
This is a preprint of an article accepted for publication in Concurrency and Computation:
Practice and Experience. Copyright c

�
2005 John Wiley & Sons, Ltd. The article is in press,

it was published online on 8 Nov 2005. http://www3.interscience.wiley.com/cgi-bin/jhome/77004395

Resource Allocation for
Remote Desktop Sessions in
Utility Grids

Vanish Talwar � , ��� , Bikash Agarwalla � , Sujoy Basu � ,
Raj Kumar � , Klara Nahrstedt �
�

Hewlett-Packard Labs, Palo Alto, CA 94304 USA�
Georgia Institute of Technology, Atlanta, GA 30332 USA	
University of Illinois at Urbana Champaign, Urbana, IL 61801 USA

SUMMARY

Emerging large scale utility computing systems such as Grids promise computing and storage to be provided
to end users as a utility. System management services deployed in the middleware are a key to enabling this
vision. Utility Grids provide a challenge in terms of scale, dynamism, and heterogeneity of resources and
workloads. In this paper, we present a model based architecture for resource allocation services for Utility
Grids. The proposed service is built in the context of interactive remote desktop session workloads and takes
application performance QoS models into consideration. The key design guidelines are hierarchical request
structure, application performance models, remote desktop session performance models, site admission
control, multi-variable resource assignment system, and runtime session admission control. We have also
built a simulation framework that can handle mixed batch and remote desktop session requests, and
have implemented our proposed resource allocation service into the framework. We present some results
from experiments done using the framework. Our proposed architecture for resource allocation services
addresses the needs of emerging utility computing systems and captures the key concepts and guidelines for
building such services in these environments.
KEY WORDS: Resource Allocation Service, Grid Computing, Remote Desktop Sessions, QoS.

1. Introduction

Today’s enterprise IT systems are being consolidated into centralized data centers for reducing cost
and to improve manageability. Efforts are now being made to increase the degree of sharing of
these consolidated computing and storage systems and to provide them to the end-user as a utility.
Such systems are being coined as Utility Computing Systems or Utility Grids. In such systems,
geographically distributed data center sites host the shared IT infrastructure - blade servers and storage
servers, which are allocated dynamically and on-demand to the applications of the end-user. These

Correspondence to: Vanish Talwar, Hewlett-Packard Labs, 1501 Page Mill Road, MS 1181, Palo Alto, CA 94304 USA�
E-mail: vanish.talwar@hp.com

Received
Copyright c

�
2005 John Wiley & Sons, Ltd. Revised

2 V.TALWAR ET AL.

Utility Grid
Resource

Management
Server

Blade
Server(s)

User’s
Thin Client

1. Submit
request for a

remote desktop
session

3. Remote Desktop
Session

2. Resource
Allocation Storage

Node(s)

Figure 1. High level conceptual view of the system supporting remote desktop sessions

applications could be enterprise three-tier applications, batch applications, and interactive applications.
In this paper, we are particularly interested in interactive applications hosted on shared blade servers
in the data center. These applications are then viewed by the end-user through remote desktop sessions
provided through technologies such as Citrix [1], Microsoft Terminal Servers [2], VNC [11]. The
examples of applications viewed through such sessions belong in the vertical segments of financial
services, CAD/CAM applications, and office applications such as MS Word, MS Outlook, MS Excel
etc. Figure 1 shows the conceptual view of such a system.

One of the fundamental system management services needed in the middleware to enable the vision
of Utility Grids is a Resource Allocation service. This service is responsible for the dynamic allocation
of a fraction of a compute servers’ resources in response to an end-user request. Todays’ IT systems
typically pre-install, pre-allocate, and reserve the servers and storage resources for end-customers’
applications, leading to over-provisioning and higher costs. On the other hand, a utility computing
system envisions servers and storage resources to be sharable across end-customers’ applications and
be allocated dynamically as the need arises. This brings out the need for a resource allocation service
that has to consider the real-time system utilization of the blade servers, and the dynamic requirements
of requests while making an allocation decision. The resource allocations made must further meet
the minimum performance requirements of the hosted applications, while avoiding over provisioning
of resources so as to maintain a high system utilization. Prior work has looked at building resource
allocation services for supporting batch applications [9], and three-tier enterprise applications [12].
We would like to address the needs of interactive remote desktop sessions which are typically more
sensitive to performance needs. We make the following contributions through this paper:

� Architectural design guidelines and detailed description of a resource allocation service for
supporting interactive remote desktop sessions in Utility Grids. In summary, the key guidelines
are a hierarchical request structure, application performance models, remote desktop session
performance models, site admission control, multi-variable resource assignment system, and
runtime session admission control.

� Simulation framework that implements the resource allocation service and some experimental
results for mixed workloads obtained using the simulation framework.

