
CONNECTION-BASED ADAPTIVE ROUTING

USING DYNAMIC VIRTUAL CIRCUITS

YOSHIO F. TURNER and YUVAL TAMIR
Computer Science Department

University of California
Los Angeles, California 90095

ABSTRACT

Virtual circuits can reduce the routing overhead with
irregular topologies and provide support for a mix of quality of
service (QOS) requirements. Information about the state of the
network and expected traffic patterns may be used during
circuit establishment to utilize network resources more
efficiently than is practical with packet routing. Most virtual
circuit schemes are static — once the circuit is established, it
remains unchanged until the connection is no longer needed.
The Dynamic Virtual Circuit (DVC) mechanism allows
existing circuits to be quickly torn down in order to free up
resources needed for other circuits or in order to be re-
established along routes that are better suited for current
network conditions. We present a deadlock avoidance
technique, based on unconstrained routing of DVCs combined
with a deadlock-free virtual network. We describe key aspects
of the implementation of our scheme and present performance
evaluation results that explore its potential benefits.

1. INTRODUCTION

The routing scheme used in multicomputer
interconnection networks should direct packets through the
lowest latency paths from source to destination. It should take
into account the topology of the network and adapt to the
current workload and resource availability to route packets
around congested or faulty areas [1, 2].

To maximize the performance of a network, it is
important to minimize the addressing and control information
that must be sent with each packet. Processing required to
interpret and route each arriving packet must also be
minimized. These goals can be achieved by using connection-
based routing, in which resources are reserved in advance of
communication at each node along the path from source to
destination. To be effective, connection setup must be fast or
infrequent relative to communication. Examples of
connection-based routing differ in the amounts and types of
resources reserved. At one extreme, physical circuit switching
reserves the entire link bandwidth along the path from source to
destination. That approach eliminates routing and the
addressing and control information attached to each packet, but
it also prevents sharing the reserved link bandwidth even when
connections are idle. In contrast to physical circuit switching,
virtual circuit switching [3, 4] reserves only an entry in a virtual
channel table at each intermediate node. The entry specifies
addressing and routing information for the virtual circuit. Once
a virtual circuit is established on a path between a source and

destination, packets can be sent along the path without the
addressing and sequencing information needed in packet
switched networks, and without time-consuming packet routing
procedures. Compared to physical circuits, virtual circuits use
network resources more efficiently since the physical resources
(buffers, links, etc) are multiplexed between active connections.

With virtual circuits (as well as with physical circuit
switching) it is possible to achieve good performance even in
irregular topologies, where simple algorithmic routing is not
possible. For such topologies, routing is based on tables, which
are constructed when the system is initialized and may be
changed later, as the load on the system changes [5]. Once a
virtual circuit is established, forwarding of a packet along its
path can be done very quickly — a single lookup in a small
virtual channel table at each hop.

With most virtual circuit schemes, once the circuit is
established, its route remains unchanged until the connection is
no longer needed and the circuit is torn down. This prevents
adaptation to changes in traffic patterns. Furthermore, it may
prevent establishment of a new virtual circuit once all the
required resources have been reserved by existing circuits. To
resolve this problem, we have proposed the Dynamic Virtual
Circuits (DVC) mechanism [6]. With DVCs, a virtual circuit
can be torn down from an intermediate node, between the
source and destination, and later re-established, possibly along
a different route, while maintaining the virtual circuit semantics
— reliable in-order delivery of packets.

In this paper we describe a practical implementation of
DVCs. The key challenge when implementing DVCs is to
simultaneously provide: fully adaptive routing, deadlock-
freedom, and the low per-hop overhead of static virtual circuit
switching. Our scheme places minimal restrictions on the use
of buffer resources and does not constrain the routes of the
virtual circuits, thus maximizing the network’s ability to adapt
to different traffic patterns. Deadlocks are avoided using a
packet-routing deadlock-free virtual network. The deadlock
avoidance scheme is simple to implement, uses few dedicated
resources, and maintains the semantics of the virtual circuits.
Section 2 describes some related work in this area. Section 3
describes our proposed technique. Section 4 presents
simulation results that explore the potential performance
benefits of DVCs. This is done by considering limit cases,
where the more sophisticated (complex) routing possible with
DVCs leads to significantly higher performance than can be
achieved with conventional packet switched networks, which
typically must use simple (e.g., algorithmic) routing.

