
Federated Models  

For Monitoring Data Access 

 
Y. Chen

‡
, K. Farkas

‡
,  R. Liu

§
, D. Milojicic

‡
, S. Rafaeli

†
, K. Saikoski

†
, V.  Talwar

‡
, 

 W. Vambenepe
*
 

HP Labs
‡
, HP Brazil

†
, HP Technology Solutions Group

*
, Tsinghua University

§
 

[firstname.lastname]@hp.com, rliu@tsinghua.edu.cn 

Abstract 

Model-based automation is becoming an important approach in managing IT, resulting 

in a diverse set of model repositories using possibly different model schemas and 

located within one or more different administrative domains. For effective automation, 

management tools typically require access to multiple repositories, and thus, 

mechanisms are required to integrate the data models confined to administrative, 

geographic, and model schema boundaries. In this paper, we introduce two such 

mechanisms, one for maintaining the links between repositories, and the second for 

controlling access to the repositories. To illustrate the use of these mechanisms, we 

describe how we are applying them to the problem of providing access to the data 

collected about jobs in a Grid computing environment. This discussion demonstrates 

the value of our approach. 

Keywords 

Model, Federation, Monitoring, ChinaGrid, Web Service 

 

1. Introduction 

Service Oriented Architectures (SOA) and geographically distributed data centers have 

resulted in composite services comprised of multiple independent services running 

within different data centers and under different administrative domains. Monitoring 

and consequently managing these composite services requires common management 

interfaces and common understanding of the management data (metrics and 

topologies). Common interfaces are enabled by management standards, such Web 

Services Distributed Management (WSDM) and WS-Management, while metrics and 

topologies are described in data model schemas, such as Common Information Model 

(CIM), Resource Description Framework (RDF) and GLUE. Because different data 

centers and services support different architectures managed by different management 

systems, there is a need for federation of data models. 

In this paper, we examine the federation of data models in the context of monitoring a 

distributed IT environment comprising multiple administrative domains. A challenge 



in such contexts is to build management tools that can access the monitoring data 

collected for the components of the IT environment and published by a heterogeneous 

collection of data repositories. Data models offer the ability to capture in a 

machine-readable form the meta-data that describes the context under which data is 

collected, how the data is represented, and properties about it. For example, a model 

could be used to capture the metrics that are available for each application running in a 

cluster, the definitions of these metrics, and the units. Or, a model could be used to 

describe the structure of an application or service, the metrics that are available for each 

component in the structure, the corresponding metric definitions, and how to access 

their values. However, to simplify accessing these models, they must be federated. 

Federating such models presents several challenges. First, the models are distributed 

across domains and must be stitched together in a loosely-coupled manner. Second, 

each model has its own schema and representation format. Third, trust and security 

issues need to be considered when traversing across domains.  

We make the following contributions in this paper 

� We present an architecture for federated model-based data access and propose a 

link mechanism to stitch different models together. This link mechanism is 

implemented as a federated object and we identify the attributes needed for this 

object. 

� We present a federated identification mechanism for controlling access to models. 

� We illustrate how this architecture may be applied to making monitoring data 

available from multiple domains in a Grid.  

The rest of this paper is organized as follows. In Section 2 we present the design of our 

model federation solution. Section 3 describes its application to a Grid environment. 

We review competitive approaches in Section 4 and finally conclude with next steps in 

Section 5. 

2. Design 

In this section, we describe our approach for integrating models from multiple data 

repositories and how we provide for federated identities. We then discuss how these 

concepts would be integrated into a federated-model architecture. 

2.1 Federated Model Access 

To integrate diverse models, we introduce the notion of a federated object, which 

provides additional information about how to access a resource from another domain. 

This object can be used to navigate across models from different domains. We define 

the federated object to contain the following attributes: <model service endpoint, 

resource addressing information, model transformation information, security policies, 

properties>. This information can be represented as an XML element, as shown in the 

template below. 



 

This XML element conveys the Endpoint Reference (EPR) to the remote repository as 

well as meta-information about potential model transformations required to access the 

remote repository. This information consists of an identifier of the resource model 

schema(s) supported by the remote repository as well as any available information 

about ways to translate these resource models. In general, translating between models 

is difficult owing to the need to not only translate syntactic differences but to also 

translate semantic ones. For syntactic translations, approaches such as an eXtensible 

Stylesheet Language Transformations (XSLT) document may be used. For semantic 

translations, semantic web technology might be employed or a service that applies a set 

of pre-defined rules to map on model space to another. Of course, if the remote 

repository uses the same resource model as the local repository, neither the <Model> 

nor the <ModelTranslation> element is used.  