Our proposed architecture services requests for remote desktop sessions from end-users dynamically
and allocates on-demand a fraction of a blade server in the data center site for the end-users’ request.
The fraction of the resources to be chosen is determined through the dynamic generation of the

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

RESOURCE ALLOCATION FOR REMOTE DESKTOP SESSIONS IN UTILITY GRIDS 3

1. Top level
requests by end-
user for remote
desktop sessions

COMPUTE
NODE

Remote desktop
session

Application

4. Middle level
requests for
starting applications
within a remote
desktop session

5. Application specific
workload consisting of
the users’ interaction
with a particular executing
application

COMPUTE
NODE

SITE

3. Dispatch
request

COMPUTE
NODE

END-
USER

RESOURCE
MANAGEMENT SERVER

2. Allocate a compute
node for the requested
remote desktop session

Figure 2. Flow diagram in the proposed system

Generate Remote
Desktop Session

Performance
Model

REPOSITORY

1. Resource Model

2. Application
 Performance
 Models

3. Real Time Utilization
 data from compute
 nodes

Site Admission
Control

Resource
Assignment

RESOURCE MANAGEMENT SERVER

S
T
A
N
D
A
R
D

I
N
T
E
R
F
A
C
E

Input
Queue

Pending
Queue

Figure 3. Resource Management Server

performance model for the requested remote desktop session. The dynamic generation takes place
using pre-generated application performance models for the applications that would execute within
the requested remote desktop session. The allocation is thus QoS driven and admission control systems
are used to enforce QoS. Further, the low level details of the sharing of IT infrastructure is hidden from
the end-user and the end-user is provided with a virtualized environment with QoS guarantees.

The rest of the paper is organized as follows. In Section 2, we present the proposed architecture.
Section 3 describes the simulation framework and experiments. We describe the Implementation Status
and Related Work in Section 4 and Section 5 respectively. We conclude in Section 6.

2. Architecture

The system model we consider in this paper is a single data center site. A data center site consists
of blade servers (henceforth also referred to as compute nodes), storage servers, and a resource
management server. Our proposed resource allocation service components are resident on the resource
management server and the blade server as would be explained in Section 2.1 and Section 2.2. Figure 2
shows the flow diagram of the sequence of steps executed in the system. The end-users submit requests
for remote desktop sessions to the Resource Management Server. The resource management server then
allocates a fraction of a blade server’s resources to the user’s request for the remote desktop session.
A request to start the remote desktop session is then dispatched to the allocated blade server. Once
the session is started, the user interactively starts applications through the established remote desktop
session connection. This is shown as middle level requests in Figure 2. These middle level requests
go through a Session Admission Control System at the blade server. Once the applications are started,
the user interacts with those applications through an application specific workload. We thus have a
hierarchical request structure in the system, top level requests, middle level requests, and application
specific workload, as illustrated in Figure 2.

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

4 V.TALWAR ET AL.

2.1. Resource Management Server

Figure 3 shows the architecture for the resource management server. It hosts a repository consisting of
application performance models, resource models, and the real time utilization data of blade servers.
There are two queues, an Input Queue holds the users’ requests when they first enter the system; and
a Pending Queue holds requests that could not be assigned a blade server that meets the requests’
performance requirements. The requests in the Pending Queue wait till there is sufficient release of
resources by the blade servers that would meet the requests’ performance requirements. The resource
models capture the static characteristics of the blade servers e.g., the server hardware platform, the
maximum CPU and memory capacity etc. On selecting a request from the Input Queue, the set of
blade servers satisfying the users’ preference of static characteristics are obtained through a match
of the users’ preferences with those in the resource models. Subsequently, a ‘remote desktop session‘
performance model for the requested remote desktop session is dynamically generated based on the
list of applications desired in that session. This step uses the application performance models from the
repository. The Site Admission Control System and the Resource Assignment System then make their
decisions using the generated model. We describe these in subsequent subsections.

2.1.1. Application Performance Model

The application performance model describes the resource requirements of the application for it to be
able to perform at an acceptable QoS level. Such a model is key to our proposed resource allocation
service. Such models would be built offline by the system administrators and populated into the
repository. We are interested in building such models for interactive applications hosted on blade
servers and viewed in a thin client setting using remote desktop sessions as shown in Figure 1. Below,
we describe briefly how to build such models. Subsequently, we give a formal representation for the
model.

Application profiling is the basis for building application performance models. Application profiling
is done by executing the application in isolation on a standard platform, and then applying a
characteristic workload to the application. The resource consumption of the application is continuously
monitored over the entire period of execution. Statistical techniques are then applied to the trace data
to determine a desired resource requirement value that should be allocated to the application for
acceptable performance. There has been prior work in this area, most of which has been studied in
the context of batch and e-commerce applications [15]. The profiling of interactive applications in a
thin client setting present additional challenges. Firstly, the execution of an interactive application is
primarily influenced by end-user behavior. This user behavior needs to be modeled for the application
being profiled and subsequently, a synthetic workload needs to be generated conforming to the modeled
user behavior. The work being done in this area e.g., [8, 6, 7] typically propose the use of states to
capture user interactions, and the use of Markov chains to model probabilistic transitions. Additional
problems presented by thin client systems is (i) the need to also measure user perceived performance
on the client for accurate latency measurements, and (ii) the need to consider the resource consumption
of the remote display server in addition to that of the application. We do not go much further into the
details of the methodology of building the application performance models and keep our focus in this
paper to architectural principles. The reader is referred to related works cited above and also in works

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

RESOURCE ALLOCATION FOR REMOTE DESKTOP SESSIONS IN UTILITY GRIDS 5

of [10, 14, 3] which describe the measurement of the resource consumption of interactive applications
in a thin client setting.

Throughout the paper, we represent the application performance model of an application ���
using ����� ���	��
����
�����
�������
������� , where ���
����
���� represent the desired CPU utilization (in
cycles/second), desired network bandwidth, and desired storage bandwidth respectively for the
application. ����� represents the acceptable network latency between the end-users’ thin client and the
blade server, � � � represents the acceptable storage latency between the blade server and remote storage
node.