2. RELATED WORK

Proposals for connection-based routing have been
motivated by the observation that many applications of
practical interest exhibit spatial and temporal locality, in the
sense that each node tends to communicate mostly with a
slowly changing, small set of other nodes [4]. Hsu and
Banerjee [7] proposed routing hardware called cached circuits
that accommodates a small number of virtual circuits on each
link to exploit locality. Dao et al [3] combined cached circuits
with conventional wormhole routing for traffic not exhibiting
locality. Our Dynamic Virtual Circuits (DVCs) [6] differ from
these proposals by allowing virtual channel resources to be
quickly reallocated through local operations at a switch,
avoiding the long delays of schemes that require interactions
with faraway nodes before releasing local resources. Resource
reallocation avoids blocking circuit establishment, and it
enables adaptive circuit rerouting.

Much of the research on adaptive routing for packet-
switched networks has focused on the buffer deadlock problem.
If the paths taken by packets are not constrained, the network
may be susceptible to deadlocks, due to cyclic dependencies
among buffer and link resources [8]. This problem can be
overcome by detecting potential buffer dependency cycles
when they occur and resolving them using dedicated resources
(one packet buffer per switch) reserved especially for this
purpose [9]. The scheme involves ‘‘rotating’’ blocked packets
around the dependency cycle, utilizing the dedicated buffers,
until one or more packets leave the cycle. Unfortunately,
through simulation we have shown elsewhere [10] that
detecting and rotating blocked cycles completes too slowly to
prevent the arrival of new packets that nearly instantly replace
packets removed by cycle rotation. Therefore, cycles of
blocked packets may persist or grow to encompass large
numbers of network buffers.

An alternative to the time-consuming deadlock
resolution mechanism described above is to embed in the
physical network a deadlock-free virtual network. The virtual
network consists of a set of buffers and a scheme for routing
packets between them. Deadlock-freedom is guaranteed by
restricting the routing of packets using the dedicated buffers
such that no cyclic buffer dependencies are possible. The
deadlock-free virtual network must be always reachable by
packets and once a packet enters this virtual network, it cannot
leave it until it reaches its destination. Examples of this
approach include the scheme of Dally and Aoki [1], and Disha
Concurrent [2]. With some variations, all such schemes
dedicate buffer resources to deadlock-free routing.

The approach of providing a deadlock-free escape path
was generalized by Duato, who proved necessary and sufficient
conditions for deadlock-freedom [11]. Stated informally, there
must be a set of virtual channels that can be reached from any
buffer in the network and acts as a deadlock-free escape path
for the delivery of blocked packets. This basic approach is used
for deadlock avoidance with our DVC mechanism.

3. DVC’S WITH DEADLOCK AVOIDANCE

Communication over virtual circuits requires that a
circuit be established prior to or in conjunction with the
transmission of the first packet from a source to a destination.

Data packets on established circuits carry very few overhead
bits for bookkeeping (routing and sequencing information).
They are quickly routed and forwarded at each intermediate
node. With DVCs, the circuits may be torn down starting from
any intermediate switch and later re-established in order to
handle additional packets [6]. This section shows how the
mechanism for tearing down and re-establishing circuits can be
combined with a deadlock avoidance scheme that provides
packets with a deadlock-free escape path. Along the escape
path, packets are routed individually, completely bypassing the
virtual circuits mechanisms. At the destination, packets
arriving along the original virtual circuit, re-established virtual
circuits, and the escape path, must be sorted into proper order to
maintain the semantics of FIFO packet delivery. Assuming that
only a minority of packets will require the escape path, most of
the advantages of virtual circuits can be maintained.

