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A Two-Layer Paradigm Capable of Forming Arbitrary
Decision Regions in Input Space

Vinay Deolalikar

Abstract—t is well known that a two-layer perceptron network  general, a subset &" is said to beclassifiableby a network
with threshold neurons is incapable of forming arbitrary decision  if it can be made the decision region of the network (usually by
regions in input space, while a three-layer perceptron has that ca- appropriately changing the weight vectors).

pability. In this paper, the effect of replacing the output neuron . . S .
in a two-layer perceptron by a bithreshold element is studied. The Itis known thatan MLP with three layers isiaiversal classi-

limitations of this modified two-layer perceptron are observed. Re- fier, i.e., it can form any arbitrary decision region in input space.
sults on the separating capabilities of a pair of parallel hyperplanes  Many studies on the limitations of a two-layer network in this
are obtained. Based on these, a new two-layer neural paradigm regard have been done. We shall first study the two-layer net-
based on increasing the dimensionality of the output of the first work in some detail.

layer is proposed and is shown to be capable of forming any ar- . . S .
bitrary decision region in input space. Then a type of logic called Let there ben neurons with a fixed ordering in the first layer

bithreshold logic, based on the bithreshold neuron transfer func- operating on a set of-dimensional inputs. Geometrically, each
tion, is studied. Results on the limits of switching function realiz- of the neurons has a hyperplane associated with it given by
ability using bithreshold gates are obtained.

Index Terms—Artificial neural networks, bithreshold logic, Hy o ={x:wx>1t}.

bithreshold neuron, classification regions, two-layer networks. . . .
g Y This hyperplane then dividd8™ into two halfspaces

|. INTRODUCTION Hvtt ={xxwx>tlandH, , = {x: wx <t}

ULTIAYER perceptrons (MLPs) have demonstrated|so called its positive and negative halfspace, respectively. For

very promising performance as compared to classig@le rest of the paper, we will continue to use the above nota-
Von Neumann machines in several areas like function agon to denote hyperplanes and their positive and negative half-
proximation, pattern recognition, speech recognition, etc. Ajpaces. Then such hyperplanes corresponding to thefirst
excellent concise introduction to this field can be found in [7]ayer neurons exhaustively divid™ into disjointbasic convex
More classical treatises on the foundations of this subject giglytopesLet the pairw;, t; be associated with thgh neuron

[9], [10], and [12]. in the first layer. Then each basic convex polytope is given by
The classical MLP is made up of layers of neurons. Eagth intersection ofn halfspaces as

neuron has a paix, t) associated to it, whese andt are called

its weight vector and threshold, respectively. kdte the input C = ﬁ H
vector to a neuron, of the same dimensiowad hen the output ! e
of the neuron is defined by

L, 1<i<2m

j=1
. where¢; = + depending ord andj. The index! is bounded
Jw.t(x) = { +1, !f WX >t by 2™ becausen hyperplanes can dividB" into at most 2
7 -1, fwx<t. regions. Each basic convex polytoffehas a unique (for the or-
The quantityw.x is called theactivationof the neuron. Each dering of neurons):-dimensional Boolean representation given
neuron in a layer receives as input the outputs of all the neurd¥s <t = .(cllv ..., am) Wherec;; = +11if i; = +, and
in the previous layer and it feeds its output to every neuron fiy = —1 ifi; = —.
the next layer and so on. There are no interconnections betweeM/e can view the outputs of the first layer neurons collectively
neurons within a layer. The output layer consists of only or an-dimensional vector. Theky; forms the output vector of
neuron, called theutput neuron the first layer neurons when an input vector falls in the region
The network as a whole performs a “classification®Rif by - Let@™ denote the set of vertices of the-cube{—1, 1}™.
mapping every vector iR" to a+1 or a—1. The subset dR™ Sincec; € Q™, there is a 1-1 (but not necessarily onto) map-

that is mapped te-1 is called the network'decision regionin ~ Ping from the set of basic convex polytops; } to Q™ given
by ¢: C; — ¢;. In effect, it is this mapping that is performed by

