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Example 2: Consider the bound constrained quadratic minimizaMapping Boolean Functions with Neural Networks having
tion problem (1), wheré) = (;, 2),y =(1,3)",p=(-1,-1)", Binary Weights and Zero Thresholds
andv = (1, 1)". From Example 1, it follows tha) doesnot satisfy
the convergence condition (6) in Proposition 1. According to Theorem Vinay Deolalikar

1, for the given®, the network (5) for solving the above minimization

F’“’b"?m Is actually glppally exponentially stablt_a for any given posi- Abstract—n this paper, the ability of a binary neural-network com-
tive diagonal preconditioneB of ). In the following, we takeB = ising only neurons with zero thresholds and binary weights to map given
diag{1.0, 0.2} such that the matri¥) B has ones as diagonal entriessamples of a Boolean function is studied. A mathematical model describing
Note that cond@B) = 30.78 < 33.97 = cond @), where con¢t) @ network with such restrictions is developed. It is shown that this model
represents the condition number of the argument matrix.ulet= IS quite amenable to algebraic manipulation. A key feature of the model is

6. -5 b initial point. It di lution traiect fhat it replaces the two input and output variables with a single “normal-
(6, =5) " be an initial point. Its corresponding solution trajectory of,eq yariable. The model is then used to providea priori criteria, stated

the network (5) is convergent to the unique equilibrium paifit= " in terms of the new variable, that a given Boolean function must satisfy in
(=1, 5)T, as shown in Fig. 2. It is clear from Fig. 2 that the uniquerder to be mapped by a network having one or two layers. These criteria
bound constrained minimum of (1)ig§ = Bf(u*) = (-1, 1) with provide necessary, and in the case of a one-layer network, sufficient condi-

. S ; tions for samples of a Boolean function to be mapped by a binary neural
minimal valueJ (") = —1. We then choose randomly 100 unlformlynetwork with zero thresholds. It is shown that the necessary conditions im-

digtributed points ip the slét—l()., 10] x [—10, 10] as the ipitial state posed by the two-layer network are, in some sense, minimal.
points of the solution trajectories of the network (5). It is clear from

Fig. 3 that all the network solution trajectories corresponding to th
above 100 random initial points are convergent to the unique equilib-

rium point«™. Finally, we choose 20 points randomly from the above

set as the initial states of the solution trajectories of the network. It |. PRELIMINARIES
is seen from Fig. 4 that the norms [pfi(¢) — «™|| converge to zero
exponentially.

Index Terms—Binary neural networks, Boolean function mapping, one-
er networks, two-layer networks.

The classicalfeedforward neural-network architecture comprises
layers of neurons. Each neuron has a pair, ¢) associated to fit,
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wherew andt are called its weight vector and threshold, respectively. Proposition 1.1: A feedforward neural network with each neuron
The output of the neuron for an inputis given by sgfw - x — t)  using a sgn transfer function, operating on a domain of odd dimension,
which is+1 whenw - x > ¢t and—1 otherwise. The quantity - x is  and threshold set to zero, can map only odd functions, i.e., funcfions
called theactivationof the neuron. that satisfyf(—X) = — f(X).

In this paper, we will examine the particular case of afeedforward ar- Proof: Since sgn itself is an odd function, and the thresholds are
chitecture where the threshold associated with every neuron is zeroall zero, it follows that the output of an individual neuron in the first
and the weight vectors are binary, with each component chosen frtayer is an odd function of its input since
{—1, 1}. We will study the performance of such networks in mapping
Boolean functiong’: {—1, 1} — {—1, 1}"*, wheren andmn are in- sgnw - —X) = —sgr(w - X).
tegers greater than or equal to one. Networks with binary weights hamge casev- X = 0 is precluded by the condition that the dimension of
been Studied in |iterature [1], [2], [4], [6], fOI’ ObViOUS reasons. FiI’St, |t |ﬂ1e Space be odd. Furthermoﬁel’ is odd forl S 1 S L—-1 precluding
a matter of theoretical curiosity whether networks comprising neuroggro activation to neurons in higher layers. Now, since the composition
with such restrictions on their weights have reasonable function mag-odd functions remains odd, the network as a whole will have an odd
ping capabilities. Second, as is noted in [1], [2], [4], and [6], such netansfer function. O
works would have considerably simpler implementations, especially inThe conditions of the above proposition should not be considered

hardware, and thus would be implementations of choice in cases Whgsgy constraining if we are willing to work with extended functions as
their performance proves satisfactory. explained below.