We consider a virtual cut-through network composed of
point-to-point interconnected n x n switches. At each switch,
one input and one output connect the switch to a host. The
switch is input buffered, and a central n x n crossbar connects
the inputs to the outputs.

A source node’s host initiates a DVC by creating and
injecting a Circuit Establishment Packet (CEP). The CEP holds
the DVC’s source and destination IDs, which are used to route
the CEP adaptively. In general, CEP routing may be
accomplished through the use of routing tables maintained at
each switch, such as in the SGI Spider chip [5].

Each physical link is logically subdivided into multiple
Routing Virtual Channels (RVCs). Each packet has a header
field that identifies the RVC used by the packet. The CEP
acquires for the new DVC one RVC on each link it traverses on
its path from source to destination (including the source and
destination host interface links). At each switch, the mapping
from input RVC to output RVC is recorded in an ‘‘Input
Mapping Table’’ (IMT) at the input port. The IMT is indexed
by input RVC identifier, and the entry records the following
information about the DVC associated with the RVC: the
output port, output RVC, source and destination IDs, and
sequence number.

Note that we use the term ‘‘RVC’’ instead of the more
familiar ‘‘virtual channel’’ to distinguish it from the same term
commonly used to refer to flow-controlled buffers that prevent
deadlock and increase performance. Those we call Buffering
Virtual Channels, or ‘‘BVCs’’. In contrast, ‘‘RVCs’’ simply
identify DVCs, and they do not require separate flow-controlled
buffers.

Once DVC establishment commences via CEP injection,
the source may inject data packets on the DVC (by using the
same RVC on the host interface link as the CEP). The data
packets are quickly routed at each hop via IMT lookup. The
RVC identifier in the packet’s header indexes the IMT to
retrieve the output port and output RVC. The RVC field of the
packet’s header is replaced by the output RVC identifier, and
the packet is enqueued for transmission to the next switch.

Once a DVC is no longer needed, the source injects a
Circuit Destruction Packet (CDP) that traverses the DVC path
and frees up the allocated RVCs. Also, throughout the lifetime
of a DVC, any intermediate switch may tear the DVC from that
point and later reroute it on demand, either to free up an output

RVC to allocate to a new circuit, or to adapt to traffic
conditions by shifting traffic onto a lower latency path. A
switch tears down a victim DVC by inserting a CDP into its
path. A subsequent data packet arriving on the input RVC of a
torn-down DVC triggers DVC re-establishment, in which the
switch creates a new CEP using the information retained in the
IMT. There are no restrictions on when to reroute DVCs or
which new paths to take.

The general packet format is shown in Figure 1. It
consists of a header followed by data phits. The first phit of the
header identifies the RVC. An additional four bits of the RVC
field indicate packet type and whether the packet is of
maximum length. If not, a length field is present in the header.
The remaining header fields shown in the figure are only
occasionally present, as the following discussion will illustrate.
Therefore, the minimum header (which should be the common
case) is one that has only the RVC field.

Length (only included if < MAX)

Header

data

{Sequence No.}
[DVC ID]

RVC [BVC]

..

.

FIGURE 1: PACKET FORMAT. Fields in ‘‘[]’’
have the stated use only for diverted data
packets. The sequence number field is used
only for diverted packets and the next non-
diverted packet.

To achieve low latency and high throughput with the
largest possible variety of traffic patterns, adaptive routing is
necessary. Eliminating restrictions on DVC paths avoids traffic
congestion. However, without such restrictions, it is possible,
though unlikely, that transient conditions cause deadlocks
among the packet buffers. Also, since RVCs are also finite
resources in contention, the circuit manipulation protocols
triggered by CEPs and CDPs also pose the potential for
deadlock. These catastrophic conditions must be prevented.

