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A Two-Layer Paradigm Capable of Forming Arbitrary
Decision Regions in Input Space

Vinay Deolalikar

Abstract—It is well known that a two-layer perceptron network
with threshold neurons is incapable of forming arbitrary decision
regions in input space, while a three-layer perceptron has that ca-
pability. In this paper, the effect of replacing the output neuron
in a two-layer perceptron by a bithreshold element is studied. The
limitations of this modified two-layer perceptron are observed. Re-
sults on the separating capabilities of a pair of parallel hyperplanes
are obtained. Based on these, a new two-layer neural paradigm
based on increasing the dimensionality of the output of the first
layer is proposed and is shown to be capable of forming any ar-
bitrary decision region in input space. Then a type of logic called
bithreshold logic, based on the bithreshold neuron transfer func-
tion, is studied. Results on the limits of switching function realiz-
ability using bithreshold gates are obtained.

Index Terms—Artificial neural networks, bithreshold logic,
bithreshold neuron, classification regions, two-layer networks.

I. INTRODUCTION

M ULTIAYER perceptrons (MLPs) have demonstrated
very promising performance as compared to classical

Von Neumann machines in several areas like function ap-
proximation, pattern recognition, speech recognition, etc. An
excellent concise introduction to this field can be found in [7].
More classical treatises on the foundations of this subject are
[9], [10], and [12].

The classical MLP is made up of layers of neurons. Each
neuron has a pair ( ) associated to it, where and are called
its weight vector and threshold, respectively. Letbe the input
vector to a neuron, of the same dimension as. Then the output
of the neuron is defined by

if
if

The quantity is called theactivationof the neuron. Each
neuron in a layer receives as input the outputs of all the neurons
in the previous layer and it feeds its output to every neuron in
the next layer and so on. There are no interconnections between
neurons within a layer. The output layer consists of only one
neuron, called theoutput neuron.

The network as a whole performs a “classification” of by
mapping every vector in to a 1 or a 1. The subset of
that is mapped to 1 is called the network’sdecision region. In
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general, a subset of is said to beclassifiableby a network
if it can be made the decision region of the network (usually by
appropriately changing the weight vectors).

It is known that an MLP with three layers is auniversal classi-
fier, i.e., it can form any arbitrary decision region in input space.
Many studies on the limitations of a two-layer network in this
regard have been done. We shall first study the two-layer net-
work in some detail.

Let there be neurons with a fixed ordering in the first layer
operating on a set of-dimensional inputs. Geometrically, each
of the neurons has a hyperplane associated with it given by

This hyperplane then divides into two halfspaces

and

also called its positive and negative halfspace, respectively. For
the rest of the paper, we will continue to use the above nota-
tion to denote hyperplanes and their positive and negative half-
spaces. The such hyperplanes corresponding to thefirst
layer neurons exhaustively divide into disjointbasic convex
polytopes. Let the pair be associated with theth neuron
in the first layer. Then each basic convex polytope is given by
an intersection of halfspaces as

where depending on and . The index is bounded
by 2 because hyperplanes can divide into at most 2
regions. Each basic convex polytopehas a unique (for the or-
dering of neurons) -dimensional Boolean representation given
by where if , and

if .
We can view the outputs of the first layer neurons collectively

as a -dimensional vector. Then, forms the output vector of
the first layer neurons when an input vector falls in the region

. Let denote the set of vertices of the-cube .
Since , there is a 1–1 (but not necessarily onto) map-
ping from the set of basic convex polytopes to given
by . In effect, it is this mapping that is performed by
the first layer of the network. In general, the image of this map,

, is not all of . The vertices of the -cube that lie in
are then the possible inputs to the output neuron.

Now the output neuron also has a unique hyperplane associ-
ated with it given by
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where is a generic -dimensional vector. This hyperplane
divides into two sets of vertices, one falling in and
the other in . Thus, if the output neuron receives as its
input a vertex in , the network outputs 1. If, on the
other hand, the output neuron receives as its input a vertexin

, the network outputs 1. The network’s decision region
is given by the union of all the basic convex polytopes whose
Boolean representations fall in .