Our added restriction—that the thresholds all be zero—in some| emma I.2: Any function f defined on{—1, 1}" can be uniquely
sense reduces these to the “simplest” class of networks. It is therefgiganded to an odd functiof,, defined on a domain of odd dimension
of interest to know what performance they can offer. In this pap&jfich that the restriction of, to {—1, 1}" agrees withf.
we demonstrate that these restrictions on the weights and thresholds proof: If » is even, we can embe-1, 1}" into {—1, 1}"*'
can be exploited fully to develop a model for the network that is veryy the following relation:
amenable to algebraic manipulation. The key feature of the model
that enables comparisons between one- and two-layer networks is i {-1,1}" = {-1, 13"
the replacement of the two input and output variables with a single (v) +— (v, 1)

“normalized” variable. We then derive constraints placed upon this ) ) )

normalized variable by one- and two-layer networks, thereby cofOW We can extendfl to fo as fo!loyvs. lfv e i({-1,1}"),
paring their function mapping capabilities. We then provide apriof€t fo(V) = ,fl(l_ (v)). Else, i"(-v) is defined and set
criteria, stated in terms of the new variable, that a given Booledn(V) = —/f(i” (=v)). Then f, is odd and its restriction to
function must satisfy in order to be mapped by a network having oneg 1» 11", compatible with the map agrees withy"

or two layers. These criteria provide necessary, and in the case off * iS 0dd (andf is not an odd functlog), we can repeat the above
a one-layer network, sufficient conditions for samples of a Boole&ocedure twice to defing, on {1, 132 o U
function to be mapped by a binary neural network. We stress that oufi€nceforth, we will assume that we are working with functions (ex-
model relies crucially on the thresholds being zero. Thus this addi&fided if necessary) that satisfy the hypothesis of Proposition I.1. Prac-
restriction pays off well in facilitating analysis. tlcally,. th!s means we might ha\{e to adld dummy inputs to the network.

In general, the network will havk layers, with théth layer,l < [ < Definition 1.3: Define the variable®y;, 1 <! < L+1,1 <k <
L, comprising ofm, neurons. We will assume, for reasons explaineff : 1 < ¢ < . by the following relations:
below, that forl </ < L — 1, m is odd. The network input is fed 7 = Vi Xy, (1.1)
to its first layer neurons. Far < I < L — 1, each neuron in th&h
layer receives as input the outputs of all the neurons inthe1)st andfor2 <1 < L +1,

layer and it feeds its output to every neuron in the- 1)st layer, and ' 11 i1 1 -1

so on. The network output is taken from tii¢h layer. There are no Zii = (sgr(wl hni ) SOWn - D )) : (2)
interconnections between neurons within a layer. The weight vector ofpygposition 1.4: For a network with fixed weights, the following are
theith neuronl < i < my, in thelth layer is denoteat;. equivalent:

Let there bek” samples of the Boolean function that are to be

mapped, given by 1) The network performs the mappin¥s. — Y, 1 <k < K.

2) The network performs each of the mappings, —

Xp = (Xp1 - Xpn) = Yo = (Yar -+ Vi), 1<k<K, (¢+-1---%),1 < B < K,1 < i < mg, where a %"
denotes a “don’t care” and the one is in tiie position. By this

whereX, € {—1, 1}"” andY, € {—1, 1}"". When the input to the we mean that i}, is supplied as the input to the network, the
network isXy, denote the output of thigh neuron of theth layer ith neuron of thel.th layer will output a “1.”
by v.; and the collective outputs of tH¢h layer neurons by, = 3) ZH = (%---1---%),1 <k < K,1<i< my,where again
(yhy - yéml). For the network to map thkth sample correctly, we the 1 is in theith position.
must have thag; = Y. This, of course, implies that . = m. Proof: 1)= 2) For the first layer neurons, we have