To avoid deadlock, we use three Buffering Virtual
Channels (BVCs) per link. On each physical link I , the
primary BVC is associated with the primary input buffer NI for
data packets and does not restrict packet routing. At any time,
NI may hold any number of data packets that arrived on
mapped RVCs, but it may hold only a single data packet that
arrived on an unmapped RVC. The diversion BVC is
associated with the diversion buffer DI and provides a routing-
restricted, deadlock-free escape path for each blocked data
packet in an otherwise deadlocked cycle [11]. Finally, the
control BVC is exclusively for CEPs and CDPs. Separating
control and data packets eliminates the dependence of control
packets on the progress at the next switch of unmapped data
packets, which in turn depend on the progress of control
packets to obtain RVC mappings. Also, the control BVC is
designed to prevent any inter-switch buffer dependencies
involving control packets or their buffers, which considerably
simplifies the hardware and operations necessary for deadlock
avoidance.

The primary buffer NI may be a FIFO buffer, a more
efficient Dynamically Allocated Multi-Queue (DAMQ)

buffer [12], or any other type of buffer. Since DAMQ buffers
avoid Head-Of-Line blocking and dynamically share the buffer
space, we use them in our performance evaluation. Regardless
of buffer type, when a packet arrives at an input port, it is first
routed via IMT lookup before it is queued; with the DAMQ
buffer, routing determines which logical queue the packet joins.

The diversion BVCs form a virtual network for diverted
packets (the ‘‘diversion network’’). By restricting routing in
the diversion network, we ensure its buffer dependency graph is
acyclic. For example, in a mesh, Dimension-Order Routing
(DOR) could be used. With rare diversion, it is sufficient for
DI to have capacity one.

A packet that has been blocked at the head of a primary
buffer’s queue becomes, after a timeout delay, a candidate for
diversion to the diversion network. A single RVC can be
dedicated to identify which packets use the diversion BVC.
Any data packet arriving on that dedicated RVC is understood
to be using the diversion BVC; otherwise, the packet uses the
primary BVC. When a packet times out, its DVC information
must be accessed to execute rerouting. When a packet is
diverted, DVC information is attached to the packet header for
identification. To access the correct IMT entry to get the DVC
information, the primary buffer retains a record of the packet’s
input RVC until the packet is forwarded on the output RVC.

Diversion guarantees progress for each data packet that
arrives on a mapped RVC. For unmapped data packets,
ensuring progress requires that the data packet eventually
acquires a mapping to an unallocated RVC via the deadlock-
free creation, transmission, and processing of control packets.
We guarantee progress by ensuring that no resource
dependency cycles form in that process. The control BVC is
associated with storage for each RVC; since that information is
accessed infrequently, it may reside in slow RAM with
negligible impact on performance. Allocating three entries for
each RVC plus one entry for each input port is sufficient to
guarantee that all arriving control packets can either be stored
or else are unnecessary and can be dropped. This ensures that
no inter-switch dependencies exist that involve the control
BVC. Also, it can be shown that the process introduces no
intra-switch dependency cycles. Therefore, both unmapped and
mapped packets always make progress, and the whole network
is deadlock free. The entire procedure is described and proved
correct elsewhere [13].

Packet diversion helps to solve the packet deadlock
problem but violates FIFO delivery, which is important for
some applications. If packets were not diverted from their
allocated paths, then FIFO delivery would be accomplished
without stamping any packets with sequence numbers.
However, here packets can occasionally be diverted, so
minimal sequence information must be attached to some
packets as follows.

Each input RVC’s IMT entry records the sequence
number of the data packet most recently transmitted on the
output RVC to which the input RVC maps. When a packet is
forwarded normally, the IMT is accessed, indexed by the
packet’s input RVC that is retained by the primary buffer. The
sequence number is incremented, and the packet is forwarded.

But when a packet is diverted, its header is augmented
by adding sequencing and routing information. The new header

has two fields: 1) The source and destination, and 2) the
sequence number from the IMT entry. The header of the next
data packet transmitted normally from the same RVC is also
augmented to include the sequence number, which is written to
the IMT entry at each switch the packet subsequently visits
until it is delivered or diverted.

The destination host interface uses the sequence
numbers in packet headers to reconstruct FIFO ordering for
each DVC. Packets are delivered from the host interface to the
application in consecutive sequence number order. A packet
arriving without a sequence number is assigned the sequence
number one greater than that of the packet that arrived
immediately previously on the same RVC. This achieves FIFO
ordering while minimizing bandwidth used for sequence
numbers, at the cost of resequencing hardware at the host
interface and sequence number storage in the IMT.