, . , _ _ tpe first layer of the network. In general, the image of this map,
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wherey is a genericm-dimensional vector. This hyperplanenamely, the bithreshold neuron (BN). A BN is defined by a triple
divides@Q™ into two sets of vertices, one falling iHvto,to and (w, ty, t2), wheret; < t, with its output f, t1, t2 given by
the other inH,, , . Thus, if the output neuron receives as itésee also Fig. 1)

input a vertexv in H\—ilv—o,to’ the network outputs-1. If, on the
other hand, the output neuron receives as its input a vertex
H,,. ., the network outputs-1. The network’s decision region
is given by the union of all the basic convex polytopes whose Geometrically, the bithreshold neuron has two separating sur-
Boolean representations fall H_, . faces that define its decision region, as opposed to just one sep-

From this discussion, it is clear that a certain decision rgrating surface that defined the decision region of the traditional

gion is implementable by a two-layer network if the vertices gfreshold neuron. These are in the form of two parallel hyper-
Q™ corresponding to the individual convex polytopes that comjanes given by

prise this region aréinearly separabldrom their complement

in im(g). Hy v, ={xtwx =t }andHy +, = {x: wx =t2}.
Definition 1: Let Q™ denote the set of vertices ofa-cube. o o ) ) .

A dichotomy{Q™+}, {Q™~} of Q™ is said to be linearly sep- The decision region is the intersection of the positive halfspace

p [+, ift <wx <ty
w, b, ta —1, otherwise.

arable if there exists a pajiw, t} such that H;g,t1 of the first hyperplane corresponding to the lower
- threshold limit and the negative halfspakg, ,, of the second
Q™ C H$7tandQ"’* C Hy 4 hyperplane corresponding to the upper threshold limit. We

- _ denote this decision region where
The problem of ascertaining whether or not an arbitrary di- gion Bl 1,12

chotomy of @™ is linearly separable is known to be hard [2]. Py oty 1y = H
This implies that the problem of determining whether or not an ’
arbitrary decision region is implementable by a two-layer ne¥ve denote the complement of the decision region by
work is hard as well.

. NH

w,to"

Nw,ty, 0, = Hy 4, U H‘jv—ytz'
Il. AVAILABLE RESULTS ONTWO- AND THREE-LAYER Definition 2: Let {Q™*, Q™= be a dichotomy of™. It

CLASSIFIABILITY is said to be P-separable if there exists a tripie ¢, t2} such

At first, it was thought that the decision regions of two-layethat Q™+ C Py ¢+, and Q™™ C Ny 4, ¢, It is said to be
perceptrons could only be convex polytopes. Later, nonconviixseparable Q™" C Ny ¢, 1, andQ™™ C Py ¢, 1,. A di-
decision regions were shown to be two-layer classifiable, beitotomy of(Q™ is said to be bithreshold-separable if it is either
the condition of connectedness was added [6]. However, it wAsseparable or N-separable (or both).
demonstrated later that even unions of disconnected convex reProposition 1: P-separability does not imply N-separability
gions could be two-layer classifiable [8]. Subsequently, convexd vice versa.
recursive deletion (CoRD) regions have been shown to be two- Proof: Let 3t be the set of two diagonally opposite
layer classifiable [13]. The reader should not, however, beliepeints of the same face arigf~ be its complement. Then, the
that there is any chance of traditional two-layer networks havimtichotomy {Q*+, Q*~} is P-separable but not N-separable,
the capability to form arbitrary decision regions in input spacehile the dichotomy{Q3~, Q**} is N-separable but not
asis equivalent to saying that every dichotomyf is linearly P-separable. O
separable. We can find many counterexamples—for> 1,

a simple one being the dichotomy{"t, @™~} with Q™% V. THE CAPABILITIES OF A TWO-LAYER PERCEPTRONWITH A
comprising just a pair of antipodal points. However, it is easily BN OuTtpPuT

shown that any arbitrary decision region in input space is three- " .
o : : We now study the capabilities of a two-layer perceptron in
layer classifiable [7]. It is perhaps this result that has led to y b yer p b

hat diminished int tin th bl £ tWo-| | \fhich the output neuron has been replaced by a bithreshold
somewhat diminished interest in the probiem ol two-layer Clagg, .oy The rest of the network remains as earlier. Such a net-

that two-layers are sufficient @pproximatearbitrary decision

. - amodified two-layer perceptron
regions in input space.