From this discussion, it is clear that a certain decision re-
gion is implementable by a two-layer network if the vertices of

corresponding to the individual convex polytopes that com-
prise this region arelinearly separablefrom their complement
in .

Definition 1: Let denote the set of vertices of a-cube.
A dichotomy , of is said to be linearly sep-
arable if there exists a pair such that

and

The problem of ascertaining whether or not an arbitrary di-
chotomy of is linearly separable is known to be hard [2].
This implies that the problem of determining whether or not an
arbitrary decision region is implementable by a two-layer net-
work is hard as well.

II. A VAILABLE RESULTS ONTWO- AND THREE-LAYER

CLASSIFIABILITY

At first, it was thought that the decision regions of two-layer
perceptrons could only be convex polytopes. Later, nonconvex
decision regions were shown to be two-layer classifiable, but
the condition of connectedness was added [6]. However, it was
demonstrated later that even unions of disconnected convex re-
gions could be two-layer classifiable [8]. Subsequently, convex
recursive deletion (CoRD) regions have been shown to be two-
layer classifiable [13]. The reader should not, however, believe
that there is any chance of traditional two-layer networks having
the capability to form arbitrary decision regions in input space,
as is equivalent to saying that every dichotomy of is linearly
separable. We can find many counterexamples—for ,
a simple one being the dichotomy { , } with
comprising just a pair of antipodal points. However, it is easily
shown that any arbitrary decision region in input space is three-
layer classifiable [7]. It is perhaps this result that has led to a
somewhat diminished interest in the problem of two-layer clas-
sifiability. There is, however, a result by Cybenko [4] that proves
that two-layers are sufficient toapproximatearbitrary decision
regions in input space.

III. T HE BITHRESHOLD NEURON MODEL

While threshold models for neurons are most widely used in
existing literature, there has also been some effort devoted to
studying multithreshold neuron models. For example, in [11],
expressions for the separating capacity of a multithreshold gate
acting upon several points which are assumed to be in general
position have been derived. For our purposes, these results will
not be very useful since the points that we seek to separate are
not in general position, but are vertices of . We will focus
our attention on the simplest case of a multithreshold neuron,

namely, the bithreshold neuron (BN). A BN is defined by a triple
( ), where with its output given by
(see also Fig. 1)

if
otherwise.

Geometrically, the bithreshold neuron has two separating sur-
faces that define its decision region, as opposed to just one sep-
arating surface that defined the decision region of the traditional
threshold neuron. These are in the form of two parallel hyper-
planes given by

and

The decision region is the intersection of the positive halfspace
of the first hyperplane corresponding to the lower

threshold limit and the negative halfspace of the second
hyperplane corresponding to the upper threshold limit. We
denote this decision region by where

We denote the complement of the decision region by

Definition 2: Let be a dichotomy of . It
is said to be P-separable if there exists a triple such
that and . It is said to be
N-separable if and . A di-
chotomy of is said to be bithreshold-separable if it is either
P-separable or N-separable (or both).

Proposition 1: P-separability does not imply N-separability
and vice versa.

Proof: Let be the set of two diagonally opposite
points of the same face and be its complement. Then, the
dichotomy is P-separable but not N-separable,
while the dichotomy is N-separable but not
P-separable.

IV. THE CAPABILITIES OF A TWO-LAYER PERCEPTRONWITH A

BN OUTPUT

We now study the capabilities of a two-layer perceptron in
which the output neuron has been replaced by a bithreshold
neuron. The rest of the network remains as earlier. Such a net-
work will be said to have a BN output and will be referred to as
a modified two-layer perceptron.

The basic theorem which we use to tackle the problem of
separating sets of vertices using two hyperplanes is stated below.
Even though we only need the use of this theorem whereand

are known to be subsets of , we will prove it for the more
general case where they are arbitrary finite subsets of. In
what follows, let denote the convex polytope defined by
points in and denote the affine subspace defined by the
points of .