The resource addressing information and security policies are specified as part of the 

metadata section of the remote repository EPR, along with any other meta-information 

relevant to the use of this EPR. The "resource addressing information" attribute refers 

more specifically to the ability to make explicit the way in which SOAP headers are 

used for addressing in the cases where the addressing headers are based on the model of 

the resource. When a federated link object is referred, the information defined in the 

federated link object is accessed first, and then the information is used to locate the 

resource information from certain domain via WS model access interfaces provided by 

that domain.  

 

<FederatedObject> 

    <RemoteResourceEPR> 

       <!--  a WS-Addressing EPR for the remote resource --> 

    </RemoteResourceEPR> ? 

    <Model> 

        <!-- A URI representing a model used by the remote resource --> 

</Model> + 

<Association> 

  <!—Association to other Federated Object --> 

</Association>* 

    <!—there could be more than one model --> 

    <ModelTransformation source="uri" target="uri"> 

        <!-- resources to translate from the (or one of the) model of the remote  

              repository to another --> 

        <Service> 

            <!-- EPR to a service that can translate some elements of this model --> 

        </Service>* 

        <Document> 

              <!-- a URL to a document (XSLT, QVT...) to describe a way to translate  

                     this model --> 

        </Document>* 

</ModelTransformation>* 

 <xs:any/>* 

</FederatedObject> 



Finally, a federated object may encode associations with other federated objects, and 

hence, a collection of federated objects may be used to describe a model composed of 

the models referenced by each of the individual federated objects. These associations 

are encoded in the “association” attribute. 

2.2 Security 

Model repositories employ access control policies to control access to models. This 

means that when a customer queries for an instance of a model m, he might have only 

access to the subset of the instance of m, that is m', which is a pruned version of m. The 

lack of a single security administrator responsible for authenticating users and 

managing their access privileges as a single entity raises the need for a federated 

identification mechanism. Federated identity infrastructures enables 

cross-administrative single sign-on by leveraging a trust relationship among data 

repositories that allows users authenticated at one repository to access other trusted 

repositories without re-authenticating. The repositories share information about users 

performing inter-domain transactions, and such information is used to correctly 

identify the user in the new domain. The new domain can then enforce its own local 

access control mechanism. The following illustrates the pruning process. 

1. Customer c logs at the model federation service  

2. He queries for an instance of model m 

3. The model federation service queries each repository manager i for model 

instance m, which is a subset of those available from repository i 

4. The query is sent with enough information about the customer so that repository 

manager i can identify the customer's local user account.  

5. Repository manager i finds the requested instance of the model m  

6. Repository manager i verifies authorization access of  customer c to the instance 

of m and returns the instance 

 

Note that in step 4, the repository manager will map the customer’s model federation 

service ID (e.g., smith@composer) into a completely different ID (e.g., john@reposit1) 

if the customer is known to each component by different usernames. This mapping is 

required for each model repository to have its own access control policies and also to 

have independent identification mechanisms.  

Note also that while the above illustrates pruning model instances, the same mechanism 

could be used to prune the model itself. When models are pruned rather than model 

instances, a customer will be allowed to obtain all instances of the portion of the model 

to which he has been granted permission. Hence, instance pruning provides greater 

selectivity than model pruning.  

2.3 Conceptual Architecture 

Figure 1 presents a conceptual architecture for the model federation service and shows 

its relationships with the remote data repositories. The key component of the 

monitoring service is the model navigator module, which performs the following 



 

Domain 3 

Figure 1: Conceptual Architecture of Model Federation 

 

 
Model Access 

 Control 

 
Data Access 

OV Reporter 
OVPA/OVTA 

Domain 1 

WS Interfaces 

 Model Access 
 Control 

Data Access 

Model  
Management 

MDS 
 

Domain 2 

 

Model Navigator 

Model Federation Service 

RDF Model  
repository 

GLUE Model  
Repository 

Model Access 
 Control 

Data Access 

Ganglia 
  

CIM Model  
Repository 

Model  
Management 

 

Model Access 
Monitoring Data  

Access 

Model  
Management 

Domain 3 

functions: accessing models using Web services, transforming models, resolving the 

model federation links, and invoking the data access modules. As a first step, the model 

navigator parses through the "federated link objects". It then interacts with the Model 

