
High-Performance Adaptive Routing in Multicomputers
Using Dynamic Virtual Circuits †

Yuval Tamir and Yoshio F. Turner
Computer Science Department

University of California
Los Angeles, California 90024

Abstract

A message transport mechanism which provides high-
bandwidth low-latency interprocessor communication is the key
to the ability of multicomputers to achieve high performance.
The system should adapt to changing conditions by routing
packets around congested areas and failed links or nodes. We
introduce a new message transport mechanism, called Dynamic
Virtual Circuits, that combines the best features of circuit
switching, packet switching, and static virtual circuits. Routing
through intermediate nodes usually requires only a single
lookup in a small table, packets include minimal control
information, and are delivered in FIFO order. Nodes in the
middle of a Dynamic Virtual Circuit can break it and later re-
establish it through a different physical path, thus supporting
adaptive routing while maintaining the semantics of virtual
circuits. We present the basic algorithms for Dynamic Virtual
Circuits and the required hardware support in the context of a
VLSI communication coprocessor for multicomputers.

I. Introduction

Multicomputers, composed of thousands of computing
nodes interconnected by point-to-point links, achieve high
performance at a low cost by exploiting parallelism [1, 5]. Such
systems rely on a message transport mechanism that supports
high-bandwidth low-latency interprocessor communication.

Low latency communication requires minimizing the
delay of forwarding packets through intermediate nodes on
their way to their destinations. This is achieved using
communication switches with buffers that support virtual cut
through [12, 18] and a routing mechanism that quickly
determines the output port to which the packet should be
forwarded [5]. The routing scheme should direct packets
through the lowest latency paths from source to destination. It
should take into account the topology of the network and����� adapt
to the current workload and resource availability to route
packets around congested or faulty areas [16, 13, 5]. It is
important to minimize the addressing and control information
that must be sent with each packet as well as to maximize the
availability of network resources for active connections.

With message transport based on virtual circuits [15, 3],
many of the desirable properties described above are realized.
� ���������������������������������������

† Supported by Hughes Aircraft Company and the State of California
MICRO program. Y. Turner is supported by a Hertz Foundation Graduate
Fellowship.

Packets are sent through pre-established logical paths, thus
minimizing packet routing time and overhead while
maintaining efficient link utilization and first-in-first-out
(FIFO) packet ordering on each virtual circuit. The problem
with conventional virtual circuits is that the paths are static and
cannot be easily changed in response to congestion or failure.

This paper introduces a new message transport
mechanism, called Dynamic Virtual Circuits, that has the
advantages of virtual circuits but allows individual nodes to
make a local decision to break or reroute an existing circuit.
Each node maintains sufficient information to re-establish
broken circuits while preserving the FIFO ordering of packets.
Since routing with Dynamic Virtual Circuits is based on tables,
the scheme does not depend on a regular system topology.
Hence, efficient routing can be performed even after a large
number of system nodes or links have failed.

The research described in this paper is part of the UCLA
ComCoBB (Communication Coprocessor Building-Block)
project, whose focus is the design and implementation of a
high-performance communication coprocessor for VLSI
multicomputers. A critical aspect of the ComCoBB chip design
is support for efficient routing for a wide variety of network
topologies. Hence, schemes based on routing tables [16] must
be supported.

Conventional static virtual circuits are described in
Section II. The disadvantages of static virtual circuits are
discussed in Section III, where the basic technique of Dynamic
Virtual Circuits is described. The hardware support for
Dynamic Virtual Circuits in the ComCoBB chip is described in
Section IV.

II. Static Virtual Circuits

The two fundamental approaches to message routing in
multicomputers are circuit switching and packet
switching [15, 3]. With circuit switching, a static physical path
is set up between the sender and receiver before communication
takes place. Once the path is set, data can be transmitted
quickly at nearly the full bandwidth of the links with almost no
redundant control information [5]. A disadvantage of circuit
switching is that physical links are statically allocated to a
particular circuit for the lifetime of the circuit. Even when no
information is being sent through the established circuit, the
links cannot be used for other circuits.

With packet switching, the data is partitioned into small



- 2 -

packets which are routed independently from source to
destination. Link utilization is improved relative to circuit
switching since the links along the path chosen by a packet are
used only during the time required to send the packet’s bytes
across the link. A key advantage of packet switching is that the
routing can adapt to changes in the system, potentially sending
different packets with the same source and the same destination
through different paths. Simulations of adaptive routing
schemes have demonstrated higher reliability, higher
throughput, and lower message latency than can be achieved
with fixed routing [13, 5].