Theorem 1: Let and be finite subsets of . If
, and , there exists a bithreshold neuron

defined by a triple such that and
.
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Fig. 1. The transfer function for the bithreshold neuron model. This type of characteristic can be obtained by tying the outputs of two open-collectoramplifiers,
one of which compares the input witht and the other witht .

Proof: First, note that if , we could add points
to that are arbitrarily close to those already into make

. Thus, without loss of generality, we assume that
. Let . There are hyperplanes uniquely

defined by the sets of points formed by adding only one of
the points in to the points in . Take a point in

not lying on any of these hyperplanes. Now along with
the points in it forms a set of points. Let the hyper-
plane uniquely defined in by these points be . This
hyperplane then does not pass through any of thepoints of

, if they do not lie in . Then two hyperplanes given by
, and , where is less than the perpendicular dis-

tance from of the nearest point in , perform the desired
partition. All the points of lie in while all
the points in lie in .

If any of the points belonging to lie in , then will
pass through them also. In that case, we can perform the above
procedure with replaced by a set that contains points
from and one more point not on . We ensure that the
distance from of the point of left out is less than that
of any point in . This is always possible since .
This completes the proof.

Lemma 1: Let and with . Then
.

Proof: Since this is a geometric statement, we can relabel
the vertices in such that . Clearly,

. Now consider the hyperplane where
. Then clearly, and the entire set of vertices
lies in ,andthereforesodo and .

Thus the hyperplane has separatedfrom . By the
Hahn–Banach theorem[1], thevertexcannot lie in .

Theorem 2: The modified two-layer perceptron can imple-
ment any decision region in that is formed by the union of

basic convex polytopes, where is the number of
neurons in the first layer.

Proof: Follows immediately from Theorem 1 and Lemma
1 by letting comprise the vertices of corresponding
to the stated basic convex polytopes and be their
complement.

Corollary 1: The modified two-layer perceptron can classify
any decision region in that is formed by the union of

basic convex polytopes in , where is the
number of neurons in the first layer.

Proposition 2: A linearly separable dichotomy of is al-
ways N and P-separable.

Proof: Let be the triple associated with the
BN. The result follows by making and performing
partitions of with just one of the two separating hyper-
planes. This also implies that decision regions implementable
by a standard two-layer network are always implementable
by a two-layer network with a BN output. Moreover, there
are bithreshold-separable dichotomies of that are not
linearly separable, resulting in decision regions that can be
implemented by a modified two-layer perceptron but not by a
traditional two-layer perceptron (see also Fig. 2).

Lemma 2: Let be a set of points lying on a hyperplane
. Let be a set of points such that . Then

is bithreshold-separable.
Proof: The set of parallel hyperplanes and

will perform the required separation by setting where
is the perpendicular distance from of the closest point

in .
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Fig. 2. Example of a decision region in two-dimensional input space
implementable by a two-layer network with three first-layer neurons and a
bithreshold neuron output (without further addition of first layer neurons to
the existing network) that is not implementable by a two-layer perceptron with
three first-layer neurons with threshold output. The vertices of the three-cube
that correspond to the basic convex polytopes are also indicated in the figure.

Proposition 3: For , all dichotomies of are
bithreshold-separable. For all , there exist dichotomies
of that are not bithreshold-separable.

Proof: The cases are trivial. Consider
. For a particular labeling of the vertices, the di-

chotomy where
and is its complement,

is not bithrehold-separable. There are in all four such di-
chotomies corresponding to the eight different ways of labeling
the cube and equating the dichotomies obtained by labeling
with respect to a vertex and its antipodal vertex. To see this,
observe that the -cube has a natural “layering” of its vertices,
such that theth layer, , comprises those vertices
which have exactly s in their coordinates. A dichotomy that
is not bithreshold-separable for is obtained by letting

be the union of layers having even parity, and be
the union of layers having odd parity [see also Fig. 3(a)].

V. A TWO-LAYER PARADIGM CAPABLE OF FORMING

ARBITRARY DECISION REGIONS

A. Theoretical Framework

Consider a dichotomy of . By Theorem 1,
we know that if or ,
the dichotomy is bithreshold-separable. For

, we cannot guarantee the bithreshold-separability of
. Let , with .