Access Control (MAC) modules to obtain the models from the individual domains. A 

MAC module performs user identification and model and model instance pruning. The 

model navigator sends information about the user making the request, and the MAC 

maps that information to a local user account. Using the privileges associated to this 

user account, the MAC prunes the model or model instances before returning it to the 

model navigator. The model is then transformed and parsed. The parsed topology 

information can then be navigated through by a user or an automated program. A 

particular application or system of interest is selected for data access during the 

navigation. The data access module interacts with the data access on each domain 

through Web services interfaces to obtain the monitoring data of interest.  

3. Implementation 

In order to demonstrate our approach, we describe a model federation service prototype 

we are developing which uses models and federated objects to access the monitoring 

data for jobs running in ChinaGrid [7, 8]. 

 

3.1 ChinaGrid Overview 

ChinaGrid, created by Chinese Ministry of Education, is one of the largest Grid 

computing projects in the world. It aims to enable universities across China to 

collaborate on research, scientific and education projects. ChinaGrid will eventually 

connect as many as 200,000 students in 100 universities across the country when the 

project is completed. At present, ChinaGrid connects more than 20 universities and 

serves on average several thousand job requests per day. ChinaGrid supports an 

application service model wherein applications are statically deployed on multiple 



clusters within the Grid, and are invoked as needed to service user-provided jobs. The 

currently offered application services provide image processing, bioinformatics, 

massive information processing, fluid dynamics, and remote education tools.   

 

 
 

In ChinaGrid, to execute a job requires invoking one or more of these services. To 

invoke a service, the tasks to be done by the service are dispatched to the service by the 

Grid job scheduler. These tasks are then broken down into one or more processes by the 

service, and scheduled on the systems belonging to the cluster that is associated with 

that service. Figure 2 illustrates the service invocation process for a service invocation 

S1. As shown in Figure 2, service invocation S1 comprises three processes P1-3 

running on the hosts inside the cluster to fulfill its tasks.  

 

As noted, a job may comprise multiple service invocations, and, hence, the monitoring 

data for such a job may be captured and recorded in multiple domains. Without 

federated objects representing the job and providing links to retrieve the model and 

data, it is difficult for monitoring data consumers to construct the execution scenario of 

the job. In addition, while different domains may have different access control policy, 

the model federation service provides a unified interface for monitoring data access.  

 

3.2 ChinaGrid Model Federation Implementation 

Figure 3 presents the overview of the federated data access solution we are building to 

simplify the access to monitoring data in ChinaGrid. In this context, the model 

federation service provides two roles. First, it provides a local data repository that 

stores the federated objects associated with each job that has been processed by 

ChinaGrid and the federated objects associated with each job’s sub-jobs. Second, it 

accepts requests from the consumer for information about these objects, and handles 

the task of obtaining the requested models and corresponding monitoring data, that is, if 

the user is allowed to receive them. The user identification information is sent to each 

domain holding monitoring data. The domain’s MAC translates that information to a 

Figure 2: Service invocation workflow in ChinaGrid 

Cluster  

   S1 = 

PBS Scheduler 

 

 

Host 

P2 
 

 

Host 

P3 

P1 

P2 P3 

 

 

Host 

P1 

1 

3 

2 

Service invocation request 



local user account and uses the user account’s privileges to return only the monitoring 

data the user is allowed to access.  As also shown in the figure, each domain has its own 

archive service that stores the monitoring data and model that describes its execution 

environment. However, in ChinaGrid, these models are all derived from a common 

schema and hence model transformation is not required.  

When a new user job is submitted, the model federation service receives the job 

description from the Grid job scheduler and creates a new federated object representing 

this user job with a timestamp. When a service of this job is launched to run on a cluster 

server, the model federation service receives the service information from the service 

provider and creates the corresponding federated object for the service. This federated 

object for the service has a link to the service’s corresponding manageable resource on 

the cluster. At the same time, a reference to the federated object of this service is added 

to the job’s federated object. When all services of the job have been executed, the 

properties of the job’s federated object (e.g., number of services) are updated and all 

federated objects that have been created are stored in the federated object archive. 