2.1.2. Remote Desktop Session Performance Model

A remote desktop session performance model describes the resource requirement for a remote desktop
session. Such a model is generated dynamically for every user request. A remote desktop session,
for the purposes of modeling, is viewed as consisting of a remote display server and one or more
application processes. For example, a VNC remote desktop session [11] would consist of a VNC
remote display server and all the applications running in the context of this VNC desktop session.
These applications are started interactively by the end-user and they execute in the context of the
remote desktop session on the blade server. All of these applications share the resources allocated to
the remote desktop session in which they execute. We next describe a framework for building a remote
desktop session performance model.

A performance model of a remote desktop session is built by leveraging the performance models of
the applications which would execute in its context. This list of applications is obtained dynamically
through the users’ request or it would be inferred based on the users’ profile[3]. On obtaining this list of
applications, we read in the individual application performance models for these applications from the
repository. At the time of generation of the remote desktop session model, we do not however know the
execution order of these applications. The users’ request and/or users’ profile only gives us the list of
applications desired during the session. The user could interactively start these applications in various
possible execution orders at runtime. The end-user may further decide at run-time to start several
instances of each application. Thus, the execution order of applications, and number of instances for
each application is a run-time decision not known at the time of generation of the remote desktop
session performance model at the Resource Management Server. However, the remote desktop session
performance model depends on such execution orders. One solution to address this problem would be
for the user to specify the execution orders and instances for the desired applications in her request.
However, this may not be a very good solution since the user may find it difficult to determine such
execution orders at the time of submission of her request. Moreover, since we enable interactivity, the
user would like to choose the order and number of instances at runtime. We propose some models
for determining the execution orders of the applications. One of these models of execution orders is
then selected for a users’ request by a policy decision, and then the system generates the corresponding
remote desktop session performance model using that execution order. We describe below and illustrate
in Figure 4 some of these execution order models and their corresponding remote desktop session
performance models. We consider applications, � �
�!"�$# to , in a users’ remote desktop session
and the remote desktop session performance model to be represented as%"&('*)�+�&�,-&/.�01+2)43 �5�6�7�98�:�;�<4=?>2@1
���8�:�;�<A=?>B@C
��58�:;�<4=?>2@C
���ED�FHGJI�KML?NC
����D2FJGHI�KOL?N1� .
The notations are explained in Figure 5.

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

6 V.TALWAR ET AL.

t1 t2 t3

A1

A2

A3

A4

A5

t1 t2 t3

A1

A2

A3

A4

A5

t4 t5

t1 t2 t3

A1

A2

A3

A4

A5

t4 t5

t4 t5

Modeling the resource requirement for a remote desktop ses-
sion at the Resource Management Server. The top, middle,
and bottom graphs show the Simultaneous, Sequential and
Mixed execution order of five applications.

Figure 4. Modeling Execution Orders

Symbol Meaning����� � � � � 	
Aggregate CPU utilization in cycles/second for the remote desktop session
����� � ��� � 	

Acceptable network latency for the remote desktop session
���� � � ��� � 	
Acceptable storage latency for the remote desktop session���� � � � � 	

Aggregate network bandwidth for the remote desktop session��
Dynamic End-to-end network bandwidth between the compute node

and the users’ submission node hosting the display (for remote display traffic)��
 �
End-to-end network latency between the compute node

and the users’ submission node hosting the display��
Total network bandwidth for the compute node�

CPU Processor speed� ��� � ��� � 	
Aggregate storage bandwidth for the remote desktop session� �

Dynamic End-to-end storage bandwidth between the compute node
and the file server hosting the users’ data (for remote storage traffic)��
��

End-to-end storage latency between the compute node
and the file server hosting the users’ data� �

Total storage bandwidth for the compute node���
Maximum Threshold percentage set for the CPU Utilization

on the compute node eg. 80%���
Max Threshold percentage set for the Network Utilization

on the compute node���
Max Threshold percentage set for the Storage Utilization

on the compute node���
Current CPU percentage utilization� �

Current network bandwidth percentage utilization� �
Current storage bandwidth percentage utilization

Figure 5. Notations

(a) Simultaneous execution of an instance of each desired application. In this case, the aggregate
resource requirements for the remote desktop session is modeled as the sum of the individual
requirements
� 84:�;<�=?>B@ � �����! �#"%$�#"'& � � ,
� 8�:;�<4=?>2@ � � � � �("%$�("'& � � ,
��8�:;�<4=?>2@ � � � �! �#")$�#"*& ��� ,
where

� �
,
� � ,

� � are the extra overheads that is accounted for due to other processes e.g., monitoring
software etc., that may run within the remote desktop session at runtime. The latency requirements for
the remote desktop session is taken as the minimum of those for the individual application sessions.
� � D�FHGJI�KML?N �,+.-#/ �("%$�("'& � � � , � � D�FHGHI�K LJN �0+.-(/ �#"%$�#"'& � � � .
(b) Sequential execution of the applications. In this case, the aggregate resource requirements for the
remote desktop session is modeled as the maximum of the individual requirements
�	84:�;<�=?>B@�� � � � +2143 �("%$�("'& ��� ,
� 8�:;�<4=?>2@ � � � � +5163 �#"%$�#"'& � � ,
��8�:;�<4=?>2@ � � � � +2163 �("%$�("'& ��� ,
The latency requirements for the remote desktop session is taken as the minimum of those for the
individual application sessions.
� �ED�FHGJI�KML?N �,+.-#/ �("%$�("'& � � � , � ��D�FHGHI�K LJN �0+.-(/ �#"%$�#"'& � ���
(c) Mixed Case when some applications are executed simultaneously, and some others are executed
sequentially. In this case, the resource requirement is either modeled as a value based on history