4. PERFORMANCE EVALUATION

A primary advantage of DVCs is the potential for
reducing overall network contention by establishing circuits or
rerouting existing circuits onto low latency paths. In a realistic
system, traffic patterns change dynamically, and circuits require
time to adjust their paths to compensate. For a first-order
evaluation of the performance potential for DVCs with adaptive
routing, we abstract away from these transient complexities and
consider simpler limit cases with stable traffic patterns and
circuit placements.

We consider three traffic patterns: Transpose, which is
heavily biased against static Dimension Order Routing (DOR)
and is therefore a ‘‘best case’’ for DVCs; Bit-Reversal, which
is not clearly biased; and finally Uniform, for which static
routing performs well and is a ‘‘worst case’’ stable traffic
pattern for DVCs. In all cases, we centrally precompute the
paths used by DVCs in order to simulate conditions once
circuits have settled into a steady-state, low contention
configuration. We compare the performance of the resulting
configuration against a packet switched network using DOR.
The circuit path placement computation uses a simple heuristic
shortest path algorithm that estimates link delay with a
queueing model. Using a more optimal placement algorithm
would only improve the simulated performance of DVCs
relative to static DOR.

In all the following simulation results, packet size is 32
phits, and the switches have DAMQ primary input buffers and
a diversion buffer of capacity one. Since we wish to evaluate
the routing policy’s impact on throughput fairness as well as on
aggregate performance, we prohibit local unfairness introduced
at each switch through the crossbar arbitration policy.
Specifically, the policy we simulate gives priority to the packet
that has resided longest at the switch.

4.1. TRANSPOSE TRAFFIC

The transpose traffic pattern, which routes from the
source at row i column j to the destination at row j column i ,
has poor performance with DOR. In a 2-D mesh, DOR
transpose has low aggregate throughput and high unfairness, in
the sense that some source-destination flows have high
throughput while others experience much more congestion and
therefore much lower throughput. Adaptive DVCs achieve

higher throughput and much greater fairness for a given level of
aggregate throughput.

Since each traffic flow must pass through a node along
the diagonal, the overall throughput must be less than the
bandwidth entering/leaving all diagonal nodes. In a mesh of
size √

� �
n x √

� �
n , the diagonal bandwidth from either half of the

network is (√
� �
n −2)2 + 2, and the throughput λ of the average

source-destination flow is limited by the following:

(√
� �
n −2).2 + 2 ≥

2
n −√

� �
n� ��������� λ ==> λ ≤

n −√
� �
n

4(√
� �
n −1)	
	�	�	�	�	�	�	 .

Substituting n =64, we obtain λ≤1/2. If we normalize
throughputs to the maximum value of λ, at saturation the
maximum throughput obtained by DOR is 48% and the routed
virtual circuits policy achieves 94%. This is reasonable since
DOR uses only the horizontal links entering each node along
the diagonal, limiting it to 50% of the incoming links available.
With 1 phit of header per 32 phits of data, the effective
throughput is reduced to 48%.

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

Lat.

Throughput

� Timeout=5

� � � �
�

�
�

� � � � � �

� Timeout=40

�����!"# . . .$. .% . .& . .' '

' Timeout=80

() * + , -
.

/
0 1

2 3 4 5

6 DOR

7 8

9

:
;
< = > ? @

A B C D

FIGURE 2: LATENCY VS. NORMALIZED
THROUGHPUT. DAMQ buffer capacity = 64
phits. Transpose traffic pattern.

Figure 2 shows latency versus throughput for primary
input DAMQ buffer capacity of 64 phits. With this traffic
pattern, the only effect of increasing buffer size is to increase
latency. Maximum throughput does not increase with buffer
size, as it is limited by the bandwidth of individual saturated
links along the mesh diagonal. However, the maximum
throughput achieved with DVCs is significantly higher than that
achieved with DOR.