A brief explanation about the notation above and throughout the L . i )
paper. We will use boldfaced letters to denote vector quantities. The  ¥ri = Sgnw; - Xx), 1<E<SK 1<i<m. (1.3)

scalar components of these vector quantities will be denoted using Hb? the second layer onwards

same letters in plain script, with an extra subscript. Superscripts on

these quantities will always denote the layer of the network that they;”. :sgn(wﬁ .y2—1> , 2<I<L1<k<K,1<i<m.
quantity pertains to. The first subscript will index the sample of the (1.4)
Boolean function, and the second will index the neuron under consid- '
eration within a particular layer. The exception is weight vectors, whiah particular, for theLth layer, we have
have no subscript indexing the sample since we assume them fixed for . L1 i '
all samples. yri = Sgn(Wi Vi ): 1<k<K 1<i<mep. (19
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But since the function we are mapping is Boolegh,= +1. Further- mapping capabilities of one— and two-layer binary networks, we shall
more, sgn is an odd function. Therefore, we can multiply both sides stiidy their performance over the same set of samples.
the above equation hy/;, to obtain The theorem that completely characterizes the Boolean functions
L—1 . . that can be mapped by a one-layer binary network is given below.
iy = yk,sgn(w RL )’ lsksk lsism Theorem I1.1: A 1-layer binary network can magx samples
(1.6)  {X;, Y1 }1<k<x of a Boolean function iff for every, 1 < i < m;,
or E|WL1 such that{Z,lCi}lgkgK g Swl-
Proof: From2), Proposition .4, we know that mapping thi
component of the output for thieth sample correctly is equivalent to
(1.7)  performing the mappin@;; — (---1---%). To correctly map the
Sinceyffl is, in turn, an odd function (j£72 and so on, we can use ith comp_onents_ofthe ogtputs ofea;ch oflﬁgamples, we would_th_en
(L4)for L —1 > 1 > 2 to obtain, for the indexe& — 1 > 1 > 2, need t? find a binary WEIE]ht vecter; for theI,Eh neuron that satisfies
1<hk<K1<i<mi,1<j<m w; +Zy; >0,1<k g K. In other words{Z;, }1<k<x C Sw}.To
correctly map all thef samples, we would need the above to be true

1:Sgn(w,-L-(y,ﬁy£71)), 1<E<K,1<i<mp.

YKV = sgn( (kv 1)) (1.8)  for all them; neurons. O
and using (1.3), we obtain for the indexes< k < K,1 < i < my, l\_lotlce that Theorem 1.1 states_the constraint in ter_ms of the single
1<j<m variableZ, instead of two separate input and output variables. The same
-0 T is true for the theorem that states the constraints placed on a Boolean
yzfzyij = sgn(w} . (yf,'Xk)) . (1.9) function by a two-layer network_, which is stated below.
Theorem 11.2: A two-layer binary network can mai’ samples
The desired result now follows by noting tHat®. X ) = Z3,. {Xk, Y1 hi<k<x of aBoolean function only if for all, 1 <i < m»
2) = 3) This is immediate from the statement2)fand (1.2). and every paik:, k» wherel < ki, k2 < K, the pointsZ;, ;, Zj,;

3)= 1)WehaveZ:tt = (x---1---%),1 <k < K,1<i<m,. satisfy
But using (1.2), this implies that sgw?’ - ZL,) = 1. Multiplying both

1 1
sides of the above equation by;, we get Ziyi # ~Lysi- (1)
sgn (w,;L -Y’L:;Z#,) =Y., 1<k<K,1<i<myg. (.10) Proof: From2), Proposition |.4, we know that for the samples to
. . . be mapped, we need
Now using (1.2) iteratively to go dowh — 1 > [ > 2, we get, for the 9 9 ; )
indexesL—1>l>21<k<K1§i§mL w; - Zj,; > 0, I1<kESK, 1<i<mo. (1.2)
H 2 2 2 2 1 1 1
i b = (s wh Y, ZI7Yy - osgriwls ! Vi 2! ) ) Sincew; = (w;) « -+ Wiy, ), aNdZy,; = (sgr(wy - Zy;) - - SQN( W, | -
e Ortwy ™ Vi) SQWon, - Vi) Z;.)), we can rewrite (11.2) as