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

RESOURCE ALLOCATION FOR REMOTE DESKTOP SESSIONS IN UTILITY GRIDS 7

based prediction between the two extremes of simultaneous execution and sequential execution, or
it is negotiated with the end-user.
(d) Unknown Profiles of the applications. This would be the case when the applications are being
executed for the first time, and the system is completely unaware of the resource requirements. In
this case, the resource requirements for the remote desktop session could be modeled assuming worst
case requirements (such as requiring the maximum permissible resources on a node), or the user could
specify the requirements.

2.1.3. Site Admission Control System

The Site Admission Control system uses the remote desktop session models for admission control
decisions. This system is responsible for determining if a blade server with its current resource
utilization values can meet the resource and latency requirements for a given remote desktop session.
The resource assignment heuristics are then applied to only those resources that satisfy the admission
control test. The Site Admission Control system takes as input: Remote Desktop Session performance
model for the requested list of applications, blade servers that satisfy the coarse grain static resource
requirements for the user’s request, and the real time resource utilization values of the nodes. Below is
the admission criterion. Please refer to Figure 5 for the notations.������� ���
	 ���� #���� � �	84:�;�<A=?>B@ ,' !J ����� � ��	 � � � ����
 #���� � ��� �� #���� � � 84:�;�<A=?>H@ ,' !J ����� � ��	 � � � ����
 #���� � ��� �� #���� � � 84:�;�<�=?>2@ ,
� � ��� ��� D�FHGJI�KML?N , � � ��� ��� D�FJGHI�K LJN .
The expressions on the left side of the comparison operator represent the currently available resources
on the compute node (blade server) and those on the right side of the comparison operator represent
the resource requirement for the remote desktop session. The admission check is thus to compare that
the currently available resources on the compute node can satisfy the required values for the requested
remote desktop session. Note that due to the heterogeneity in the hardware platforms e.g., CPU, we
have to normalize the values of the quantities before comparison e.g., CPU utilization is expressed in
cycles/second.

2.1.4. Resource Assignment System

The Resource Assignment system is responsible for assigning one of the blade servers which satisfy
the site admission check, to the users’ request. It takes into consideration the remote desktop session
performance model, and aims to minimize the wait time for requests. The wait time in this section
refers to the time it takes for the blade server to be assigned to a user since receiving the request.
Unlike batch job submissions, a user after submitting the request for remote desktop session typically
waits for the blade server to be allocated to him immediately. In our system, the wait time is dependent
on (is the summation of) the wait time in the Input Queue � , the wait time in the Pending Queue waiting

!
Input Queue is the queue into which the requests are placed as they arrive into the Utility System."
Pending Queue is the wait queue into which requests go if all the eligible blade servers for a request do not have enough

available resources to satisfy the Site Admission Control performance criterion test.

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

8 V.TALWAR ET AL.

for resources to become available, and processing overhead of the admission control and assignment
algorithms. We allow for priorities to be assigned to requests based on the profile of the user. The
requests would be picked from the Input Queue based on priority, thus reducing the wait time for
higher priority requests in the Input Queue.

Multi-Variable Best Fit Algorithm
Figure 6 presents the pseudo code for a multiple variable best fit algorithm that takes resource
requirement heuristics into consideration for resource assignment. Note that at this point only those
blade servers are being considered which satisfy the Site Admission Control test. Also, for the use
case scenarios being considered by us, each request requires only a single blade server. However,
as mentioned earlier, we allow resource sharing i.e there could be multiple remote desktop sessions
allocated on the same blade server simultaneously. A Best Fit algorithm for assigning blade servers
to remote desktop sessions would always try to pack up bins tightly thus reducing the possible
fragmentation. This would enable us to assign more sessions onto the blade servers and should help
in reducing the wait time for the requests in the Pending Queue. We therefore consider a Best Fit
algorithm for resource assignment. However, we have to consider multiple variables in the algorithm
- CPU, network bandwidth, and storage bandwidth. For a particular remote desktop session, one or
more of these resources may be a bottleneck resource. We introduce weight functions corresponding
to each of these fine grain resources and adjust the weight assignment accordingly for the bottleneck
resource variables. For example, for CAD design sessions, the CPU would be the bottleneck resource
variable and we should give more weightage to CPU utilization values for such sessions. Similarly
for financial transaction applications, the storage bandwidth would be the bottleneck resource variable,
and for office applications, the network latency would be the bottleneck resource variable. Further,
the algorithm determines the difference between the available and required resource utilizations, and
assigns the weight functions as inversely proportional to these delta values. Thus, it does weighted
best fitting along multiple dimensions. The weights are assigned for the different parameters/variables
as functions, and we pick the compute node that has the highest aggregate weight across dimensions.
The resource and latency requirements used for the remote desktop sessions in the algorithm are those
obtained from the remote desktop session performance model described in Section 2.1.2.