Let be a generic vertex of . We now
define a map

Here is the th component of the vertex .
Thus, the map appends to each of the vertices in its
own th component mapping it to a vertex in .

Now consider the sequence of maps

The image of the set under this sequence of maps is a
set of vertices of of cardinality . But by Theorem 1, this
set is bithreshold-separable from its complement in . This
is the theoretical framework that leads to our neural architecture.

B. The New Network Paradigm

Consider the two-layer modified MLP with a BN as its output
neuron. Let there be neurons in its first layer, each of them
receiving -dimensional inputs. The hyperplanes corresponding
to the first layer neurons form basic convex poly-
topes in , where is given by [16]

Then consider a decision region comprising a union ofbasic
convex polytopes. If or , it can be
realized by the two-layer modified MLP by force of Theorem 1.

If , to the first layer of neurons,
add a neuron defined by the same pair { } as the th existing
neuron of the first layer. Thus now, we have neurons in
the first layer. The added neuron’s output is identical to theth
existing neuron’s output.

Geometrically, it means that the hyperplane separating sur-
face of the added neuron exactly coincides with the hyperplane
separating surface of theth existing neuron. Thus, by addition
of this neuron,no newregions are formed in the input space. The
input space partitioning into basic convex polytopes remains ex-
actly the same as before. In particular, the required decision re-
gion still comprises the union of onlybasic convex polytopes.

But now, the output BN receives as input the vertices of
, instead of as earlier. From these vertices, the BN is

required to separate vertices corresponding to theconvex
polytopes whose union is our desired decision region.

Repeat this addition of neurons. With each successive addi-
tion, the output BN is required to separate outvertices from a
higher dimensional cube. In particular, after neu-
rons have been added to the first layer, the output BN is re-
quired to separate out vertices in from their comple-
ment. This it can accomplish, by force of Theorem 1. Thus, we
will have to add at most neurons to the first layer to
implement a decision region that is the union ofbasic convex
polytopes in . This paradigm is illustrated for the case of

in Fig. 3.

C. Upper Bound on the Number of First-Layer Neurons

Let be the minimum number of hyperplanes required to
obtain the basic convex polytopes whose union is the desired
decision region. Then these hyperplanes form re-
gions which correspond to vertices of the -cube. It
is these vertices only that will be possible inputs to the output
BN. From these it will have to separate out vertices
from all the others.
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Fig. 3. A demonstration of the new network architecture. (a) A decision
region not implementable with a two-layer network by just replacing the output
neuron with a BN. This network has three first-layer neurons. (b) Add two
neurons to the first layer whose decision regions coincide with the first and
third existing neurons (signified by the two darker lines). The partitions of input
space remain the same, and the new vertices of the five-cube that correspond
to the desired decision region are separable from their complementary set by
force of Theorem 1.

In the worst case, , for if
we can take the complement of our decision region and sepa-
rate out the vertices corresponding to this union of
complementary basic convex polytopes. Then we have to have
at most neurons in the first layer.
Thus, the number of neurons in the first layer is bounded by

where is the minimum number of hyperplanes
required to form the basic convex polytopes whose union is our
desired decision region. Note that the result holds for any arbi-
trary choice of basic convex polytopes.

VI. BITHRESHOLD LOGIC

In this section we shall examine whether the logic that can
be implemented by bithreshold gates—bithreshold logic—of-
fers any considerable advantages over threshold logic. To this
end, we will estimate the number of Boolean switching func-
tions that are implementable with a single BN.

There is a well-known upper bound on the number of imple-
mentable threshold Boolean switching functions ofBoolean
variables defined on points given by [15]

Similarly, we seek an estimate of the number of Boolean
switching functions of variables defined on points and
realizable by a single bithreshold gate. By comparing the two,
we can get an idea of the enhancement in switching function
realization capacity offered by the bithreshold gate.

Let the points in on which the switching function is de-
fined be . Transform each point in , to a point
in given by . Now consider the hyperplane
in given by

where the weights plus the threshold make up the
dimensions.