The basic theorem which we use to tackle the problem of
separating sets of vertices using two hyperplanes is stated below.
Even though we only need the use of this theorem wiiesad

While threshold models for neurons are most widely used &1 are known to be subsets ", we will prove it for the more
existing literature, there has also been some effort devotedgeneral case where they are arbitrary finite subseB'8f In
studying multithreshold neuron models. For example, in [1)yhat follows, letC(S) denote the convex polytope defined by
expressions for the separating capacity of a multithreshold gatnts inS and A(S) denote the affine subspace defined by the
acting upon several points which are assumed to be in gengraints of S.
position have been derived. For our purposes, these results wilTheorem 1: Let S and .S’ be finite subsets aR™. If | S| <
not be very useful since the points that we seek to separateare- 1, and.S’ N C(S) = ¢, there exists a bithreshold neuron
not in general position, but are vertices@f*. We will focus defined by a triple{w, ¢,,¢2} such thatS C Py, andS’ C
our attention on the simplest case of a multithreshold neuraNy, +, ¢, -

I1l. THE BITHRESHOLD NEURON MODEL
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t t2 | Activation

Fig. 1. The transfer function for the bithreshold neuron model. This type of characteristic can be obtained by tying the outputs of two opensopliéetsy
one of which compares the input with and the other with.

Proof: First, note thatifS| < m— 1, we could add points  Theorem 2: The modified two-layer perceptron can imple-
to S that are arbitrarily close to those already.9nto make ment any decision region iR™ that is formed by the union of
|S| = m — 1. Thus, without loss of generality, we assume that (m — 1) basic convex polytopes, where is the number of
|S| = m — 1. Let|S’| = k. There are: hyperplanes uniquely neurons in the first layer.
defined by the: sets ofm points formed by adding only one of Proof: Follows immediately from Theorem 1 and Lemma
the k points inS’ to them — 1 points inS. Take a pointp in 1 by letting @™+ comprise the vertices @@™ corresponding
R™ not lying on any of thesé hyperplanes. Now along with to the stated basic convex polytopes atd*~ be their
them — 1 points inS it forms a set ofn points. Let the hyper- complement. O
plane uniquely defined iR™ by thesemn points beH,, ;. This Corollary 1: The modified two-layer perceptron can classify
hyperplane then does not pass through any ofitip@ints of any decision region iR™ that is formed by the union of
S’, if they do not lie inA(S). Then two hyperplanes given by2™ — (m — 1) basic convex polytopes iR™, wherem is the
H,p—., andH, y4., Wheree is less than the perpendicular dishumber of neurons in the first layer.
tance fromH,, , of the nearest point i§’, perform the desired  Proposition 2: A linearly separable dichotomy @™ is al-
partition. All them — 1 points of S lie in P, y4.— while all ways N and P-separable.
the £ points inS’ lie in N e p—c. Proof: Let {w,t1,t2} be the triple associated with the

If any of the points belonging t8’ liein A(S), thenH, , will  BN. The result follows by makingy —¢2 > 2m and performing
pass through them also. In that case, we can perform the abpaetitions of @™ with just one of the two separating hyper-
procedure withs replaced by a sef; that containsn —2 points  planes. This also implies that decision regions implementable
from S and one more point not oA (5). We ensure that the by a standard two-layer network are always implementable
distance fromA(S;) of the point ofS left out is less than that by a two-layer network with a BN output. Moreover, there
of any pointinS’. This is always possible sinéENC(S) = ¢. are bithreshold-separable dichotomies @f* that are not

This completes the proof. O linearly separable, resulting in decision regions that can be
Lemma l:Letv € @™ andV C Q™ with v ¢ V. Then implemented by a modified two-layer perceptron but not by a
v ¢ C(V). traditional two-layer perceptron (see also Fig. 2). O
Proof: Since this is a geometric statement, we can relabelLemma 2: Let S be a set of points lying on a hyperplane
the vertices iQ™ suchthav = (1, ..., 1).Clearly,C(V) C H,,. LetS’ be a set of points such that N H,, = ¢. Then

C(Q™ \ v). Now consider the hyperplarfé, ,,,_. where0 < {5, S’} is bithreshold-separable.
e < 2.Thenclearlyy € Hj,’ m—. and the entire set of vertices Proof: The set of parallel hyperplanés, ,_. andH, y.