One disadvantage of packet switching is that each packet
must contain complete addressing information as well as
message and packet sequence numbers. Since packets may
arrive at their destination in any order, they need to be buffered
and reordered before they can be processed by the destination
application. Message latency through a packet switching
network is significantly larger than the latency through an
established circuit since each packet of the message must be
delayed at each node long enough to determine the appropriate
next step on its path to the destination.

Virtual circuits are used for message transport in an
attempt to combine the best features from circuit and packet
switching [15, 3]. As with circuit switching, paths are
established and stored in routing tables along the way.
However, each physical link can be time shared among multiple
virtual circuits. The physical link is logically divided into
multiple virtual channels, where a field in the header byte of
each incoming packet indicates the virtual channel number used
by the packet. Virtual circuits are paths through the network
consisting of a sequence of virtual channels. At each node,
mapping tables describe the established virtual circuits passing
through the node.

To establish a virtual circuit, a source node generates a
Circuit Establishment Packet (CEP) that is then transmitted, as
in a packet switching network, to the destination node. At each
node along the way, the CEP arrives on an unused input
channel of an input port. Based on the final destination of the
CEP, the node routes it to one of its output ports. In the most
general case, this routing utilizes large off-chip routing tables,
which include information regarding the topology of the system
with the cost of links weighted according to recent traffic
loads [16, 3]. In addition to choosing an appropriate output
port, the routing of the CEP also involves choosing an output
channel from among the currently unused channels at the
output port. The mapping table is then set to route future
packets arriving on the same input channel and input port to the
chosen output port and output channel. An example of an
established virtual circuit is shown in Figure 1.

After sending the CEP, the source node sends data
packets along the circuit. Each data packet contains in its
header byte the input channel number on which it arrives. This
is the only overhead associated with the packet, representing a
significant reduction from a pure packet switching mechanism.
At each node, the data packets arrive on input ports and input
channels and are routed according to the entries in the mapping
table to output ports and output channels. This routing is much

Process B

Process A

Chnl 13

Chnl 2

O

I

I

O

Chnl 3 1 22
Chnl 3

OchnlOportValid

HOST

HOST

PIF

PIF

Figure 1: A virtual circuit from process A to
process B. The circuit uses channel 3 of the
first link and channel 2 of the second.

faster than the routing of the CEP since all it requires is a single
lookup in the small on-chip mapping table. Since all packets
are transmitted through the circuit along the same physical path,
it is possible to guarantee FIFO order of delivery of packets at
the destination. Once the virtual circuit is no longer needed, the
source node removes it from the system by sending a Circuit
Destruction Packet (CDP) that traverses the entire circuit,
invalidating the appropriate mapping table entries at each node.

III. Dynamic Virtual Circuits

The problem with the traditional virtual circuits scheme
is that the paths are static and cannot be changed in response to
changes in the system (congestion or failure). Throughout a
virtual circuit’s lifetime, it occupies the same resources, namely
one virtual channel on each physical link the circuit uses.
These resources are allocated for the exclusive use of the virtual
circuit, even if the circuit is idle for long time periods. In
addition, circuits may permanently occupy resources if nodes or
links fail or if processes terminate without tearing down their
circuits. Since the number of virtual channels per link is
limited, new virtual circuits may be prevented from becoming
established on desired links even if idle circuits are holding
resources unnecessarily.

The problem of idle circuits preventing new circuits
from being established can be overcome by allowing existing
circuits to be torn down on demand. Circuits do not necessarily
persist until they are explicitly torn down. Instead, they are
only cached in the network for as long as possible [2, 14].
When a channel is needed in a link where all the channels are
allocated, a victim channel is selected and the entire circuit
associated with this channel is torn down [9]. Disestablishing
(tearing down) an existing circuit releases resources (channels)
that can then be used for new circuits. With the scheme
proposed in [9], once a victim channel is picked, the source



- 3 -

node (sender) of the corresponding circuit is signaled to tear
down (delink) the circuit. This is done only when the circuit is
not active. If a message is in the process of being transmitted
through the circuit, the circuit tear down must wait until the
entire message is transmitted. A long message can thus lead to
long delays between the request for circuit disestablishment at
an intermediate node in the circuit and the actual release of
resources. Another important factor that increases this delay is
the latency of transmitting the delink request to the circuit
source node followed by the latency of the delink packet from
the source node to the node where the channel release is
needed.

