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From this, noting (15), it follows that

kz(t)k � �2=�1kz
0k exp �

1

2�2
t ;

8 z0 2 <n; 8 t � 0: (16)

Thus, the unique equilibriumz = 0 of system (10) is globally expo-
nentially stable.

Let u(t; u0) for t � 0 be the solution of the autonomous
system (5), which is uniquely determined by the initial condition
of u(0; u0) = u0 2 <n since the right-hand side of (5), as a
mapping ofu 2 <n, is globally Lipschitz continuous [8]. If we set
z0 = u0 � u�, by the uniqueness of solutions for system (10), we
havez(t; z0) = u(t; u0) � u� for t � 0. Therefore, it follows from
(16) that

ku(t; u0)� u�k � �2=�1ku
0 � u�k exp �

1

2�2
t ;

8u0 2 <n; 8 t � 0: (17)

That is, the network model (5) is globally exponentially stable with
degree of1=(2�2), where�2 > 0 and is defined in (14).

Remark 1: It is acknowledged here that one of the reviewers alerts
the author that in a more recent paper [9] an improved condition over
(6) for global exponential stability of the neural-network model (5) was
presented. Under the above special condition, a better lower bound for
the rate of global exponential convergence of the network model (5)
than the lower bound in (17) can be obtained (see [9] for details). How-
ever, the lower bound in (17) for the rate of global exponential conver-
gence of the network model (5) remains hold even if the above imposed
conditions are not satisfied, without resorting to any additional condi-
tion.

Example 2: Consider the bound constrained quadratic minimiza-
tion problem (1), whereQ = ( 1

2

2

5
), y = (1; 3)>, � = (�1; �1)>,

and� = (1; 1)>. From Example 1, it follows thatQ doesnot satisfy
the convergence condition (6) in Proposition 1. According to Theorem
1, for the givenQ, the network (5) for solving the above minimization
problem is actually globally exponentially stable for any given posi-
tive diagonal preconditionerB of Q. In the following, we takeB =
diagf1:0; 0:2g such that the matrixQB has ones as diagonal entries.
Note that cond(QB) = 30:78 < 33:97 = cond(Q), where cond(�)
represents the condition number of the argument matrix. Letu0 =
(6; �5)> be an initial point. Its corresponding solution trajectory of
the network (5) is convergent to the unique equilibrium pointu� =
(�1; 5)>, as shown in Fig. 2. It is clear from Fig. 2 that the unique
bound constrained minimum of (1) isx� = Bf(u�) = (�1; 1)> with
minimal valueJ(x�) = �1. We then choose randomly 100 uniformly
distributed points in the set[�10; 10] � [�10; 10] as the initial state
points of the solution trajectories of the network (5). It is clear from
Fig. 3 that all the network solution trajectories corresponding to the
above 100 random initial points are convergent to the unique equilib-
rium pointu�. Finally, we choose 20 points randomly from the above
set as the initial states of the solution trajectories of the network. It
is seen from Fig. 4 that the norms ofku(t) � u�k converge to zero
exponentially.

III. CONCLUSION

In this letter we have provided a complete proof of the global
exponential convergence of the existing neural-network models for
bound constrained quadratic optimization. The global exponential
convergence behavior of the network model is illustrated through
a numerical simulation example for solving the bound constrained
quadratic optimization problems.
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Mapping Boolean Functions with Neural Networks having
Binary Weights and Zero Thresholds

Vinay Deolalikar

Abstract—In this paper, the ability of a binary neural-network com-
prising only neurons with zero thresholds and binary weights to map given
samples of a Boolean function is studied. A mathematical model describing
a network with such restrictions is developed. It is shown that this model
is quite amenable to algebraic manipulation. A key feature of the model is
that it replaces the two input and output variables with a single “normal-
ized” variable. The model is then used to providea priori criteria, stated
in terms of the new variable, that a given Boolean function must satisfy in
order to be mapped by a network having one or two layers. These criteria
provide necessary, and in the case of a one-layer network, sufficient condi-
tions for samples of a Boolean function to be mapped by a binary neural
network with zero thresholds. It is shown that the necessary conditions im-
posed by the two-layer network are, in some sense, minimal.

Index Terms—Binary neural networks, Boolean function mapping, one-
layer networks, two-layer networks.

I. PRELIMINARIES

The classicalfeedforwardneural-network architecture comprises
layers of neurons. Each neuron has a pair(w; t) associated to it,
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wherew andt are called its weight vector and threshold, respectively.
The output of the neuron for an inputx is given by sgn(w � x � t)
which is+1 whenw � x > t and�1 otherwise. The quantityw � x is
called theactivationof the neuron.