Moreover, the results show that the routed virtual
circuits perform best with long timeout. As timeout decreases,
more packets are diverted and follow DOR routes to the
destinations. Therefore, as the fraction of traffic diverted
increases, the traffic and performance approach that of pure
DOR.

Often, the performance of a distributed application is
limited by the performance of its slowest member rather than
by the aggregate throughput available to the application. As an
example, an application whose nodes communicate via the
transpose traffic pattern may occasionally need to synchronize
to ensure that all sending nodes are in a known state. If some
flow is particularly slow, all the other nodes will be throttled by

0

0.2

0.4

0.6

0.8

1

0 20 40 60

TP

Sender

E . . DOR

F . .G . .H . .I . .J . .K . .L . .M . .N . .O . .P . .Q . .R . .S . .T . .U . .V . .W . .X . .Y . .Z . .[. .\ . .] . .^ . ._ ..
.` . .a . .b . .c . .d . .e . .f . .g . .h . .i ..

.
.
.j . .k . .l . .m . .n . .o . .p . .q . .r . .s . .t . .u ..

.
.
..
..
v . .w . .x . .y . .z . .{ . .| . .} . .~ . .� . .� . .� . .� . .� ..

.
.
.
.
.
.� . .�

� RT

� � � � � � � �

� � � � � � � � � � � � � � � � � ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿ À Á Â Ã Ä Å Æ

FIGURE 3: THROUGHPUT FAIRNESS.
Throughput vs. Sender, sorted. Aggregate raw
throughput = 0.233 for DOR, 0.242 for routed
virtual circuits.

0

0.1

0.2

0.3

0.4

0 0.1 0.2 0.3 0.4 0.5

Frac.
Div.

Throughput

Ç Timeout=5

È
É

Ê
Ë

Ì
Í Î Ï Ð Ñ Ò Ó Ô Õ Ö

× Timeout=40

Ø Ù Ú Û Ü Ý
Þ

ß à á â ã ä å
æ

ç Timeout=80

èéêëìíîïð . . .ñ . .ò . .ó . .ô . .õö

FIGURE 4: FRACTION OF TRAFFIC
DIVERTED VERSUS AGGREGATE
THROUGHPUT. Throughput is measured as
useful phits received per cycle per receiver.
DAMQ primary input buffer capacity = 64
phits.

the performance of that slow node upon synchronization.
Therefore, it is interesting to examine the throughputs achieved
by individual senders.

Figure 3 shows the raw throughput achieved by each
sending node in the 8x8 mesh using the transpose traffic
pattern. The throughputs from each sender are displayed,
sorted so as to be monotonic (note that the first eight sources
are along the diagonal and therefore do not generate packets).
Throughputs for the routed virtual circuits policy and DOR are
displayed as separate curves. An impartial evaluation of the
fairness of the two policies is only possible when the two
achieve the same aggregate throughput. For DOR, aggregate
raw throughput is at its maximum, namely 0.233. The closest
routed virtual circuit result has aggregate throughput 0.242.
Since unfairness increases with aggregate throughput, the result
in Figure 3 is biased slightly in favor of DOR, yet it can be seen
that the routed virtual circuits achieve far greater uniformity of
sender throughput than does DOR. DOR with transpose traffic
causes some flows to experience large amounts of congestion

with other flows, while others have no congestion whatsoever.
As we increase applied load further, the routed virtual circuits
policy also becomes very unfair, but only at higher levels of
aggregate throughput than can be achieved with DOR.

To evaluate how much traffic is diverted from the virtual
circuit path, figure 4 plots fraction of traffic diverted versus
throughput with DAMQ primary buffer capacity 64. Again,
packet length is 32 phits. The effects of varying the timeout
interval are also shown. As timeout increases, the fraction
diverted decreases significantly. For this particular traffic
pattern and shortest path routing, no deadlocks are possible;
hence, the best performance is achieved with no timeout at all.
With different traffic patterns, cyclic dependencies may form
temporarily, increasing the need for diversions.