2.2. Runtime System

Figure 7 shows the runtime resource allocation system components resident on the blade server. Unlike
traditional batch applications, end-users can interactively start applications throughout the lifecycle
of the remote desktop session. This requires the resource allocation service to also have runtime
components. A Session Admission Control system exists at the blade server for every executing
remote desktop session. Once the remote desktop session is started, the session admission control
system receives the middle level requests from the end-user for starting new applications. It is then
responsible for determining whether the resources that are allocated to a remote desktop session
could accommodate the new application’s resource and latency requirements without violating the
resource guarantees of existing applications within the remote desktop session. The Site Admission
Control system makes an admission decision for the remote desktop session assuming the resource
requirements specified in the remote desktop session performance model described in Section 2.1.1.
However, once the remote desktop session is started on the blade server, the end-user can interactively

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

RESOURCE ALLOCATION FOR REMOTE DESKTOP SESSIONS IN UTILITY GRIDS 9

1. For each compute node which satisfies the Site Admission Control test
 a. Determine the free CPU cycles, network bandwidth, and storage bandwidth available on
 this compute node for a users’ request.
 b. Determine the delta values between the available resources from step a., and the desired
 resources for the requested remote desktop session. These delta values are denoted as

Cdelta, Ndelta , Sdelta , NLdelta , SLdelta.
 c. We now assign the following weights:

WC = f(Cdelta, Compute Intensiveness)
WN = f(Ndelta, Average expected display data size)
WS = f(Sdelta, Data intensiveness)
WNL = f(NLdelta, Interactiveness)
WSL = f(SLdelta, Data intensiveness)

 The weights (WC, WN, WS, WNL, WSL) are inversely proportional to the first parameter
 (Cdelta, Ndelta , Sdelta , NLdelta , SLdelta) and directly proportional to the second parameter
 (Compute intensiveness, Average expected display data size, Data intensiveness,
 Interactiveness, Data intensiveness) respectively.
 d. The effective wieight of this compute node for the currently considered assignment is

Weffective = WC + WN + WS + WNL + WSL
2. Pick the compute node with the maximum assigned weight Weffective for this
 request. In case of equally ranked compute nodes, we pick the one with the least load
 where load is defined in terms of CPU utilization

Figure 6. Pseudo code for multi-variable best fit

Session
Admission

Control System

Monitoring

Closed Loop
Control System

Applications
running in the

remote desktop
session

COMPUTE NODE

Figure 7. Runtime system

algorithm for resource assignment

start the applications in an execution order different from that considered while building the remote
desktop session performance model. She may also start several instances of the applications. Hence, we
need to perform a Session Admission Control check at the blade server to check dynamically if there are
enough resources available for the application without violating the resource availability for currently
running applications. If the execution order and application instances during runtime are always as
derived using the model in Section 2.1.1, then the session admission control test would always succeed.
However, this may not happen in reality especially with the Mixed case in the model generation
methodology, and hence the Session Admission Control system is needed to enforce admission control
during runtime.

Let �$� �7� &
����
������M
� < � be the current set of applications running in a remote desktop session.
Let ��� <	�*&�
 be the application session for which we are making an admission control decision. Then
the Session Admission Control decisions are:
� 84:�;<�=?>B@ ����� �#"5<	�'&�#"'& � � ,
� 8�:;�<4=?>2@ � � � �("5<��'&�("'& ��� ,
� 8�:;�<4=?>2@ � � � �#" <	�'&�#"*& � � ,
��� D�FHGJI�KML?N � ���� I������ , ��� D�FHGJI�KMLJN � ���� I������ ,
where

� �
,
� � ,

� � are the CPU, network, and storage utilization respectively due to other processes,
e.g., monitoring software etc., running within that remote desktop session. The expressions on the left
side of the comparison operator in the equations above represent the resource requirements for the
remote desktop as captured by the remote desktop session performance models. The expressions on
the right side of the comparison operator represent the actual resource utilization by the current set of
applications and the requested new application. The admission check is thus to compare that, if the
given application is admitted, then the total resources allocated for the remote desktop session can

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

10 V.TALWAR ET AL.

continue to satisfy the resource requirements of all the currently running applications as well as that of
the requested application.

3. Simulation

In this section, we first describe our simulation framework. Subsequently, we describe the experiments
conducted using the simulator and the obtained results.

3.1. Simulation Framework

We have built a simulation framework for the utility system that can handle mixed (heterogeneous)
batch and remote desktop session requests, and have implemented our proposed resource allocation
service into the framework. We have not at the moment implemented the session admission control
system into the simulator and assume that the application requests arrive during runtime in the same
execution order as assumed at the Resource Management Server. Each blade server is modeled as
having two network interfaces - one for the display traffic for interactive sessions to the end-user’s
thin client, and the other for storage traffic to file servers. We also model the end-to-end network
bandwidth and latency between the blade server and the end-user submission nodes, as well as the
end-to-end storage bandwidth and latency between the blade servers and the file servers. For both
batch and interactive requests, we assume in the current implementation that the requests are picked
from the Input Queues as First Come First Served (FCFS) semantics with no priorities The batch
requests are assigned blade servers using a Least Loaded algorithm, and the requests for remote desktop
sessions are assigned blade servers using the Multi-Variable Best Fit algorithm as described in the
earlier section. The site admission control system implementation for a remote desktop session request
checks for performance criterion described in Section 2.1.3. For a batch request, we check if there
is a minimum required threshold CPU utilization available on a blade server. During the simulation,
the CPU utilization allocated to a batch request is guaranteed to be atleast the minimum threshold,
and is allowed to exceed the minimum threshold only in case of available CPU cycles. The resource
utilizations for the remote desktop sessions are always guaranteed to be equal to that of the value
decided through the resource requirement modeling of the remote desktop session.