Dynamic Virtual Circuits (DVCs) overcome the
limitations of static virtual circuits and of the cached circuits
scheme described above. As with cached circuits, the
establishment of new circuits is guaranteed to succeed even
when there are no free virtual channels on a desired link.
Resources allocated to idle DVCs are eventually deallocated
and used for active DVCs, as needed. With DVCs, a circuit can
be disestablished from an intermediate node, without involving
the source node. Hence, the circuit fragment from the source
node to the intermediate node remains intact for possible use if
the complete circuit needs to be reestablished. Needed
channels are released immediately following a local������� decision at
an intermediate node. Hence, DVCs eliminate the delays
incurred in cached circuits due to the need to wait for
disestablishment requests to be processed through the circuit
source node. The delays in releasing resources due to waiting
for long messages to be transmitted are also eliminated with
DVCs. Messages are partitioned into short (32 byte) packets
and a circuit can be disestablished at an intermediate node
following transmission of the current packet. With the DVC
mechanism, if a particular circuit becomes slow or blocked, due
to congestion or failure, a node can make a local decision to
break the circuit and reestablish it using an operational, less
congested route. Adaptation can occur quickly since: (1) it is
not necessary to wait for the source node to reroute the circuit,
and (2) as the circuit is being reestablished, busy channels
needed along the new path are released faster.

In the simplest case, the Dynamic Virtual Circuit
mechanism is identical to the static virtual circuit mechanism.
When a CEP arrives at a node, it is routed to determine the
desired output port. For a regular network topology, this
routing may be algorithmic [4]. For irregular networks, a more
complex scheme, based on large routing tables, may be
used [16]. If there is a free output channel on that output port, it
is used by the new circuit and the mapping table is set
accordingly.

If a CEP arrives at a node and is routed to a link with no
free virtual channels, the static virtual circuit mechanism cannot
be used. Instead, the Dynamic Virtual Circuit mechanism
chooses an established DVC on the desired link as a victim for
temporary destruction. The victim DVC is, ideally, the circuit
whose next packet will enter the node furthest in the future.
Once a victim is chosen, the node generates and sends a CDP
along the victim channel. The CDP is marked as nonterminal
to inform the destination node that the circuit is being torn

down temporarily from an intermediate node, as opposed to
permanently from the source node. After the generated CDP is
sent through the output port, the CEP can be sent, establishing
the new DVC.

When a DVC is first established, information regarding
the ultimate destination (node identifier) of the new circuit is
kept at each intermediate node. When a packet on a DVC
arrives at a node where the DVC was previously cut, the
information regarding the ultimate destination of the cut circuit
is used to reestablish the DVC. The node chooses an output
port on which to reestablish the cut circuit, creates a CEP,
updates the mapping tables, and sends the CEP, reestablishing
the circuit on the new path to its destination. The data packet
that triggered the reestablishment of the circuit as well as future
packets on the same circuit can then be sent along the new path.

Since there are multiple input and output ports operating
and interacting concurrently at each node, the DVC mechanism
description above, though accurate at a high level of
abstraction, is overly simplistic. Care must be taken to prevent
on-chip components of the chip from entering inconsistent
states due to improper ordering of events or from becoming
stuck forever waiting for each other to complete some
operation. These issues are discussed further in Section IV.

Although DVCs provide most of the advantages and
overcome the difficulties of static virtual circuits, they do not
guarantee the physical���	�	�	�	�	� FIFO packet arrival at the destination
node as with static virtual circuits. For example, a circuit that
has been torn down from an intermediate node may be
reestablished on a different path before the nonterminal CDP
reaches the destination. In this case, the packets on the
reestablished branch of the circuit arrive at the destination
before all the packets on the torn-down branch arrive. Since
proper packet ordering is vital, some mechanism must be
provided to allow the destination node to determine the order in
which packets were sent by the source node. Two such
mechanisms, one based on packet sequence numbers and one
based on logical timestamps, are described and compared here.
Both mechanisms rely on providing enough information in
CDPs and CEPs to allow the destination node to identify and
order arriving branches belonging to the same circuit.

With the packet sequence number mechanism, for each
circuit established at a node, a packet count register records
how many packets have arrived at the node on the circuit. A
sliding window protocol can be used to bound the maximum
value of the packet counters. Also stored at each intermediate
node is other information needed to uniquely identify the
particular DVC, such as source and destination process and
processor identifiers. When a circuit is reestablished, the
packet count at the node initiating the reestablishment is sent to
the circuit destination, together with the information originally
used to establish the circuit (source process id, destination
process id, etc). The destination node accepts packets on
reestablished circuits only after its local packet counter
indicates that all previous packets have already been received.
Packets which cannot be accepted are buffered at the
destination node until they can be accepted. The main
disadvantage of this scheme is that it requires dedicated



- 4 -

hardware at each input port to store and increment the packet
counters.