Qm™\vliesinH, . __,andthereforesodg(Q™ \v)andC(V). will perform the required separation by setting< d where
Thusthe hyperplanH, .,,_ has separatedfromC(V'). Bythe d is the perpendicular distance froff, ; of the closest point

Hahn-Banachtheorem[1], the veriegannotlieinC'(V). O in.S". O
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Now consider the sequence of maps

1

ey et ey
& 1% ’ 1
aLy Qm — Qm+ — ... = Qp+ .

The image of the se)™* under this sequence of maps is a
set of vertices of)P*! of cardinalityp. But by Theorem 1, this
set is bithreshold-separable from its complemer@#i!. This
is the theoretical framework that leads to our neural architecture.

-1,1,-1)

{-1.-1,-1)

B. The New Network Paradigm

Consider the two-layer modified MLP with a BN as its output
neuron. Let there be: neurons in its first layer, each of them
(:1,01) receivingn-dimensional inputs. The hyperplanes corresponding
to them first layer neurons forn€(m, n) basic convex poly-
topes inR"™, whereC(m, n) is given by [16]

. 2m m<n
min(m, n) ? ?
Fig. 2. Example of a decision region in two-dimensional input space  (i(y, n) = Z — m
implementable by a two-layer network with three first-layer neurons and a ’ 4 ) Z ( i ), m > n.
bithreshold neuron output (without further addition of first layer neurons to i=0 i=0
the existing network) that is not implementable by a two-layer perceptron with
three first-layer neurons with threshold output. The vertices of the three-cubeThen consider a decision region comprising a unigmiadisic
that correspond to the basic convex polytopes are also indicated in the figureonvex polytopes. Ip < m — 1 orp > 2™ —m + 1, it can be
. ) _ realized by the two-layer modified MLP by force of Theorem 1.
Proposition 3: For m = 1,2, all dichotomies ofQ™ are lfm—1<p< 2™ —m+1,1tothe first layer ofin neurons
bithreshold-separable. For all > 3, there exist dichotomies 44 a neuron defined by the same pair £} as the jth existing
of @™ that are not bithreshold-separable. ~ neuron of the first layer. Thus now, we hawve+ 1 neurons in
Proof: The casesm = 1,2 are trivial. Consider e first layer. The added neuron’s output is identical tojtie
m = 3. For a particular labeling of the vertices, the digyisting neuron’s outpui.
chotomy {@™*, @™~} where Q™+ = {(-=1,-1,-1),  Geometrically, it means that the hyperplane separating sur-
(=1,1,1),(1,-1,1),(1,1,-1)} andQ™" is its complement, f5ce of the added neuron exactly coincides with the hyperplane
is not bithrehold-separable. There are in all four such digparating surface of thh existing neuron. Thus, by addition
chotomies corresponding to the eight different ways of labeling this neuronno newregions are formed in the input space. The
the cube and equating the dichotomies obtained by labelipgh space partitioning into basic convex polytopes remains ex-
with respect to a vertex and its antleodal _vettex._ To see thigtly the same as before. In particular, the required decision re-
observe that the:-cube has a natural “layering” of its vertices gion still comprises the union of onjybasic convex polytopes.
such that theth layer,0 < ¢ < m, comprises those vertices " gyt now, the output BN receives as input the vertices of
which have exactly— 1s in their coordinates. A dichotomy thatQm+1 instead o)™ as earlier. From these vertices, the BN is
is not bithresho_ld-separable for _2 3is obtained by letting required to separate vertices corresponding to theconvex
Q™+ be the union of layers having even parity, @@~ be o\ topes whose union is our desired decision region.

the union of layers having odd parity [see also Fig. 3(a)]L] Repeat this addition of neurons. With each successive addi-
tion, the output BN is required to separate pweertices from a
V. A TWO-LAYER PARADIGM CAPABLE OF FORMING higher dimensional cube. In particular, afier— m + 1 neu-
ARBITRARY DECISION REGIONS rons have been added to the first layer, the output BN is re-
A. Theoretical Framework quired to separate oyt vertices inQ?*+! from their comple-

ment. This it can accomplish, by force of Theorem 1. Thus, we
will have to add at mosgt — m + 1 neurons to the first layer to

the dichotomy is bithreshold-separable. For- 1 < [Q™+| < implement a decision region that is the uniorpdfasic convex

2™ —m+-1, we cannot guarantee the bithreshold-separability gpkltgpes |_n§{ A 'I_'hllsirp])?:riadlgm s illustrated for the case of
{Qm+, Qm*}.Let|Qm+|Ip,Withm—1<p<2m—m—|—]__ n=zmMm=9,p= g.o.