Through the model federation service interface, a consumer can construct the historical 

scenario according to federated objects and their relationships.  Furthermore, the client 

can navigate the model and data archive of different domains following the links in the 

federated objects and retrieve the monitoring data and model. Figure 4 presents the 

model exported by the ChinaGrid domains. An instance of this model describes, for a 

given service, the processes that are associated with it, the hosts on which they are 

executing, and the cluster. Furthermore, by navigating through this model instance, the 

consumer can get all the context information for the service execution. For example, 

the consumer can get the CPU and memory usage of each process which is running for 

Model Federation Service 

Domain-2  

Model & Data 

Archive 

   

   

Adaptor 

Service 

Domain-3  

Model & Data 

Archive 

   

   

Adaptor 

Service 

Domain-1  

Model & Data 

Archive 

   

   

Federated Object Archive 

job timestamp # servs.  

service-1 timestamp   

service-2 timestamp   

service-3 timestamp   

    

Consumer 

Adaptor 

Service 

Figure 3: ChinaGrid Monitoring Data Model Federation Prototype 

MAC MAC MAC 



the service, as well as the CPU load and memory usage of the host and cluster where the 

process and service are running.  

Figure 5 summarizes the relationship between the federated objects and model 

instances. As shown, a job comprises three service invocations, and the federated 

object for each invocation provides the link to service resource model instance for the 

service invocation. Consumers may then navigate through related domain specific 

resources, e.g. Process, Container etc., via the federated service.  

 

Figure 6 shows an example of a user job federated object.  It includes an Association 

attribute that provides the reference to the related federated objects (e.g., that for 

Service invocation 1).   The federated object may contain property information such as 

owner and timestamp. The corresponding federated object for Service-1 is shown in 

Figure 7. It contains links to the remote domain and models as well as an Association 

attribute that points to the job federated object.  

Cluster

Host

1

*

Container11 Service

1 *

Process

1

*

1 *

Figure 4: ChinaGrid Domain Model 

 

Model Federation Service 

User Job 

Service 1 

Domain-1  

        Model & Data Archive 

 Adaptor 

Service 

Service 2 

Domain-2  

Model & 

Data  

 

Adaptor 

Service 

Service 3 

Figure 5: Federated Objects and their Relationship to the Domains for an 

Example Job Comprising Three Service Invocations 

Service 

ProcessProcessProcess

Container Cluster 

Host Host Host 

MAC 
MAC Domain-3  

Model & 

Data  

 

Adaptor 

Service 

MAC 



 

<FederatedObject name=”Service-1” xmlns:wsa="http://www.w3.org/2005/02/addressing"> 

<RemoteResourceEPR> 

 <wsa:EndpointReference> 

      <wsa:Address> 

      <!—URI of the remote resource --> 

  </wsa:Address> 

  …… 

 <wsa:EndpointReference> 

    </RemoteResourceEPR> 

<Model> 

 <wsa:EndpointReference> 

      <wsa:Address> 

      <!—URI of the  model used by the remote resource --> 

  </wsa:Address> 

   

 <wsa:EndpointReference> 

</Model>  

<Association name=”UserJob1” role=”userjob”> 

 <wsa:EndpointReference> 

      <wsa:Address> 

      <!—URI of Federated Object UserJob-1 --> 

  </wsa:Address> 

 <wsa:EndpointReference> 

</Association> 

< owner> Rui Liu </ owner> 

<timestamp>2005-10-4 5;20:30 </timestamp> 

</FederatedObject> 

 

Figure 7: Federated Object for Service-1 

 

 

<FederatedObject name=”UserJob1” 
xmlns:wsa="http://www.w3.org/2005/02/addressing"> 

<Association name=”Service1” role=”service”> 

 <wsa:EndpointReference> 

      <wsa:Address> 

      <!—URI of Federated Object Service-1 --> 

  </wsa:Address> 

  …… 

 <wsa:EndpointReference> 

                          … 

</Association> 

<timestamp>2005-3-20 9:20:40</timestamp> 

< owner> Rui Liu </ owner> 

</FederatedObject> 

 

Figure 6: Federated Object for User Job 



3.3 Security Implementation 

The Model Access Control module is implemented as a set of sub-modules. The MAC 

service receives a query. The message carrying the query also carries user identification 

(credentials or information about the user). This step corresponds to step 1 in Figure 8. 

Using the identification information, the MAC service obtains the local user account 

and the privileges associated with it from the authorization module (steps 2 and 3). The 

MAC service then queries the repository (step 4). The query returns the data requested 

and the authorization policies associated with the data (step 5). The MAC service sends 

the data, user privileges and authorization policies to the filter module (step 6) that 

prunes the data. The pruned data is then returned to the entity performing the query 

(step 7).  