Then in , points lying in the positive halfspace of
this hyperplane represent values ofand that would make the
threshold function at negative and points in the negative half-
space represent values ofand that would make the threshold
function at positive. Each of the points gives a similar hy-
perplane. To calculate the number of threshold functions all we
have to do is to count the regions into which thehyperplanes
divide the whole of [16].

The number of bithreshold functions is arrived at in a slightly
different manner. Two points in different regions correspond to
threshold functions differing on at least one of thepoints.
Consider a point in any of the regions. This corresponds to a
threshold function. We can also view it as a hyperplane in.
Now, consider a point in another region. This also corresponds
to a hyperplane in which differs from the first on at least
one of the vertices of the cube in the sense that at least one
of the vertices is not on the same side of both of these hyper-
planes.

Now if these two points had differed only in theircoordi-
nate, then the two hyperplanes in corresponding to them
would have been parallel, i.e., together they would have rep-
resented a bithreshold function. Thus, directed line segments in

parallel to the axis represent bithreshold functions. Two
directed line segments represent the same bithreshold functions
iff the two segments begin in the same region and also end in the
same region. We seek to estimate the number of such directed
line segments.

We now make the following estimate. If there are such
regions in dimensions and they are uniformly distributed,
roughly will be “stacked up” in any one coor-
dinate. Thus for each of the regions, roughly
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can be reached by just changing thecoordinate. So in all we
have roughly of such directed line segments
parallel to the axis.

Thus, the number of different switching functions of
variables defined on points and implementable by a single
bithreshold gate is as compared to by
a single threshold gate.

Proposition 4: If , single bithreshold gate realiz-
ability is unlikely.

Proof: The proof is similar to Winder’s [15] proof of the
result for a single threshold gate. We know that

Also, the total number of switching functions onpoints is 2 .
So we can estimate the ratio

(Using Stirling's
approximation)

Taking log to the base 2 and letting

as

which goes to zero for .
Proposition 5: If a switching function is randomly defined

on randomly chosen points, then as , the probability
of the function being realizable by a single bithreshold gate
1 for ; 0 for ; and 1/2 for .

Proof: We seek to show that

for

for

for

First, observe that goes to 1 as .
Thus the ratios we seek to evaluate as are the same as
the ratios of /2 for the limits in question. But these are just
the corresponding ratios for single threshold gate realizability,
and so the result we seek to prove for bithreshold gate realiz-
ability is the same as the existing ones for threshold gate realiz-
ability [15].

This result tells us that the capabilities of a bithreshold gate
are asymptotically the same as a threshold gate. This may
seem slightly surprising at first, but is actually not so in light
of Cover’s [3] results on the separating capacities of surfaces.

Cover showed that the natural separating capacity of a surface
with degrees of freedom is 2. If however, there are
independent constraints on the surface, its separating capacity
reduces to 2 .

We may view a pair of hyperplanes in as a single sur-
face with 2 degrees of freedom. However, if we insist that the
hyperplanes be parallel, then after we have fixed the first hyper-
plane, we have only one degree-of-freedom left for the second
hyperplane—its distance from the first. This leads to a total of

degrees of freedom, which for large . The result
can easily be extended to multithreshold gates as well.

However, for practical applications with smaller number of
inputs, the bithreshold gate provides a significantly improved
capability. Perhaps more importantly, it allows us to separate
certain geometric structures of the hypercube, like its major di-
agonals, which could not be separated with a threshold gate.

VII. CONCLUSION

In this paper, we have shown that a bithreshold neuron, when
used as the output neuron of a two-layer network, significantly
improves its classification capability. We provided a new
paradigm for a two-layer network based on increasing the
dimensionality of the input to the output neuron. In most neural
learning paradigms, the number of neurons in the various layers
and their interconnections remain fixed while the weights vary.
In our paradigm, we vary the number of neurons in the first
layer as well. This paradigm can achieve universal classifica-
tion capability for a two-layer network. We also studied the
realizability of Boolean functions using bithreshold gates and
showed that asymptotically, threshold and bithreshold gates
have the same capacity.
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