Our simulator is implemented in Java. The static information about the data center resources are
stored in an LDAP directory, and the dynamic end-to-end information is stored as an in-memory
table. We use pools of worker threads to parallelize the scheduling tasks within the simulator. Using
our simulator, one can design and perform various interesting experiments some of which are: (i)
Evaluating the trade offs of various resource sharing strategies among mixed workloads, (ii) Evaluating
the proposed resource allocation strategy for interactive remote desktop session workloads with naive
solutions that do not use performance models and/or admission control, (iii) Evaluating the trade offs
among various weight assignments in the resource assignment system, (iv) Evaluating the resource
allocation strategies under inaccurate application performance models.

3.2. Experiments and Results

We have performed experiments to evaluate the trade off of throughput and wait time for a mixed
workload consisting of batch and interactive session workload. The comparison is among the use of a

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

RESOURCE ALLOCATION FOR REMOTE DESKTOP SESSIONS IN UTILITY GRIDS 11

End-to-end End-to-end Duration in wall
Request type CPU Utilization network b/w storage b/w clock time

for display traffic
Heavy Remote 15% guaranteed on

Desktop Session a 2 GHz machine 15 Mbps 150 Mbps 6 hours
Light Remote 10% guaranteed on

Desktop Session a 2 GHz machine 10 Mbps 100 Mbps 1 hour
Minimum threshold 4 hours at 35 %

Heavy Batch Job of 35 % on a 2 GHz 0 Mbps 300 Mbps CPU Utilization on
machine a 2 GHz machine

Minimum threshold 3 hours at 5 %
Light Batch Job of 5 % on a 2 GHz 0 Mbps 100 Mbps CPU Utilization on

machine a 2 GHz machine

Figure 8. Application and Remote Desktop Session

Remote Desktop Arrival Rate for Arrival Rate for
Experiment Type Interactive Batch Job Interactive Batch Job

Session Requests Requests Session Requests Requests
Poisson distribution; Poisson distribution;

Day Time Heavy Remote last request arrives requests arrive
Experiment Desktop Session Light Batch Job at 6 hours into throughout the
(12 hours) requests only requests only the experiment 12 hour experiment

Poisson distribution; All requests arrive
Night Time Light Remote requests arrive in a batch at the
Experiment Desktop Session Heavy Batch Job througout the beginning of
(12 hours) requests only requests only 12 hour experiment experiment (Bursty

arrival at time 0
of the experiment)

Figure 9. Request description
Performance Models for the experiments

completely shared resource sharing strategy, with that of a no sharing strategy. Below, we describe the
experimental setup and results in detail.

3.2.1. Experimental Setup

The experiments were conducted for a data center of size 100 compute nodes. Each of the compute
nodes have a 2GHz processor speed, 100 Mbps network interconnect for display traffic, and a 1 Gbps
interconnect for storage traffic. The dynamic end-to-end bandwidth to the end-user locations for the
display traffic varies from 50-100Mbps, and the latency varies from 10-40 units. The dynamic end-
to-end storage bandwidth to the file servers is 500 Mbps, and the latency varies from 5-20 units. We
conducted two sets of experiments - one for a set of requests for day time activity, and the other for a
set of requests for night time activity. We assume in this set of simulations that each request is always
assigned only a single compute node for both batch requests and remote desktop session requests.
We classify the requests for remote desktop interactive sessions and batch jobs as ‘Heavy Remote
Desktop Session’, ‘Light Remote Desktop Session’, ‘Heavy Batch Job’, and ‘Light Batch Job’. The
characteristics of each of these sessions is shown in Figure 8. The ‘Heavy Remote Desktop Session’
corresponds to a remote desktop session running, for example, a CPU intensive interactive CAD design
application, while a ‘Light Remote Desktop Session’ corresponds to running, for example, office
applications. A ‘Heavy Batch Job’ for example corresponds to running applications such as heavy
weight structural analysis simulations, while ‘Light Batch Job’ corresponds to running applications
such as compiling programs. The resource utilization for remote desktop sessions in Figure 8 is the
aggregate values as discussed in the remote desktop session model in Section 2.1.2. The acceptable
latencies are greater than the available end-to-end latency values. During the day time, we expect
the set of requests to consist predominantly of ‘Heavy Remote Desktop Session’ and ‘Light Batch
Job’ requests. During the night time, we expect the set of requests to consist predominantly of ‘Light
Remote Desktop Session’ and ‘Heavy Batch Job’ requests. Based on this, we generate separate 12 hour
synthetic requests for the day and night time as shown in Figure 9. Please note that these are top level
requests in the context of the discussion in Section 2.