.11 . .
(LD sgnw! - Zh) ot ud,sonwl, Zh) S0 (13)
) ! o forthe indexed < £ < K,1 < i < ma.
ViiZi: = (SQn(wy - YiiZii) - - SQWp,, - YiiZii)) But sincew? € {—1,1}™*, and sgn is an odd function, we can
rewrite the inequalities for the same indexes as below
= (sgr(wi - Xy)---sgr(w,,, - X)) q

sinceYiiZ}; = YiiYii X = X,. But this means that output of the sgn(w1 Zkr) -+ sgn( my ZL7> > 0. (11.4)
first layer when the input iX . is Y3;Z3,. Plugging this into (1.2) and
iterating for2 < I < L, we see that the output of thé€ — 1)st layer
is Y ZE,. Now, using (1.10), we get the desired result. O

In particular

wherew'} = —w! if w} = =1 andw’} = w! if w? = +1.
Since each term in the above |nequaI|t|es is equatlo at least

AN e ) m1 /2] terms must be equal t¢1 for the inequalities to hold. This
Some explanation is in order here. Proposition |.4 basically says that ac at leasfrm1 /2] dot-products out o{w" ZL} 1< m, to be
in a binary network with zero thresholds, we can replace the two Vaﬂosnwe forl < k< K.1< i< my. Thus, at Iealsimf/;}]lout o
ablesX andY, for the input and output respectively, byasingle nor-rw/1}1< .. liein SZ1 for1 <k < K,1<i< ms. Invoking
J<my

malized” vana:blezh The ngtwcf)rk mapé(g tOhY’“ if it T(apshzkl 00 the “pigeonhole principle” of combinatorics now tells us that any two
(*1---1 *). In other words, if we provide the network with an inputg, tsszl SZ1 1< ki, ks < K,1 < i < ms have a nonempty
Z,;,theith neuron of the th layer will output a “1,” and this statement . 1] '

|ntersect|0n Now Proposition 1.5 gives us the result. O

holds true forl < k£ < K andl < i < my,. Thus, we can normalize groposmon 13 Let(Xy, Yy) be samples of an odd func
the input—output samples such that the output is always normahzed ko T k/lSk<K :
P P P P y tion f [i.e., f(—X) = —f(X)]. Then for every paitk:, k-, where

+1 and we are left with only a normalized inp#it More is true:Z!,;,
1< ki, k2 < K, we have thalii ; # —Z1._..
2 < 1 < L will form the output of the(7 — 1)st layer when the input ~ = “1’ ™2 = " by fezé
4 utpu o Jstlayerw npu Proof: We have constructed the poirfg,; by the ruleZ;, =

to the first layer isZ;, . w T
' - X, whereY:; = =1. Thus for two distinct inputX;, and
We end this section with a proposition, stated without proof, thatv%é ! L L
prop P ko Lix, = —1Zi, if either X, = Xy, andY;,, = —Yi, or

will need later.

Proposition 15: Forn > 1andv € {1.1}", defineSe = Xy, = =Xy, andYj,, = Yi,. Clearly the first case is a degenerate
e Tt >_0} Letv. . v @ {’_1 i}” Clearly, if one and the only possibility is the second. But that would contradict
, . 1, V2 ’ : ’ the hypothesis that is odd. .

SV1 ﬂsvz # @,V1 76 —Va.

Thus, Theorem 11.2 and Proposition 11.3 indicate that the constraints
placed upon a sample set by a two-layer binary network and deducible
using our model are, in some sense, minimal. More precisely, the anal-

In this section, we state two theorems that provide necessary aysis that we have carried out cannot possibly give us a weaker con-
in the case of a one-layer binary network, sufficient conditions for straint for implementation by &-layer network forZ > 3 than it did
set of samples to be mapped by a binary network. We will focus dor L = 2, since the latter is already the equivalent of insisting that the
one— and two-layer binary networks. To understand the differencefimction be odd. Furthermore,sif = 3, it can be verified that all odd

Il. MAPPING CRITERIA
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functions can be mapped by a two-layer binary network, so that in that ACKNOWLEDGMENT
case the constraint of Theorem I1.2 is indeed the best possible we Caly o author thanks P. G. Poonacha for several useful comments.
arrive at by any means.
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