 

User information is exchanged between repositories using the OASIS Security 

Assertion Markup Language (SAML) [2]. SAML is an XML standard for exchanging 

authentication and authorization information. It guides how identity-related 

information can be exchanged between communicating parties. SAML standardizes the 

representation of credentials in an XML format called assertions. An assertion is a 

declaration of facts (statements) about a subject. The assertion conveys the means used 

to authenticate the user and the set of attributes relevant to the data provider to correctly 

identify the user. 

We use the OASIS standard eXtensible Access Control Markup Language (XACML) 

[3] for providing access control. XACML is a general purpose policy system. It defines 

the syntax of a policy language and the semantics for processing those policies. A filter 

parses the model requested by the user and checks the access permission of each 

element of the model against the user’s permission and XACML policies. Elements not 

Role1, m, auth 

Query m ? 

Data 
Repository  

 

1 

4 

5 

8 

Query m ?, ID 

m’ 

GetRole(ID) 

Role1 

2 

6 

MAC 
Servic

auth 
module 

filter 
module 

PDP 

Figure 8: Model Access Control Module  

 

7 

3 



authorized are removed from the model. On the left, a simplified example of a XACML 

policy file where customers belonging to group users are allowed to read resource 

system.  

4. Related Work 

In an ideal world, there would be only one standard, integrated model and all resources 

and services in an enterprise would adhere to it. Unfortunately, there are too many 

competing standards. Not even the next best approach – a unified, common model 

schema is possible. Therefore, the federation is a requirement.   

The need to federate models is a critical piece of efforts to move IT management 

towards an ITSM (IT Service Management) approach. Most of the IT management 

software in use today maintains some kind of model, in many cases proprietary. 

Integrating assets to create reusable IT services requires seamless access to data 

currently help in these various repositories. Many such efforts are in progress. One 

example is integration of the OpenView model for configuration management with 

OpenView server management to create services for automated provisioning. Other 

examples related to automation require integration with the OV ServiceDesk, again, 

through model federation. In the IT Infrastructure Library (ITIL) methodology, a 

configuration management database (CMDB) is used as the federation access point. 

Model federation approach was used in distributed simulation for the needs of the 

Department of Defense [4] and it was also applied to economic simulation [5]. There is 

a similarity with component-based software, using readily available software 

components. Finally, model federation was applied to IT governance [6]. 

5. Summary and Future Work 

We are currently developing a model federation prototyping a federated data access 

mechanism for ChinaGrid using the access control and federated object mechanisms 

presented in this paper.  We are also working with Intel to exchange models for 

monitoring data from PlanetLab. As next steps, we are planning to further explore ways 

for representing the metadata attached to management services and manageable 

resources, including the metadata listed in the paper. We are planning to explore how to 

translate between different repository models, focusing on the specific case of data 

models for monitoring.  

References 

[1] Housley, R., et al., “Internet X.509 Public Key Infrastructure Certificate and CRL 

Profile”, RFC2459. January 1999. 

[2] Mishra, P., et al. “Conformance Requirements for the OASIS Security Assertion 

Markup Language (SAML) V2.0”, OASIS Standard, 15 March 2005. 

[3] Moses, T., XACML 2.0 Core: eXtensible Access Control Markup Language 

(XACML) Version 2.0. Oasis Standard, 1 Feb 2005. 

[4] Nance, R.E., “Distributed Simulation with Federated Models: Expectations, 



Realizations and Limitations”, Proc 31st Conf on Winter Simulation: Vol 2, pp 

1026 – 1031, 1999. 

[5] Calpin, J., et al. "Extending the High Level Architecture Paradigm to Economic 

Simulation",  MITRE Report. 

[6] Sullivan, D., “Enterprise Content Management: Address Policies and Procedures 

Early and Often”, DM Review, September 003. 

[7] Hai Jin, ChinaGrid: Making Grid Computing a Reality. ICADL 2004: 13-24 

[8] Rui Liu, Yuan Chen, Keith Farkas, Dejan Milojicic and Weimin Zheng, 

“Automating the Access to Monitoring Data in ChinaGrid”, Proceedings of  the 

13th Workshop of the HP OpenView University Association (HP-OVUA 2006) 

(to appear).  