The timestamp mechanism avoids the use of dedicated
packet counters for each incoming circuit at each input port.
The mechanism requires only a small amount of information to
uniquely identify branches, and it updates circuit information at
the intermediate node only when a circuit is reestablished or
disestablished from that intermediate node. Because the circuit
information is rarely updated, it is not necessary to store it on-
chip or provide dedicated hardware for updating. Each node
maintains a count of the number of nonterminal circuit
destructions the node has initiated. This count serves as a
logical timestamp that, in conjunction with the identifier of the
node where the circuit was broken, uniquely identifies the
circuit destruction event. The counter has to be sufficiently
large (40-64 bits) so that there would be no danger of the
counter ‘‘wrapping around’’ leading to possible incorrect
packet ordering. When the torn down DVC is to be
reestablished, the stored destruction timestamp and the node
identifier are sent with the CEP. When a circuit branch CEP
arrives at the destination node, a matching circuit branch CDP
must be found with the same timestamp and node identifier
values. The only such CDP is the one terminating the branch to
be ordered just prior to the CEP’s branch.

mem

processor

ComCoBB

memory
local

cache

processor
routing

Figure 2: A multicomputer node.

IV. Implementation of Dynamic Virtual Circuits

Figure 2 shows a multicomputer node with the
application processor, local memory used by the application
processor, the ComCoBB chip, and a special routing processor
with its memory. The routing processor is a general-purpose
processor which is used as a dedicated controller to perform
some of the infrequent but complex operations that are needed
to support DVCs. Frequent operations, such as routing and
forwarding of a packet on an established circuit, are handled
entirely within the ComCoBB chip, using dedicated hardware.
The routing processor handles tasks such as, initiating circuit
destruction, reestablishing a circuit, updating of global routing
tables [16], and resolution of deadlocks. It should be noted that,
on a large chip, the routing processor and its memory may be
implemented as a dedicated programmable controller on the

same chip with the communication switch.

Tables which are accessed for every packet forwarded
through the switch are stored at the input and output ports of the
ComCoBB chip (see Figures 3 and 4). However, less
frequently accessed tables are stored in the private memory of
the routing processor. The tables in the routing processor’s
memory are:

 The Circuit Destruction Table: One entry per incoming

channel to the node. Each entry contains a timestamp
identifying the teardown time and the destination node
identifier for the torn-down circuit. This information is
placed in the CEP generated for reestablishing the circuit at
a later time. The table is indexed by input port and channel
numbers.

� The Inverse Output Mapping Table (INV): One entry per
output channel from the node. Maps each output channel to
the corresponding input port and input channel number.
The mappings are recorded upon circuit establishment.
Each entry also contains a single reserved bit, which the
Routing Processor sets when the circuit is picked to be torn
down and resets when the teardown is completed.

� The Routing Table: One entry for each destination node
identifier. Each entry contains the output port on the
shortest delay path to the destination node. This table is
accessed during circuit establishment.

In addition to the tables above, for DVCs which
originate in each node, the node maintains a single Source
Table, which maps logical DVC identifiers to channel numbers
for the first hop of the DVCs. At each node, for DVCs whose
destination is the node, there is a single Destination Table,
which maintains the information (CEP and CDP timestamps)
necessary for ordering packets arriving over different paths of
the same DVC. On its way from the source node to the
destination node, each packet requires one access to a Source
Table and one access to a Destination Table. Hence, the
ComCoBB chip’s processor interface must support fast access
to these tables.

The ComCoBB chip consists of four input ports, four
output ports, the Processor Interface (PIF) to the application
processor, and the Routing Processor Interface (RPI). The
input and output ports each consist of eight data lines and one
flow control line. The input port uses the flow control line to
stop the output port from sending data when, for example, the
buffer at the input port becomes full. The RPI translates read
and write requests by the routing processor to both read/write
operations on storage elements inside the ComCoBB chip and
commands affecting the behavior of ComCoBB modules. The
RPI also fields interrupt requests raised by ComCoBB modules
and passes them on to the routing processor.

