static virtual circuits.

Static Virtual Circuits

- Virtual Circuit (connection) establishment:
 Set up source-destination path —

 entries in routing tables along the path.
 Routing Virtual Channel (RVC): entry in routing table.
- Packet Header: routing table entry (RVC #) in next node.
- After circuit setup, data packets are routed (mapping table lookup) along the virtual circuit's path.
- Reserved RVCs are released upon termination of the static virtual circuit.
- Each physical link is demand time multiplexed among the active virtual circuits using the link.
- FIFO ordering of packets on a connection.

Problems with static virtual circuits

- Once established, a virtual circuit's path is fixed cannot adapt to changes in the system.
- During its lifetime, a virtual circuit cannot release resources to other virtual circuits.
 - * New circuits may be prevented from being established.
 - * Idle circuits consume RVCs.
 - Circuits may permanently occupy resources if processes terminate without disestablishing their circuits.

Outline

- I. Dynamic Virtual Circuits (DVCs): Support for connection-based adaptive routing.
- II. Original DVC Approach: Deadlock Resolution
- III. New DVC Approach
 - A. Deadlock Avoidance
 - B. Maintaining FIFO Ordering
- IV. Potential performance (bounds, limit cases)
- V. Conclusion/Future Work

Dynamic Virtual Circuits (DVCs)

Distributed mechanism for tearing down and re-routing circuits on demand.

- \rightarrow Support for re-routing due to congestion.
- Circuits can be torn down from intermediate nodes without involving the source nodes.
- Circuit establishment is guaranteed by freeing needed resources.
- Resources held by idle circuits are reclaimed before those held by active circuits.

DVC example (CEP, no free RVCs)

- CEP = Circuit Establishment Packet
- CDP = Circuit Destruction Packet
- D = Data Packet

DVC Challenges

- Low per-hop overhead.
- Deadlock-free fully-adaptive routing:
 - * Standard packet buffer deadlock problem.
 - * <u>Complication</u>: deadlocks involving RVCs.
 - \rightarrow RVC allocation depends on data packet transmission.
 - → Data packet transmission depends on RVC allocation at a neighbor switch.

First Approach: Deadlock Resolution

Motivation: Avoid constraints on routing and buffer utilization.

- 1. Detect deadlock
- 2. Determine cycle of resource requests
- 3. Resolve deadlock by careful introduction of additional resources.

Jaffe, Sidi, Algorithmica, 4(5), 1989

- Detection idle full buffer
- Cycle determination control messages used to determine cycle of full buffers, auxiliary buffer
- Auxiliary buffers used to "rotate" packets around cycle
- Deadlock cycles resolve too slowly to prevent formation of new cycles.

Alternative: Deadlock Avoidance

J. Duato, "A necessary and sufficient condition for deadlock-free routing in cut-through and store-and-forward networks," *IEEE Tr. Par. & Dstr. Sys.*, **7**(8), 1996.

Approach: restrict buffer utilization.

Buffering Virtual Channels (BVCs): separately flowcontrolled buffers. Called elsewhere "virtual channels."

Sufficient Condition:

- A set *C* of BVCs can be reached in one hop by all packets.
- Routing in set *C* reaches all destinations from all nodes.
- The set *C* is free of buffer dependency cycles.

DVC Deadlock Avoidance

Two BVCs (Buffering Virtual Channels) per link for data packets.

- 1. *Primary BVC:* fully-adaptive routing. Associated with *primary buffer*, large DAMQ/FIFO/etc.
- 2. *Diversion BVC:* restricted routing with no buffer dependency cycles. Associated with small *diversion buffer*.
- The set of Diversion BVCs forms the "*diversion network*" the set *C* of the sufficient condition.
- After timeout, blocked packet in primary buffer may be diverted.

Control Packets

PROBLEM: control packets must not be diverted.

 \Rightarrow control packet deadlock cycles.

SOLUTION OUTLINE:

- 1. Impose a restriction that limits the demand for buffer space by control packets.
- 2. Provide sufficient buffer space to eliminate interswitch control packet blocking. *Dedicated buffers for control packets*.

Based on enumeration of all possible buffer requirements by control packets.