In this paper, we will examine the particular case of a feedforward ar-
chitecture where the threshold,t, associated with every neuron is zero,
and the weight vectors are binary, with each component chosen from
{�1, 1}. We will study the performance of such networks in mapping
Boolean functionsf : f�1; 1gn ! f�1; 1gm, wheren andm are in-
tegers greater than or equal to one. Networks with binary weights have
been studied in literature [1], [2], [4], [6], for obvious reasons. First, it is
a matter of theoretical curiosity whether networks comprising neurons
with such restrictions on their weights have reasonable function map-
ping capabilities. Second, as is noted in [1], [2], [4], and [6], such net-
works would have considerably simpler implementations, especially in
hardware, and thus would be implementations of choice in cases where
their performance proves satisfactory.

Our added restriction—that the thresholds all be zero—in some
sense reduces these to the “simplest” class of networks. It is therefore
of interest to know what performance they can offer. In this paper,
we demonstrate that these restrictions on the weights and thresholds
can be exploited fully to develop a model for the network that is very
amenable to algebraic manipulation. The key feature of the model
that enables comparisons between one- and two-layer networks is
the replacement of the two input and output variables with a single
“normalized” variable. We then derive constraints placed upon this
normalized variable by one- and two-layer networks, thereby com-
paring their function mapping capabilities. We then provide apriori
criteria, stated in terms of the new variable, that a given Boolean
function must satisfy in order to be mapped by a network having one
or two layers. These criteria provide necessary, and in the case of
a one-layer network, sufficient conditions for samples of a Boolean
function to be mapped by a binary neural network. We stress that our
model relies crucially on the thresholds being zero. Thus this added
restriction pays off well in facilitating analysis.

In general, the network will haveL layers, with thelth layer,1 � l �
L, comprising ofml neurons. We will assume, for reasons explained
below, that for1 � l � L � 1, ml is odd. The network input is fed
to its first layer neurons. For2 � l � L � 1, each neuron in thelth
layer receives as input the outputs of all the neurons in the(l � 1)st
layer and it feeds its output to every neuron in the(l+ 1)st layer, and
so on. The network output is taken from theLth layer. There are no
interconnections between neurons within a layer. The weight vector of
theith neuron,1 � i � ml, in thelth layer is denotedwl

i.
Let there beK samples of the Boolean function that are to be

mapped, given by

Xk = (Xk1 � � �Xkn) 7! Yk = (Yk1 � � � Ykm); 1 � k � K;

whereXk 2 f�1; 1gn andYk 2 f�1; 1gm. When the input to the
network isXk, denote the output of theith neuron of thelth layer
by ylki and the collective outputs of thelth layer neurons byylk =
(ylk1 � � � y

l

km ). For the network to map thekth sample correctly, we
must have thatyLk = Yk. This, of course, implies thatmL = m.

A brief explanation about the notation above and throughout the
paper. We will use boldfaced letters to denote vector quantities. The
scalar components of these vector quantities will be denoted using the
same letters in plain script, with an extra subscript. Superscripts on
these quantities will always denote the layer of the network that the
quantity pertains to. The first subscript will index the sample of the
Boolean function, and the second will index the neuron under consid-
eration within a particular layer. The exception is weight vectors, which
have no subscript indexing the sample since we assume them fixed for
all samples.

Proposition I.1: A feedforward neural network with each neuron
using a sgn transfer function, operating on a domain of odd dimension,
and threshold set to zero, can map only odd functions, i.e., functionsf

that satisfyf(�X) = �f(X).
Proof: Since sgn itself is an odd function, and the thresholds are

all zero, it follows that the output of an individual neuron in the first
layer is an odd function of its input since

sgn(w � �X) = �sgn(w �X):

The casew �X = 0 is precluded by the condition that the dimension of
the space be odd. Furthermore,ml is odd for1 � l � L�1 precluding
zero activation to neurons in higher layers. Now, since the composition
of odd functions remains odd, the network as a whole will have an odd
transfer function.

The conditions of the above proposition should not be considered
very constraining if we are willing to work with extended functions as
explained below.

Lemma I.2: Any functionf defined onf�1; 1gn can be uniquely
extended to an odd function,fo, defined on a domain of odd dimension
such that the restriction offo to f�1; 1gn agrees withf .

Proof: If n is even, we can embedf�1; 1gn into f�1; 1gn+1

by the following relation:

i: f�1; 1gn ,! f�1; 1gn+1

(v) 7! (v; 1):

Now we can extendf to fo as follows. If v 2 i(f�1; 1gn),
set fo(v) = f(i�1(v)). Else, i�1(�v) is defined and set
fo(v) = �f(i�1(�v)). Then fo is odd and its restriction to
f�1; 1gn, compatible with the mapi, agrees withf .