A. Input Port Hardware and Operation

When a packet arrives, it is placed in the input buffer
and routed to determine the desired output port. Once the
packet reaches the head of the buffer, the buffer makes a
request to the crossbar for a connection to the desired output
port. After the request is granted, the packet is removed from



- 5 -

MUX

8

8

8

8

8
8

done

MUX

IP

Table
Input Mapping

request

start bit detect to crossbar switch

Interrupt

Invalidate

Address

Address
OCOPvalid

DAMQ

Auxiliary
Buffer

CDP
detection

sync data in

ready

8

8

3

5

5 5

2

Routing Processor Control Bus

Routing Processor Address Bus

Routing Processor Data Bus

Generation
Control
Flow

Control
Flow Routing Processor Bus

Figure 3: Input port routing hardware.

the buffer and sent through the crossbar switch and the output
port to the neighboring ComCoBB chip.

Figure 3 shows a block diagram of the hardware located
at each input port of the ComCoBB. There are four main
components: the Synchronizer [17], the dynamically-allocated
multi-queue (DAMQ) input buffer [18], the Auxiliary Buffer,
and the Input Mapping Table (IMT). The Synchronizer
produces eight bits of data synchronized to the local clock.
These signals are input to both the DAMQ buffer, which is the
main packet buffer at the input port, and to the Auxiliary
Buffer, which is a much smaller FIFO buffer and usually holds
the first eight bytes of the most recent packet arriving through
that input port. In normal operation, as packets arrive they are
placed in both the DAMQ buffer and the Auxiliary Buffer. In
addition, the header byte of each incoming packet is forwarded
to the Input Mapping Table for lookup. If the lookup
references a valid entry, the header is modified to contain the
output channel number, and the new header is latched into the
DAMQ buffer. If the access references an invalid entry, the
Input Mapping Table raises an interrupt for the routing
processor and causes the DAMQ buffer control to use the flow
control line to stop traffic into the input port. A packet arriving
on an input channel that has no valid mapping is either a Circuit
Establishment Packet or a packet arriving on a circuit that has
been disestablished from this node. In either case, routing
processor intervention is required and incoming packet flow
must be stopped.

The DAMQ buffer normally takes its input from the
output of the Synchronizer, but it can also take its input either
from the Auxiliary Buffer or from a packet buffer located at the
RPI via the routing processor data bus. The DAMQ input
comes from the RPI when, for example, the routing processor
needs to insert a CDP into the circuit. The DAMQ input comes
from the Auxiliary Buffer when forwarding a CEP which was
held in the buffer while the corresponding IMT entry was set
up. Care must be taken to ensure that flow from the input port

is halted when the input to the DAMQ buffer is taken from one
of the other sources. Otherwise, packets arriving on the input
port will be lost.

In some cases, the routing processor requires
information contained in the body of the packet. For example,
when a CEP arrives, the header byte indicates the input
channel, and subsequent bytes of the packet indicate the desired
final destination. To access these bytes, the routing processor
can read the Auxiliary Buffer whenever it is not being written
by the input port.

The CDP that destroys a circuit is generated by the
routing processor. However, circuit destruction originating in a
remote node can be handled without the intervention of the
routing processor. To support this fast handling of CDPs at the
input port, an Invalidate input is added to the Input Mapping
Table. This signal causes the table lookup to mark the entry
referenced as invalid. A CDP automatically triggers this
operation.

B. Output Port Hardware and Operation

Figure 4 shows a block diagram of the hardware at each
output port. This hardware consists of a table and logic for
picking victim channels. The Output Port Table (OPT) is used
to keep track of valid and invalid output channels and to
maintain output channel use information. There are 32 entries
in the OPT, one per output channel. The OPT is normally
accessed when packets arrive at the output port from the
crossbar — the entry corresponding to the channel number of
the packet is updated. In addition, the table is accessed by the
routing processor when a DVC is established. Each table entry
consists of two bits: valid and use. The valid bit specifies
whether the output channel is part of a circuit. The use bit
indicates whether a packet has been sent on the corresponding
output port recently.

The information in the Output Port Table drives the
circuit that selects a victim when there is a need to find a free



- 6 -

Output Port

6

all_valid

d
i
l
a
v

e
s
u

r
t
p

CDP
detect

MUX

control

5

5

5

5
2

Register
Victim

Routing Processor Control Bus

Routing Processor Address Bus
Routing Processor Data Bus

K
C
O
L
C

C
I
G
O
L

R
E
D
O
C
N
E

from crossbar switch

header strobe

enable
valid

enable
use

r/w Interrupt

3

3

MUX

Figure 4: Output port logic. Invalidates circuits and picks victim output channels.

channel for use in establishing or reestablishing a DVC through
the output port. The victim selection module is a combinational
circuit that continuously computes the victim output channel
number. The victim number is placed in the Victim Register,
from which it can be read by the routing processor. If there are
any invalid output channels (i.e., channels not on established
circuits), these are picked by the victim selection logic. If all
the output channels are allocated to established DVCs, one of
those channels is picked and the corresponding DVC is
disestablished, starting from this node. The ‘‘clock’’
replacement algorithm, commonly used for page replacement in
virtual memory [7], is used to pick the victim established DVC.