Letv = (vi, ..., vn) be a generic vertex af™. We now ¢ ypper Bound on the Number of First-Layer Neurons
define a map

Consider a dichotomy™*, Q™~ of Q™. By Theorem 1,
we know that ifl@™*| < (m — 1) or |Q™F| > 2™ —m + 1,

Let /» be the minimum number of hyperplanes required to
ey QM — QM obtain thep basic convex polytopes whose union is the desired
decision region. Then these hyperplanes fornC(m, n) re-
gions which correspond t6'(m, n) vertices of then-cube. It

Herew; is thekth component{l < k < m) of the vertexv. is these vertices only that will be possible inputs to the output
Thus, the map}* appends to each of the vertices@** its BN. From theseZ(m, n) it will have to separate oyt vertices
own kth component mapping it to a vertexdp™+!. from all the others.

v v = (v, oy Uny Uk)-



DEOLALIKAR: TWO-LAYER PARADIGM CAPABLE OF FORMING ARBITRARY DECISION REGIONS 19

VI. BITHRESHOLD LOGIC
In this section we shall examine whether the logic that can
(1.1.0) be implemented by bithreshold gates—bithreshold logic—of-
fers any considerable advantages over threshold logic. To this
o end, we will estimate the number of Boolean switching func-
tions that are implementable with a single BN.

There is a well-known upper bound on the number of imple-
mentable threshold Boolean switching functionsroBoolean
variables defined on points(r < 2™) given by [15]

(1,1,1) 1,11

m—1

Similarly, we seek an estimate of the number of Boolean
switching functions ofm variables defined om points and
realizable by a single bithreshold gate. By comparing the two,
we can get an idea of the enhancement in switching function
realization capacity offered by the bithreshold gate.
(a) Let ther points in@Q™ on which the switching function is de-
fined beuy, ..., u,. Transform each point in R™, to a point
in R™*! given byu’ = (u, —1). Now consider the hyperplane

in R™*! given by
SRARE
Hy, o={(x,t):xu; —t =0}
/ { where them weights plus the threshold make up the+ 1
g 7 dimensions.

TheninR™*!, points lying in the positive halfspadéj,_ o Of
this hyperplane represent valuessmand¢ that would make the
threshold function ati; negative and points in the negative half-
space represent valueswfandt that would make the threshold
(1,1,1,1,1) (1,1,1,-1,1) function atu; positive. Each of the points gives a similar hy-
perplane. To calculate the number of threshold functions all we
have to do is to count the regions into which thibyperplanes
divide the whole ofR™*! [16].

The number of bithreshold functions is arrived at in a slightly
different manner. Two points in different regions correspond to
threshold functions differing on at least one of theoints.
Consider a point in any of the regions. This corresponds to a

®) threshold function. We can also view it as a hyperplang.fh.
Now, consider a point in another region. This also corresponds
Fig. 3. A demonstration of the new network architecture. (a) A decisio& a hyperplane ilR™ which differs from the first on at least
region not implementable with a two-layer network by just replacing the outpu . .
neuron with a BN. This network has three first-layer neurons. (b) Add w@ne of ther vertices of the cube in the sense that at least one

neurons to the first layer whose decision regions coincide with the first agf the r vertices is not on the same side of both of these hyper-
third existing neurons (signified by the two darker lines). The partitions of inp lanes

space remain the same, and the new vertices of the five-cube that correspon . . . . . .
to the desired decision region are separable from their complementary set byNOW if these two points had differed only in theircoordi-