If n is odd (andf is not an odd function), we can repeat the above
procedure twice to definefo onf�1; 1gn+2.

Henceforth, we will assume that we are working with functions (ex-
tended if necessary) that satisfy the hypothesis of Proposition I.1. Prac-
tically, this means we might have to add dummy inputs to the network.

Definition I.3: Define the variablesZlki, 1 � l � L+ 1, 1 � k �
K, 1 � i � mL by the following relations:

Z
1

ki = YkiXk (I.1)

and for2 � l � L + 1,

Z
l

ki = sgn(wl�1

1 � Zl�1
ki

) � � � sgn(wl�1

m � Zl�1
ki

) : (I.2)

Proposition I.4: For a network with fixed weights, the following are
equivalent:

1) The network performs the mappingsXk 7! Yk, 1 � k � K.
2) The network performs each of the mappingsZ1ki 7!

(� � � � 1 � � � �), 1 � k � K, 1 � i � mL, where a “�”
denotes a “don’t care” and the one is in theith position. By this
we mean that ifZ1ki is supplied as the input to the network, the
ith neuron of theLth layer will output a “1.”

3) ZL+1
ki

= (� � � � 1 � � � �), 1 � k � K, 1 � i � mL, where again
the 1 is in theith position.

Proof: 1)) 2) For the first layer neurons, we have

y
1

ki = sgn(w1

i �Xk); 1 � k � K; 1 � i � m1: (I.3)

For the second layer onwards

y
l

ki = sgn w
l

i � y
l�1

k
; 2 � l � L; 1 � k � K; 1 � i � ml:

(I.4)

In particular, for theLth layer, we have

y
L

ki = sgn w
L

i � y
L�1

k
; 1 � k � K; 1 � i � mL: (I.5)
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But since the function we are mapping is Boolean,yLki = �1. Further-
more, sgn is an odd function. Therefore, we can multiply both sides of
the above equation byyLik to obtain

yLkiy
L
ki = yLkisgn wL

i � y
L�1
k ; 1 � k � K; 1 � i � mL

(I.6)

or

1 = sgn w
L
i � (y

L
kiy

L�1
k ) ; 1 � k � K; 1 � i � mL:

(I.7)

SinceyL�1k is, in turn, an odd function ofyL�2k and so on, we can use
(I.4) for L � 1 � l � 2 to obtain, for the indexesL � 1 � l � 2,
1 � k � K, 1 � i � mL, 1 � j � ml

yLkiy
l
kj = sgn w

l
j � (y

L
kiy

l�1
k ) (I.8)

and using (I.3), we obtain for the indexes1 � k � K, 1 � i � mL,
1 � j � m1

yLkiy
1

kj = sgn w
1

j � (y
L
kiXk) : (I.9)

The desired result now follows by noting that(yLkiXk) = Z1ki:
2)) 3) This is immediate from the statement of2) and (I.2).
3)) 1)We haveZL+1ki = (� � � � 1 � � � �),1 � k � K, 1 � i � mL.

But using (I.2), this implies that sgn(wL
i �Z

L
ki) = 1. Multiplying both

sides of the above equation byYki, we get

sgn w
L
i � YkiZ

L
ki = Yki; 1 � k � K; 1 � i � mL: (I.10)

Now using (I.2) iteratively to go downL� 1 � l � 2, we get, for the
indexesL� 1 � l � 2, 1 � k � K, 1 � i � mL

YkiZ
l
ki = sgn(wl�1

1 � YkiZ
l�1
ki ) � � � sgn(wl�1

m � YkiZ
l�1
ki ) :

(I.11)

In particular

YkiZ
2

ki = sgn(w1

1 � YkiZ
1

ki) � � � sgn(w1

m � YkiZ
1

ki)

= sgn(w1

1 �Xk) � � � sgn(w1

m �Xk)

sinceYkiZ1ki = YkiYkiXk = Xk. But this means that output of the
first layer when the input isXk is YkiZ2ki. Plugging this into (I.2) and
iterating for2 � l � L, we see that the output of the(L� 1)st layer
is YkiZLki. Now, using (I.10), we get the desired result.