4.2. BIT REVERSAL TRAFFIC

The bit reversal traffic pattern sends messages from each
source xn −1xn −2

. . . x 0yn −1yn −2
. . . y 0 to destination

y 0y 1
. . . yn −1x 0x 1

. . . xn −1. We evaluate bit-reversal on an 8x8
mesh. Figure 5 shows latency versus throughput for primary
input buffer capacity 64 phits. The reported throughput is
normalized to the bisection bandwidth available with uniform
traffic, and therefore it does not indicate an upper bound on
throughput for the bit reversal traffic pattern.

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1

Lat.

Throughput

÷ T=5

ø ù ú û ü
ý

þ
ÿ

�
� �

� � �

� T=10

���
��� . . .� . .� . .� ..� �

� T=20

� � � � �
�

�
�

�
� � �

 !

! T=40

"#$%&'(. .
. .) . .

.
. .

* .
.
.+ ..

, ..-

. T=80

/ 0 1 2 3
4

5
6

7
8

9 : ; <
= DOR

> ?

@

A

B C
D E

F G
HIJ

K

FIGURE 5: LATENCY VS. NORMALIZED
THROUGHPUT. DAMQ buffer capacity = 64
phits. Bit reversal traffic pattern. T = Timeout.

The results demonstrate that routed virtual circuits
significantly outperform DOR for this non-uniform traffic
pattern. Moreover, the latency-throughput results are nearly
independent of the diversion timeout value. This indicates that
for routed virtual circuits with small timeout, the disadvantage
of using the poorly performing DOR routing algorithm to route
diverted traffic is completely offset by the advantage of having
two BVCs per link. That is not the case for the transpose traffic
pattern, because there the addition of BVCs does not alleviate
the fundamental DOR transpose pattern bottleneck, which is the
limited link bandwidth of the X-dimension links entering the
mesh diagonal’s switches.

Though not shown here, increasing the buffer capacity
for the DOR case does not increase throughput. Also, the
fraction of traffic diverted in the bit reversal case is similar to
the transpose case: increasing timeout values dramatically

decrease the fraction of traffic diverted with the bit reversal
traffic pattern, and as load increases, diversion decreases since
the DOR paths become congested, limiting injection into the
diversion virtual network from the primary virtual network.

4.3. UNIFORM TRAFFIC

This section evaluates the performance of virtual circuits
with diversion under uniform traffic. Under uniform traffic in
the mesh, DOR should perform well, since as applied load
increases, load across the horizontal and vertical bisections
increases uniformly. In contrast, adaptive routing schemes tend
to steer more traffic toward the center of the network, causing
congestion.

Figure 6 shows latency versus throughput in uniform
traffic with buffer capacity of 64 phits. In Figure 6, all the
curves for routed flows correspond to a network where primary
input buffer capacity is 32 phits, and the diversion buffer is also
32 phits, for a total of 64.

The results indicate that the performance of routed flows
is close to that of DOR in uniform traffic. As timeout
decreases, routed flows performance improves as it takes
advantage of the 32 phit diversion buffers. Though not shown,
with larger buffers (256 phits), routed flows and DOR achieve
nearly identical performance even with large timeout.

One interesting feature of the routed flows results is
reactivity, particularly with small timeouts. This can be
explained by the observation that as applied load increases, the
primary virtual network becomes congested, and packets
become increasingly likely to enter the diversion virtual
network, which has limited buffering and therefore limited
throughput.

0

500

1000

0 0.2 0.4 0.6 0.8 1

Lat.

Throughput

L Timeout=5

M N O P
Q R

S T

U
V W
XYZ

×. Timeout=40

×.×.×.×.×.×. . . .×. . .×.
. .×.

.×..×.

.×××

| Timeout=80

| | | | |
|

| |
|||
|||

[DOR

\] ^ _
` a

b

c

d
e f

g h i

FIGURE 6: LATENCY VS. NORMALIZED
THROUGHPUT. Total input buffer capacity =
64 phits. Uniform traffic pattern.