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

12 V.TALWAR ET AL.

100 batch
jobs on

dedicated
100 nodes

200 batch
jobs on

dedicated
100 nodes

500 ‘Heavy’ Interactive
Remote Desktop Sessions

on dedicated 100 nodes

Throughput:
Finish Time in

minutes
728 730 716

Max Waiting time
(minutes) 0 0 0

100 batch jobs and 500
‘Heavy’ Interactive Remote

Desktop Sessions on
100 shared nodes

200 batch jobs and 500
‘Heavy’ Interactive Remote

Desktop Sessions on
100 shared nodes

Throughput:
Finish Time in

minutes

728 (Batch jobs) and
722 (Interactive Sessions)

730 (Batch Jobs) and
724 (Interactive Sessions)

Max Waiting
time (minutes) 6 11

Day Time experiment with
No Resource Sharing among mixed workloads

Day Time experiment with
Complete Resource Sharing among mixed workloads

Figure 10. Results for Day Time experiments

30 ‘Light’ Interactive
Remote Desktop Sessions

on dedicated 100 nodes

200 ‘Light’ Interactive
Remote Desktop

Sessions on dedicated
100 nodes

500 Batch Jobs
on dedicated

100 nodes

Throughput:
Finish Time in

minutes
65 779 622

Night Time experiment with
No Resource Sharing among mixed workloads

 30 ‘Light’ Interactive Remote
 Desktop Sessions and 500 batch
 jobs on 100 shared nodes

 200 ‘Light’ Interactive Remote
 Desktop Sessions and 500 batch
 jobs on 100 shared nodes

Throughput:
Finish Time in

minutes

65 (Interactive Sessions) and
660 (Batch Jobs)

779 (Interactive Sessions) and
688 (Batch Jobs)

Night Time experiment with
Complete Resource Sharing among mixed workloads

Figure 11. Results for Night Time experiments

3.2.2. Results and Discussion

We first describe the results for the Day Time experiment which consisted of 500 ‘Heavy Remote
Desktop Session’ requests. We varied the number of ‘Light Batch Job’ requests in the system. Figure
10 shows the finish time (Throughput) of the system with 100 and 200 ‘Light Batch Job’ requests
and 500 ‘Heavy Remote Desktop Session’ requests. We see that the finish time for the ‘Light Batch’
jobs is unaffected when the two sets of requests are combined on the same set of compute nodes. The
finish time for the ‘Heavy Remote Desktop’ sessions degrades by 0.8% and 1.1% with the addition of
100 and 200 ‘Light Batch’ jobs in the system respectively compared to executing the ‘Heavy Remote
Desktop Session’ requests on a separate set of compute nodes with no ‘Light Batch’ jobs. As a result,
the finish time goes up by only 6 and 8 minutes respectively and is only slightly above 12 hours.
Figure 10 also shows the maximum wait time in the Pending Queue for the requests with 100, and 200
‘Light Batch Job’ requests in addition to the 500 ‘Heavy Interaction Session’ requests � . We see that
the maximum Wait time for the requests increases from 6 to 11 minutes with addition of 100 and 200
‘Light Batch Job’ requests. Thus, with 100 additonal requests of ’Light Batch’ jobs, a client asking for
a remote desktop interactive session may have to wait upto 6 minutes before being allocated a resource
for interactive use. We also ran additional experiments and increased the number of ’Light Batch Jobs’
in the sytem to upto 2000 keeping 500 ’Heavy Remote Desktop Sesions’. We found that even with
2000 ’Light Batch Jobs’ in the system, the finish time for Heavy Remote Desktop Sessions degrades
by 8.9% (finish time is 780 minutes). However, the maximum wait time for the requests goes to 67
minutes. The maximum wait time starts to degrade beyond 20 minutes with greater than 700 ’Light
Batch Jobs’. The 95 percentile value for the Wait Time was found to be 0 for upto 700 ’Light Batch

�
In the simulations, there was no wait time for the requests in the Input Queue and we ignore the processing overhead of the

admission control and resource assignment algorithms. Hence, the wait time presented here is that incurred if the requests do not
satisfy the Site Admission Control test and hence go to the Pending Queue.

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

RESOURCE ALLOCATION FOR REMOTE DESKTOP SESSIONS IN UTILITY GRIDS 13

Jobs’ and 54 minutes for 2000 ’Light Batch Jobs’. With the addition of upto 700 ’Light Batch’ jobs,
the number of requests that waited in the Pending Queue was thus less than 5% of the requests. A
Site Policy decision could restrict the allowed number of ’Light Batch Jobs’ in the system taking into
consideration the acceptable degradation in the waiting time and finish time for the requests.

We now describe the results for the Night Time experiment which consisted of 500 ‘Heavy Batch
Job’ requests. We varied the number of ‘Light Remote Desktop Session’ requests in the system. Figure
11 shows the finish time (Throughput) of the system with 30 and 200 ‘Light Remote Desktop Session’
requests and 500 ‘Heavy Batch Job’ requests. We see that the finish time for the ‘Light Remote
Desktop’ sessions is unaffected when the two requests are combined on the same set of compute nodes.
The finish time for the ‘Heavy Batch’ jobs degrades by 6.1% and 10.6% with the addition of 30 and
200 ‘Light Remote Desktop’ sessions in the system respectively, compared to executing the request on
a separate set of compute nodes with no ‘Light Remote Desktop’ sessions. As a result, the finish time
goes up by 38 and 66 minutes respectively. We expect the number of ‘Light Remote Desktop’ sessions
in the system to be fairly low during night time and do not expect it to go much beyond 30 sessions.
The case for 200 ‘Light Remote Desktop’ sessions thus represents a very extreme case, however even
then we see that the finish time for the ‘Heavy Batch’ jobs is within acceptable limits and the finish
time for the system is still within the 12 hour period. We also ran additional experiments and increased
the number of ’Light Remote Desktop Sessions’ in the system to 2000, while keeping the number of
’Heavy Batch Jobs’ in the system to 500. We found that the finish time for the Heavy Batch Jobs with
2000 ’Light Remote Desktop Sessions’ degrades by 15.75% (finish time is 720 minutes).