Some explanation is in order here. Proposition I.4 basically says that
in a binary network with zero thresholds, we can replace the two vari-
ablesX andY, for the input and output respectively, by a single “nor-
malized” variableZ. The network mapsXk toYk iff it mapsZ1ki to
(� � � � 1 � � � �). In other words, if we provide the network with an input
Z1ki, theith neuron of theLth layer will output a “1,” and this statement
holds true for1 � k � K and1 � i � mL. Thus, we can normalize
the input–output samples such that the output is always normalized to
+1 and we are left with only a normalized inputZ. More is true:Zlki,
2 � l � L will form the output of the(l � 1)st layer when the input
to the first layer isZ1ki.

We end this section with a proposition, stated without proof, that we
will need later.

Proposition I.5: For n � 1 andv 2 f�1; 1gn, defineSv =
fx 2 f�1; 1gn j x � v > 0g. Let v1; v2 2 f�1; 1gn. Clearly, if
Sv Sv 6= ;, v1 6= �v2.

II. M APPING CRITERIA

In this section, we state two theorems that provide necessary and,
in the case of a one-layer binary network, sufficient conditions for a
set of samples to be mapped by a binary network. We will focus on
one– and two-layer binary networks. To understand the difference in

mapping capabilities of one– and two-layer binary networks, we shall
study their performance over the same set of samples.

The theorem that completely characterizes the Boolean functions
that can be mapped by a one-layer binary network is given below.

Theorem II.1: A 1-layer binary network can mapK samples
fXk; Ykg1�k�K of a Boolean function iff for everyi; 1 � i � m1,
9w1

i such thatfZ1kig1�k�K � S
w

.
Proof: From 2), Proposition I.4, we know that mapping theith

component of the output for thekth sample correctly is equivalent to
performing the mappingZ1ki 7! (� � � � 1 � � � �). To correctly map the
ith components of the outputs of each of theK samples, we would then
need to find a binary weight vectorw1

i for theith neuron that satisfies
w1
i � Z

1
ki > 0, 1 � k � K. In other words,fZ1kig1�k�K � S

w
. To

correctly map all theK samples, we would need the above to be true
for all them1 neurons.

Notice that Theorem II.1 states the constraint in terms of the single
variableZ, instead of two separate input and output variables. The same
is true for the theorem that states the constraints placed on a Boolean
function by a two-layer network, which is stated below.

Theorem II.2: A two-layer binary network can mapK samples
fXk; Ykg1�k�K of a Boolean function only if for alli; 1 � i � m2

and every pairk1; k2 where1 � k1; k2 � K, the pointsZ1k i; Z
1
k i

satisfy

Z
1

k i 6= �Z1k i: (II.1)

Proof: From2), Proposition I.4, we know that for the samples to
be mapped, we need

w
2

i � Z
2

ki > 0; 1 � k � K; 1 � i � m2: (II.2)

Sincew2
i = (w2

i1 � � �w
2
im ), andZ2ki = (sgn(w1

1 �Z
1
ki) � � � sgn(w1

m �
Z1ki)), we can rewrite (II.2) as

w2

i1sgn(w1

1 � Z
1

ki) + � � �+ w2

im sgn(w1

m � Z1ki) > 0 (II.3)

for the indexes1 � k � K, 1 � i � m2.
But sincew2

i 2 f�1; 1gm , and sgn is an odd function, we can
rewrite the inequalities for the same indexes as below

sgn w
01
1 � Z

1

ki + � � �+ sgn w
01
m � Z1ki > 0: (II.4)

wherew01
j = �w1

j if w2
ij = �1 andw01

j = w1
j if w2

ij = +1.
Since each term in the above inequalities is equal to�1, at least

dm1=2e terms must be equal to+1 for the inequalities to hold. This
forces at leastdm1=2e dot-products out offw01

j � Z
1
kig1�j�m to be

positive for1 � k � K, 1 � i � m2. Thus, at leastdm1=2e out of
fw01

jg1�j�m lie in S
Z

for 1 � k � K, 1 � i � m2. Invoking
the “pigeonhole principle” of combinatorics now tells us that any two
setsS

Z
, S

Z
, 1 � k1; k2 � K, 1 � i � m2 have a nonempty

intersection. Now Proposition I.5 gives us the result.
Proposition II.3: Let (Xk; Yk)1�k�K be samples of an odd func-

tion f [i.e. , f(�X) = �f(X)]. Then for every pairk1; k2, where
1 � k1; k2 � K, we have thatZ1k i 6= �Z1k i.

Proof: We have constructed the pointsZ1ki by the ruleZ1ki =
Yki � Xk, whereYki = �1. Thus for two distinct inputsXk and
Xk , Z1ik = �Z1ik if eitherXk = Xk andYik = �Yik or
Xk = �Xk andYik = Yik . Clearly the first case is a degenerate
one and the only possibility is the second. But that would contradict
the hypothesis thatf is odd.