3. Remove the new dependency created by the implementation of the imposed restriction.

Limiting Buffer Space Demand

Restriction: only one unmapped data packet per input. All sequences of enqueued packets with RVC i:

1. No data packets.

empty

(tail) $[CDP_1] CEP_1$ (head)

(tail) CDP₁ (head)

(tail) $[CDP_2] CEP_2 CDP_1$ (head)

2. Mapped data packets (M).

 $[CDP_2] CEP_2 CDP_1 M_n \cdots M_1$

3. Unmapped data packet (U).

[CDP₃] CEP₃ CDP₂ U CEP₂CDP₁

4. Mapped (M) and unmapped (U) data packets.

 $[CDP_3] CEP_3 CDP_2 U CEP_2 CDP_1 M_n \cdots M_1$

 $R RVCs \Rightarrow R CDPs + R CEPs + 1 CEP + 1 CDP.$

One Unmapped Data Packet per Input: Implementation and Deadlock Avoidance

Enforce restriction: block flow to primary BVC upon arrival of an unmapped data packet.

PROBLEM: Cyclic dependencies between control and unmapped packets.

SOLUTION: Introduce *Control BVC*.

→ Separates control and data packets, breaks internode dependencies.

Maintaining FIFO Ordering

Diversion and re-routing violate FIFO ordering. Goal: restore FIFO ordering without stamping all packets with sequence numbers.

- Sequence number field in RVC Mapping Table.
- Attach sequence number to diverted packets and subsequent data packet.
- Subsequent data packet updates the table field at each hop.
- Destination host interface reconstructs FIFO ordering from packets with sequence numbers and consecutive ordering of normal data packets.

Hardware Costs

Assume: 32 RVCs per input port, 16-bit SRC/DST/SEQ.

State For Static Virtual Circuits

RVC Mapping Table Fields:

valid (1)	output port (3)	output RVC (5)
-----------	-----------------	----------------

 \Rightarrow 36 bytes per port.

Additional State For DVCs:

- For Each Input Port:
 - + One diversion buffer per port: 40 bytes
 - + One CEP: 8 bytes
- For Each RVC:
 - * Frequently Accessed
 - + Sequence number: 2 bytes
 - + "Out of Sequence" flag: 1 bit
 - + Victim selection bits: 3 bits
 - \Rightarrow 80 bytes per port.
 - * Infrequently Accessed
 - + Diversion/Reroute Info: 4 bytes
 - + Victim selection bits: 11 bits
 - + Control BVC Storage:

Control packet sequence (encoded): 3 bits

One CEP (minus header): 6 bytes

 \Rightarrow 376 bytes per port.

Performance Potential: Limit Studies

Goal: Evaluate potential for reducing network contention by choosing low latency paths for DVCs.

- Comparison: routed circuits versus Dimension-Order Routing (DOR).
- Details: 8×8 mesh, packet length 32 phits, cut-through routing, DAMQ primary buffers, diversion buffer capacity = 32 phits, FIFO crossbar priority.
- Stable traffic patterns:
 - 1. Uniform. DOR performs well.
 - 2. Transpose. Source row i col j transmits to destination row j col i. Poor DOR performance.
 - 3. Bit-Reversal: Source x_{i−1}x_{i−2} ··· x₀y_{i−1}y_{i−2} ··· y₀ transmits to destination y₀y₁ ··· y_{i−1}x₀x₁ ··· x_{i−1}. Poor DOR performance.

Uniform Traffic

FIGURE 1: LATENCY VS. NORMALIZED THROUGHPUT. Total input buffer capacity = 64 phits. Uniform traffic pattern.

Transpose Pattern

FIGURE 2: LATENCY VS. NORMALIZED THROUGHPUT. DAMQ buffer capacity = 64 phits. Transpose traffic pattern.

Transpose (continued)

FIGURE 3: THROUGHPUT FAIRNESS. Throughput vs. Sender, sorted. Aggregate raw throughput = 0.233 for DOR, 0.242 for routed virtual circuits.

Transpose (continued)

FIGURE 4: FRACTION OF TRAFFIC DIVERTED VERSUS AGGREGATE THROUGHPUT.

Throughput is measured as useful phits received per cycle per receiver. DAMQ primary input buffer capacity = 64 phits.

Bit Reversal Traffic

FIGURE 5: LATENCY VS. NORMALIZED THROUGHPUT. DAMQ buffer capacity = 64 phits. Bit reversal traffic pattern. T = Timeout.

Conclusion

- DVCs retain traditional advantages of virtual circuits: low per-packet bandwidth overhead, FIFO delivery, and establishment on paths with low contention.
- DVCs provide adaptive circuit rerouting and efficient circuit establishment even when RVCs are fully allocated.
- Performance results show potential of global routing optimization and demonstrate low frequency of packet diversion.
- Future work: shifting traffic patterns, alternatives for choosing when to reroute circuits, fault tolerance, multicast virtual circuits.

16x16 Mesh Transpose Pattern

FIGURE: Latency vs. Normalized Throughput. DAMQ buffer capacity = 32 phits. Transpose traffic pattern.