In summary, the results show that for a reasonable set of requests, a single system of blade servers
is able to handle a particular class of mixed heterogeneous DayTime and NightTime requests of batch
and interactive session requests without a very significant degradation in overall performance for the
system. Such a system would thus be more cost effective than building separate grids for those batch
jobs and interactive sessions respectively. As future work, we would be conducting more experiments
for other classes of requests and more heterogeneous data centers to see the performance effect.

4. Implementation Status

In addition to the simulator, we have also built a proof-of-concept implementation for the conceptual
architecture shown in Figure 1. More details of this are described within reference [13]. In the
implementation, we support Grid authentication, create dynamic accounts, as well as dynamically
provision remote desktop sessions on the assigned nodes. A simple site level scheduler has also been
built that performs resource discovery for static resource attributes using an LDAP-based directory
server. The scheduler supports best fit, first fit and random resource assignment. Once a remote desktop
session starts, the user is presented with a restricted access-controlled environment, and the users’
persistent data is dynamically mounted onto the allocated dynamic account. As part of future work
exploration, we would also be implementing some of the more advanced resource allocation features
described in the paper.

5. Related Work

Most of the existing work on resource allocation in Grids have addressed the needs of batch
applications [9]. There has also been prior work done on load balancing for parallel computers, web

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

14 V.TALWAR ET AL.

servers, user login sessions, and some recent work on 3-tier commercial applications [12]. Project
NOW from Berkeley [5] proposes a network of workstations as a computing infrastructure. The NOW
architecture aims to provide a single cluster for computing purposes and provides a global software
and hardware layer. Compared to these related works, we address the needs of resource allocation for
interactive sessions, and our global computing model considers a utility environment provided through
a data center in an enterprise.

6. Conclusions

Our proposed architecture is addressing the needs of supporting remote desktop sessions in emerging
Utility Grids. The architecture serves as a conceptual guide for building resource allocation services
in such systems. The key features is that it enables virtualization, uses application performance
models, generates the remote desktop session performance model dynamically as a composition of
individual application performance models, uses dynamic real-time utilization values for dynamic
resource allocation, and supports the resource allocation needs for remote desktop sessions throughout
its lifecycle including at runtime. We have also built a simulation framework and have implemented
the resource allocation architecture into it. Various experiments are possible using the framework. We
showed some results on trade offs among resource sharing strategies for mixed workload of batch and
interactive remote desktop sessions. As future work, we would be doing more experimental evaluation.

REFERENCES

1. Citrix. http://www.citrix.com.
2. Microsoft Terminal Servers. http://www.microsoft.com/windowsserver2003/technologies/terminalservices/default.mspx.
3. Microsoft Corporation. Windows 2000 terminal services capacity planning. Technical White Paper, 2000.
4. X Windows/X11. http://www.x.org.
5. Berkeley NOW Project. http://now.cs.berkeley.edu/.
6. Friedrich M., Hollfelder S., Aberer K. Stochastic resource prediction and admission for interactive sessions on multimedia

servers. Proceedings of ACM Multimedia, Marina del Rey, Los Angeles, CA, 2000.
7. Haring, G. On stochastic models of interactive workloads. Proceedings of the 9th International Symposium on Computer

Performance Modelling, Measurement and Evaluation (PERFORMANCE’83), College Park, MD, 1983.
8. Hlavacs, H., Kotsis G. Modeling user behavior: A layered approach. Proceedings of the 7th International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASOCTS), College Park, MD, 1999.
9. Nabrzyski, J., Schopf, J.M., Weglarz J. Grid Resource Management: State of the Art and Future Trends. Kluwer Academic

Publishers, 2003.
10. Nieh J., Yang, S.J, Novik, N. Measuring thin-client performance using slow-motion benchmarking. ACM Transactions on

Computer Systems, 21(1):87–115, 2003.
11. Richardson T., Stafford-Fraser Q., Wood K.R, Hopper A. Virtual network computing. IEEE Internet Computing, 2(1):33–

38, 1998.
12. Rolia J., Pruyne J., Zhu X., Arlitt M. Grids for enterprise applications. Proceedings of 9th Workshop on Job Scheduling

Strategies for Parallel Processing, Seattle, WA, June 2003.
13. Talwar V., Basu S., Kumar R. Architecture and Environment for Enabling Interactive Grids. Journal of Grid Computing,

Kluwer Academic Publishers, Volume 1, Issue 3, 2003, pp. 229-326.
14. Schmidt B.K, Lam M., Northcutt J.D. The interactive performance of SLIM: A stateless, thin-client architecture.

Proceedings of 17th ACM Symposium on Operating Systems Principles (SOSP), Kiawah Island Resort, SC, 1999.
15. Urgaonkar, B., Shenoy, P., Roscoe, T. Resource overbooking and application profiling in shared hosting platforms.

Proceedings of 5th Symposium on Operating Systems Design and Implementation (OSDI’02), Boston, MA, December
2002.

Copyright c
�

2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 00:1–0
Prepared using cpeauth.cls