Thus, Theorem II.2 and Proposition II.3 indicate that the constraints
placed upon a sample set by a two-layer binary network and deducible
using our model are, in some sense, minimal. More precisely, the anal-
ysis that we have carried out cannot possibly give us a weaker con-
straint for implementation by aL-layer network forL � 3 than it did
for L = 2, since the latter is already the equivalent of insisting that the
function be odd. Furthermore, ifn = 3, it can be verified that all odd
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functions can be mapped by a two-layer binary network, so that in that
case the constraint of Theorem II.2 is indeed the best possible we can
arrive at by any means.

We conclude this section with an example demonstrating the use of
the criteria developed in this paper.

Example II.4: Let n = 3; m = 1 and consider the following func-
tion onf�1; 1g3:

X1 = (�1; 1; 1) X2 = (1; �1; 1)

X3 = (1; 1; �1) X4 = (�1; �1; �1)

X5 = (1; �1; �1) X6 = (�1; 1; �1)

X7 = (�1; �1; 1) X8 = (1; 1; 1)

Y1 =Y2 = Y3 = Y4 = +1;

Y5 =Y6 = Y7 = Y8 = �1:

The values of thefZ1

k1g1�k�8 are

Z
1

11 = Z
1

51 = (�1; 1; 1); Z
1

21 = Z
1

61 = (1; �1; 1);

Z
1

31 = Z
1

71 = (1; 1; �1); Z
1

41 = Z
1

81 = (�1; �1; �1):

TheZ1

k1 do not satisfy the conditions of Theorem II.1. To see this,
note that theZ1

k1s are not linearly separable from their complement in
f�1; 1g3. This rules out a one-layer implementation of the Boolean
function.

However, theZ1

k1 do satisfy the condition of Theorem II.2, i.e. , they
do not contain any set of antipodal elements. Thus, a two-layer imple-
mentation is plausible. Using the symmetry of theZ1

k1, we determine
that the mapping can be performed using a two-layer binary network
with three first-layer neurons and a single second layer neuron with
the two following possible sets of weights (and appropriate reorder-
ings thereof)

w
1

1 = (�1; �1; 1) w
1

2 = (1; �1; �1)

w
1

3 = (�1; 1; �1)

w
2

1 = (1; 1; 1) w
1

1 = (1; 1; �1)

w
1

2 = (�1; 1; 1)

w
1

3 = (1; �1; 1) w
2

1 = (�1; �1; �1):

There is a geometric interpretation for the placement of the points
Z
1

ki for fixed i. For the samples to be mapped by a one-layer net-
work, theZ1

ki must be linearly separable from their complement on the
n-cube. For the two-layer case, the above is the constraint on theZ

2

ki,
which when translated into a constraint on theZ1

ki says it is enough that
they not have any antipodal elements (a much weaker constraint and
one that is satisfied automatically if they satisfy linear separability).

III. CONCLUSION

In this work, we have shown that networks with weights inf�1; 1g
and zero thresholds provide the tangible advantage of enabling us to
work with a single variable replacing the two variables corresponding
to the sample inputs and outputs. This single variable then provides
a good comparison of the function mapping capabilities of networks
having different number of layers. Using the constraints that a network
places upon this single variable, we have clearly dilineated the advan-
tage of adding a second layer over the first. The constraints placed on
the variable have a geometric interpretation in terms of dichotomies of
the hypercube, which is noted. Furthermore, it is shown that within the
model developed, the effect of adding a third layer could not possibly
weaken the constraints that were placed by the second layer.
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Comments on “Classification Ability of Single Hidden
Layer Feedforward Neural Networks”

Irwin W. Sandberg

Abstract—A recent paper addresses a certain classification problem, and
concludes that classification can be achieved using a single hidden layer
neural network. We note here that conclusions along similar lines in a more
general setting were reached in an earlier paper.

The problem of classifying signals arises in several application areas.
Typically we are given a finite numberm of pairwise disjoint subsets
C1; . . . ; Cm of some setS of signals, and we would like to synthesize
a system that maps the elements of eachCj into a real numberaj , such
that the numbersa1; . . . ; am are distinct. A recent paper1 addresses
this interesting problem in the setting ofS =

n, and concludes that
under certain assumptions this classification can be achieved using a
single hidden layer neural network.

However, conclusions along similar lines in a more general setting
were reached in the earlier paper [1],2 whereS is an arbitrary real
normed linear space. It was found that classification can always be
achieved using a bank of linear functionals feeding a static network
terminated in a quantizer, under just the assumption that the disjoint
Cj are compact. For the case in whichS =

n, some information
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