force of Theorem 1. nate, then the two hyperplanesRi” corresponding to them
would have been parallel, i.e., together they would have rep-
In the worst casey = C(m, n)/2, forif p > C(m, n)/2 resented a bithreshold function. Thus, directed line segments in
we can take the complement of our decision region and sef*t* parallel to thet axis represent bithreshold functions. Two
rate out the”(m, n) — p vertices corresponding to this union ofdirected line segments represent the same bithreshold functions
complementary basic convex polytopes. Then we have to haff¢he two segments begin in the same region and also end in the
at mostp + 1 = C(m, n)/2 + 1 neurons in the first layer. same region. We seek to estimate the number of such directed
Thus, the number of neurons in the first layer is bounded ltipe segments.
C(m, n)/2+1wherem is the minimum number of hyperplanes We now make the following estimate. If there a@&" such
required to form the basic convex polytopes whose union is awgions inm + 1 dimensions and they are uniformly distributed,
desired decision region. Note that the result holds for any arboughly B 1/(m + 1) will be “stacked up” in any one coor-
trary choice of basic convex polytopes. dinate. Thus for each of thB™ regions, roughlyB™ */(m+1)
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can be reached by just changing theoordinate. So in all we
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Cover showed that the natural separating capacity of a surface

have roughlyB™ (m+2)/(m+1) of such directed line segmentswith m degrees of freedom isi2. If however, there arg:

parallel to thet axis.
Thus, the number of different switching functions of

independent constraints on the surface, its separating capacity
reduces to & — k.

variables defined om points and implementable by a single We may view a pair of hyperplanes R™ as a single sur-

bithreshold gate is- B™ (m+2)/(m+1) as compared t&" by
a single threshold gate.

Proposition 4: If » > 3m, single bithreshold gate realiz-

ability is unlikely.

face with 2n degrees of freedom. However, if we insist that the

hyperplanes be parallel, then after we have fixed the first hyper-
plane, we have only one degree-of-freedom left for the second
hyperplane—its distance from the first. This leads to a total of

Proof: The proof is similar to Winder’s [15] proof of the m + 1 degrees of freedom, which m for largem. The result

result for a single threshold gate. We know that

.m
Jm

B <

<7
m!

Also, the total number of switching functions empoints is Z.
So we can estimate the ratio

m 1 (m+2)/(m+1)
g [27 } -
m!
: - (m+2)/(m+1)
(Using Stirling's 2rm g
approximation)™ | ./2rm (m)m )
Taking log to the base 2 and letting= r/m
2 log 2
logS:—am—i—ﬁ [1+m10g ae — M}
m+41
m+ 2 m+ 2
m[ a+m+1 0gae+m(m+1)
' {1 3 10g27rm”
2

asm — o0
S = 2{exp[—a + log ae]}"™

which goes to zero fos > 3.

Proposition 5: If a switching function is randomly defined
onr randomly chosen points, then@s— oo, the probability
of the function being realizable by a single bithreshold gate
1forr < 2m; 0 forr > 2m; and 1/2 forr = 2m.

Proof: We seek to show that

Bm (m+2)/(m+1) jor™ 7221 fora < 2
Bm (m+2)/(m+1) jor™ 2220 for o > 2
By (m42)/(m+1) jorm=ee g /9 for oo = 2.

First, observe thafm + 2)/(m + 1) goes to 1 asn — oc.
Thus the ratios we seek to evaluateras— oo are the same as

the ratios ofB)*/2" for the limits in question. But these are just

can easily be extended to multithreshold gates as well.
However, for practical applications with smaller number of
inputs, the bithreshold gate provides a significantly improved
capability. Perhaps more importantly, it allows us to separate
certain geometric structures of the hypercube, like its major di-
agonals, which could not be separated with a threshold gate.

VIl. CONCLUSION

In this paper, we have shown that a bithreshold neuron, when
used as the output neuron of a two-layer network, significantly
improves its classification capability. We provided a new
paradigm for a two-layer network based on increasing the
dimensionality of the input to the output neuron. In most neural
learning paradigms, the number of neurons in the various layers
and their interconnections remain fixed while the weights vary.
In our paradigm, we vary the number of neurons in the first
layer as well. This paradigm can achieve universal classifica-
tion capability for a two-layer network. We also studied the
realizability of Boolean functions using bithreshold gates and
showed that asymptotically, threshold and bithreshold gates
have the same capacity.
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