C. Sequencing of ComCoBB Operations

Some of the operations performed by the ComCoBB
involve several sequential steps. As mentioned in Section III,
proper ordering of on-chip events is crucial for avoiding
inconsistent states. For example, in order to establish a new
DVC, it is sometimes necessary to tear down an existing DVC
to free an output channel. A straightforward but incorrect
procedure for performing this operation would have the routing
processor reset the valid bit for the victim channel at both the
IMT and at the OPT as soon as a victim is selected. Then, the
routing processor would create a CDP and send it directly out
the output port. Once the CDP is sent, the pending circuit
establishment request would be fulfilled.

The procedure above is wrong because there may be
packets, belonging to the victim circuit, that are enqueued in the
DAMQ buffer at the input port used by the victim circuit. If the
mapping tables are changed and the CDP sent before these
enqueued packets exit the node, the packets will be forwarded
out the same output port and output channel as the packets on
the new circuit being established, thus mixing packets of
different circuits. Also, one of the enqueued packets may be a
CDP, rendering the creation of a CDP by the routing processor
redundant.

The correct procedure incorporating these considerations
is shown in Figure 5. This figure shows the sequence of low-
level operations required when a data packet arrives. If the
IMT entry is not valid, the routing processor must reestablish
the DVC to the circuit’s destination. As shown in step 2 of

Figure 5, the routing processor accesses the Circuit Destruction
Table to determine the destination node id for the data packet.
Next, in steps 3 and 4, the routing processor picks a victim
output channel for use in the new DVC. To do this, it reads the
Victim Register, that contains the selected channel number as
well as the corresponding valid bit. The routing processor then
checks the Inverse Output Mapping Table, stored in its private
memory, to ensure that this channel had not already been
reserved for a different DVC destruction. If the Inverse
Mapping Table indicates that the selected channel is reserved,
the routing processor reads the Victim Register again to get a
different victim.

Assuming that the output port table entry for the chosen
victim is valid (i.e., the test in step 5 succeeds), the following
procedure correctly tears down the victim circuit and
reestablishes the circuit for the data packet:

1. The victim input port and input channel numbers IP′ and IC′
are found in the Inverse Output Mapping Table. The
routing processor writes a command to the ComCoBB
which causes the ComCoBB to assert the flow control line,
thus stopping packet flow from the neighbor node to the
victim input port (steps 6 and 7).

2. If the IMT entry corresponding to the victim circuit is valid,
this means that no disestablishment of the victim circuit is
in progress at the local node. If this is the case, the routing
processor creates and enqueues a CDP at the victim input
port DAMQ buffer and restarts packet flow (steps 8
through 10);

3. At this point (between steps 10 and 11), while the CDP is
waiting for its turn in the DAMQ buffer, the routing
processor returns to its normal mode of waiting for
interrupts from the ComCoBB chip. When the CDP is
finally sent from the DAMQ buffer through the crossbar to
an output port, the routing processor is interrupted again by
the output port logic (step 11);

4. At this point the victim circuit has been torn down, freeing
the victim output channel for use by the DVC being
reestablished. The routing processor sets up the mapping
tables for this DVC, creates a CEP, and inserts the CEP at



- 7 -

OC = Output Channel
OP = Output Port
IC = Input Channel
IP = Input Port
RP = Routing Processor
INV = Inverse Mapping Table
OPT = Output Port Table
IMT = Input Mapping Table

?
OC reserved

victim
4.

OC ← OP victim reg
3.

to get output port OP
dst, accesses Route Table
2. stop IP, RP reads packet

?
bit set

OC valid
victim

5.

IC′ ← INV[OP,OC].chan
IP′ ← INV[OP,OC].port
6. reserve OC

port IP′
7. stop input

entry valid?
IMT[IP′,IC′]

8.

IP′ on IC′
9. insert CDP at

port IP′
restart input
10. if IP′ ≠ IP,

invalidated
OPT[OP,OC]
interrupt RP,
sent out OP,
11. when CDP

unreserve OC

OPT[OP,OC]←valid

IMT[IP,IC].chan←OC

12. IMT[IP,IC].port←OP

y

y

n

IP on IC
13. insert CEP at

input channel IC
on input port IP and
0. data packet arrives

n
entry valid?