5. CONCLUSION

Dynamic Virtual Circuits retain the traditional
advantages of virtual circuit switching: low per-packet
bandwidth overhead, FIFO delivery, and establishment on paths
experiencing low contention. In addition, DVCs provide
adaptive circuit rerouting and efficient circuit establishment
even when RVCs are fully allocated.

Minimal routing restrictions and dedicated buffer

resources avoid deadlock while allowing circuits to use fully-
adaptive routing or rerouting. Avoiding inter-switch
dependencies among control buffers and intra-switch
dependency cycles eliminates deadlock caused by contention
for RVCs. The low-cost implementation merges the normally
empty control buffers with the off-chip tables necessary for
maintaining circuit information.

The performance results show that with virtual circuits,
global routing optimization is possible and provides
performance superior to fixed routing. Furthermore, the use of
deadlock-free escape paths is sufficiently infrequent to preserve
the bandwidth efficiencies of the DVC mechanism.

Future work will evaluate the behavior of DVCs with
shifting traffic patterns; in particular, there are many
alternatives for choosing when and how to reroute existing
circuits. Other opportunities for investigation include fault
tolerance and multicast virtual circuits.

REFERENCES

1. W. J. Dally and H. Aoki, ‘‘Deadlock-Free Adaptive Routing in
Multicomputer Networks Using Virtual Channels,’’ IEEE
Transactions on Parallel and Distributed Systems 4(4), pp. 466-
475 (April 1993).

2. A. K. Venkatramani et al., ‘‘Generalized theory for deadlock-free
adaptive wormhole routing and its application to Disha
Concurrent,’’ The 10th International Parallel Processing
Symposium, Honolulu, HI, pp. 815-21 (15-19 April 1996).

3. B. V. Dao et al., ‘‘Architectural support for reducing
communication overhead in multiprocessor interconnection
networks,’’ Third International Symposium on High-
Performance Computer Architecture, San Antonio, TX, pp. 343-
52 (1-5 Feb. 1997).

4. J.-M. Hsu and P. Banerjee, ‘‘Performance measurement and trace
driven simulation of parallel CAD and numeric applications on a
hypercube multicomputer,’’ IEEE Transactions on Parallel and
Distributed Systems 3(4), pp. 451-464 (July 1992).

5. M. Galles, ‘‘Spider: A High-Speed Network Interconnect,’’ IEEE
Micro 17(1), pp. 34-39 (January/February 1997).

6. Y. Tamir and Y. F. Turner, ‘‘High-Performance Adaptive
Routing in Multicomputers Using Dynamic Virtual Circuits,’’
6th Distributed Memory Computing Conference, Portland, OR,
pp. 404-411 (April 1991).

7. J.-M. Hsu and P. Banerjee, ‘‘Hardware Support for Message
Routing in a Distributed Memory Multicomputer,’’ 1990
International Conference on Parallel Processing, St. Charles, IL
(August 1990).

8. W. J. Dally and C. L. Seitz, ‘‘Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,’’ IEEE Transactions
on Computers C-36(5), pp. 547-553 (May 1987).

9. J. M. Jaffe and M. Sidi, ‘‘Distributed Deadlock Resolution in
Store-and-Forward Networks,’’ Algorithmica 4(3), pp. 417-436
(1989).

10. Y. F. Turner and Y. Tamir, ‘‘Deadlock resolution in networks
employing connection-based adaptive routing,’’ Computer
Science Department Technical Report CSD-960032, University
of California, Los Angeles, CA (August 1996).

11. J. Duato, ‘‘A necessary and sufficient condition for deadlock-free
routing in cut-through and store-and-forward networks,’’ IEEE
Transactions on Parallel and Distributed Systems 7(8), pp. 841-
54. (August 1996).

12. Y. Tamir and G. L. Frazier, ‘‘Dynamically-Allocated Multi-
Queue Buffers for VLSI Communication Switches,’’ IEEE
Transactions on Computers 41(6), pp. 725-737 (June 1992).

13. Y. F. Turner, High-Performance Adaptive Routing in
Multicomputers Using Dynamic Virtual Circuits, Ph.D.
Dissertation, in preparation, 1998.