1. IMT[IP,IC]

n

y

enqueue pkt in DAMQ
16. IMT lookup to

n

y

mapping table
14. set inverse

data in bus
Aux Buf to
15. direct pkt in

Figure 5: Handling of data� �	�	� packets arriving at an input port.

the data packet’s input port. Once this is done, the data
packet can be directed to the DAMQ buffer (steps 12
through 16).

D. Support for Deadlock Resolution

In general, multicomputer interconnection networks are
susceptible to deadlock situations when no messages can
advance towards their destinations due to full buffers in one or
more cycles of communication switches [15]. With a global
view of the interconnection topology, it is possible to guarantee
deadlock-free routing by restricting the routing algorithm and
the use of the buffers at each node [8]. When deadlocks do not
occur, deadlock-free routing results in inefficient use of system
resources. An alternative approach to dealing with deadlocks is
to detect and resolve them when they occur [11, 6]. With this
approach there is no restriction on the routing and all network
resources are used for improved performance rather than
reserved for eliminating deadlocks. Since Dynamic Virtual
Circuits are designed to support distributed adaptive routing in
arbitrary topologies [16], the choice of the latter approach to
dealing with deadlocks is clear.

When an input DAMQ buffer remains full for some time
without transmitting any packets, a deadlock may exist.

Following the algorithm proposed in [11], when a node decides
that it may be in a deadlock, it first attempts to determine if
there is a cycle of nodes with full buffers which may form a
potential deadlock. If such a cycle is found, the packets are
rotated along the cycle so that they move towards their
destinations. Eventually, this process leads to one of the
buffers becoming not-full, thus resolving the deadlock. Further
details of the basic algorithm [11] will not be described here.

The cycle detection and deadlock resolution algorithms
require, at each switch, a fixed amount of storage that is
available even when the normal buffer is full [11]. This
Auxiliary Buffer is used to receive control packets as well as for
receiving a data packet during the rotation phase of the
algorithm. The control packets and fragments of data packets
can be read by the routing processor from the Auxiliary Buffer.
In addition, it is necessary for the routing processor to be able
to send a control packet directly to a specified output port. All
the connection and controls necessary for these operations are
provided in the ComCoBB design (Figures 3 and 4).

The cycle detection and deadlock resolution algorithms
require the switch to receive packets even if the input buffer is
full. Thus, a simple flow control line that inhibits new packets



- 8 -

from being transmitted by the neighbor whenever the buffer is
full is insufficient. For cycle detection or deadlock resolution it
must be possible for the routing processor to allow transmission
of one control packet or one 8-byte fragment of a data packet.
To support this feature, a second flow control line can be added
to handle enabling and disabling when the input buffer is full.
Alternatively, a protocol requiring only one flow control line
can be used with very little loss in overall performance.
Specifically, when an input buffer is full, but the node is ready
to receive eight bytes to be placed in the auxiliary buffer, the
node sends a special control message to its neighbor. This
control message is not placed in the DAMQ buffer or the
auxiliary buffer of the receiver. Instead, it simply sets a
single-bit state variable. This technique relies on the ability of
the routing processor to transmit a packet to the output port
without using the crossbar. The special control message can be
sent only when the output port is not otherwise occupied.
Hence, it may have to wait for completion of the current packet
transmission.

V. Summary and Conclusions

Dynamic virtual circuits combine the best features of the
traditional circuit switching, packet switching, and static virtual
circuits. This new message transport mechanism minimizes the
addressing and control information sent with each packet and
the latency of forwarding packets through each intermediate
node. Unlike static virtual circuits, DVCs can adapt to
congestion or failures in the system by allowing nodes to make
local decisions regarding the possible need to reroute the circuit
through a different physical path. We have described the basic
techniques for allowing circuits to be broken and reestablished
while maintaining the semantics of traditional virtual circuits.

We have presented an overview of the hardware
necessary to support DVCs in the context of a complete
communication coprocessor for multicomputers. Dedicated
hardware is used on-chip to handle the critical frequent case,
while an off-chip routing processor is used for more complex
but less frequent tasks. Based on the costs of handling the
complex cases, it is clear that high performance requires that
the network message traffic exhibit high spatial and temporal
locality, leading to a low rate of involuntary circuit teardowns
and subsequent reestablishments. Fortunately, recent
measurements of multicomputers indicate that such locality can
be expected in real applications [10]. An additional feature of
the hardware proposed in this paper is that it supports a
deadlock resolution algorithm that does not require limiting the
flexibility of the routing scheme. This leads to efficient
utilization of system resources, and thus to high performance,
during normal operation.

Acknowledgements

Some of the ideas presented in this paper were explored
by Gregory Frazier and Tiffany Frazier in course term projects
at UCLA in 1988. Tiffany Frazier suggested the idea of using
logical timestamps for maintaining packet ordering. Helpful
suggestions regarding this work were also made by David
Rennels, Bill Smith, and Vance Tyree.

References

1. W. C. Athas and C. L. Seitz, ‘‘Multicomputers: Message-Passing
Concurrent Computers,’’ Computer 21(8), pp. 9-24 (August
1988).

2. H. G. Badr, D. Gelernter, and S. Podar, ‘‘An Adaptive
Communications Protocol for Network Computers,’’
Performance Evaluation 6(1), pp. 35-51 (March 1986).

3. D. Bertsekas and R. Gallager, Data Networks, Prentice Hall
(1987).

4. M.-S. Chen, K. G. Shin, and D. D. Kandlur, ‘‘Addressing,
Routing, and Broadcasting in Hexagonal Mesh Multiprocessors,’’
IEEE Transactions on Computers 39(1), pp. 10-18 (January
1990).

5. E. Chow, H. Madan, J. Peterson, D. Grunwald, and D. Reed,
‘‘Hyperswitch Network for the Hypercube Computer,’’ 15th
Annual International Symposium on Computer Architecture,
Honolulu, Hawaii, pp. 90-99 (May 1988).

6. I. Cidon, J. M. Jaffe, and M. Sidi, ‘‘Local Distributed Deadlock
Detection by Cycle Detection and Clustering,’’ IEEE
Transactions on Software Engineering SE-13(1), pp. 3-14
(January 1987).

7. F. J. Corbato, ‘‘A Paging Experiment with the MULTICS
System,’’ Project MAC Memo MAC-M-384, MIT, Cambridge,
MA (July 1968).

8. W. J. Dally and C. L. Seitz, ‘‘Deadlock-Free Message Routing in
Multiprocessor Interconnection Networks,’’ IEEE Transactions
on Computers C-36(5), pp. 547-553 (May 1987).

9. J.-M. Hsu and P. Banerjee, ‘‘Hardware Support for Message
Routing in a Distributed Memory Multicomputer,’’ 1990
International Conference on Parallel Processing, St. Charles, IL
(August 1990).

10. J.-M. Hsu and P. Banerjee, ‘‘Performance Measurement and
Trace Driven Simulation of Parallel CAD and Numeric
Applications on a Hypercube Multicomputer,’’ Proceedings 17th
International Symposium on Computer Architecture, Seattle,
WA, pp. 260-269 (May 1990).

11. J. M. Jaffe and M. Sidi, ‘‘Distributed Deadlock Resolution in
Store-and-Forward Networks,’’ Algorithmica 4(3), pp. 417-436
(1989).

12. P. Kermani and L. Kleinrock, ‘‘Virtual Cut Through: A New
Computer Communication Switching Technique,’’ Computer
Networks 3(4), pp. 267-286 (September 1979).

13. J. Y. Ngai, ‘‘A Framework for Adaptive Routing in
Multicomputer Networks,’’ Computer Science Technical Report
89-09, California Institute of Technology, Pasadena, CA (May
1989).

14. D. A. Reed, P. K. McKinley, and M. F. Barr, ‘‘Performance
Analysis of Switching Strategies,’’ Proceedings 1987 Symposium
on the Simulation of Computer Networks, pp. 130-141 (August
1987).

15. D. A. Reed and R. M. Fujimoto, Multicomputer Networks:
Message-Based Parallel Processing, The MIT Press (1987).

16. W. D. Tajibnapis, ‘‘A Correctness Proof of a Topology
Information Maintenance Protocol for a Distributed Computer
Network,’’ Communications of the ACM 20(7), pp. 477-485 (July
1977).

17. Y. Tamir and J. C. Cho, ‘‘Design and Implementation of High-
Speed Asynchronous Communication Ports for VLSI
Multicomputer Nodes,’’ International Symposium on Circuits
and Systems, Espoo, Finland, pp. 805-809 (June 1988).

18. Y. Tamir and G. L. Frazier, ‘‘High-Performance Multi-Queue
Buffers for VLSI Communication Switches,’’ 15th Annual
International Symposium on Computer Architecture, Honolulu,
Hawaii, pp. 343-354 (May 1988).


