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ABSTRACT
Management and automation are important issues in enterprise en-
vironments especially in virtualized enterprises, often consuming
the largest fraction of the overall IT budget. A key challenge here
is coordination across multiple management solutions deployed at
different system layers, including across hardware and software,
across different levels of abstraction, and across different hosts.
This paper proposes novel abstractions that provide a uniform ba-
sis for management across different system levels and domains:
(1) M-channels constitute the base mechanisms for communication
between management embedded in hardware, in virtual machines,
and in applications, and (2) M-brokers enable policy coordination
across different management layers and solutions. The value of
the approach is demonstrated with an implementation of coordi-
nated power management policies that operate across the hardware-
software boundary, for multiple virtual machines, and across dif-
ferent physical platforms. Coordination is shown useful for meet-
ing application-level SLAs and/or to enforce power caps, with or
without assistance from guest virtual machines. Further demonstra-
tions of utility involve other management tasks, including storage
backup, inventory, and trust management. Experimental evalua-
tions of M-brokers and M-channels use the Xen hypervisor and are
attained on server-class AMD platforms.

1. INTRODUCTION
Management (or manageability) in IT infrastructures refers to a

range of operations required to maintain system resources through
their life-cycle phases [9] - bring up, operation, failures/changes,
and retirement/shutdown. Tasks performed at each of these lifecy-
cle stages include provisioning and installation of servers, moni-
toring performance and health of systems, security and protection
against attack, runtime resource management, backup, fault diag-
nostics and recovery, and asset management. With rising complex-
ity and scale in today’s enterprise IT, many of these management
tasks have become non-trivial in computation, design, and in the
number of execution steps performed. This coupled with the fact
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that management and automation can consume a large fraction (in
some cases, 60-70%) of the total IT budgets for data centers to-
day [3], has caused substantial growth in the development of man-
agement applications, and an adoption of automation software that
reduces overall management costs [5, 4].

A key challenge for management solutions is coordination across
different management domains, including across hardware and soft-
ware [16, 18], across different levels of abstraction [8], and across
multiple hosts [1]. Recent trends towards increased adoption of
multicore systems and virtualization exacerbate this problem, in
part because virtualization technologies create new levels of flexi-
bility like dynamic VM migration and other runtime mappings be-
tween virtual and physical resources. Furthermore, VM resident
management applications often lack the ability/privilege to access
management hardware, and they also have the potential to conflict
with each other because of the autonomous, uncoordinated nature
of VMs. Platform/VMM resident management applications, on the
other hand, have lack of visibility into the service level agreements
(SLAs) and performance requirements of the VMs’ applications.

Power management provides an interesting illustration of these
problems. Power management exploits hardware support for dy-
namic voltage and frequency scaling (DVFS) [7], scheduling to
increase device or component idle times [14], and a plethora of
methods for improving the power behavior of individual subsys-
tems, such as network devices [11]. Virtualization threatens the
ability of these techniques to operate as intended, not only because
of the VM’s lack of privilege in accessing the DVFS hardware con-
trols, but also because of the need for coordination. The latter is
because the power management actions of one VM does not un-
derstand and therefore, cannot take into account the aggregate be-
havior of the set of VMs currently running on the same platform.
In fact, even platform-level solutions cannot understand how their
DVFS actions affect VM behavior and performance, unless VMs
can share with such solutions their performance and SLA require-
ments and statistics. With VM migration, power management be-
comes more complex because the association of VM and platform
can change dynamically and both have to be aware of this change
and coordinate with their new associations and their potentially dif-
ferent policies.

Prior solutions addressing the virtualization layer, and manage-
ment hardware have typically relied on ad-hoc approaches or point
solutions and are limited in the coordination they provide. The
HP PowerRegulator for example, implements power management
in the firmware of the processor and has no feedback about how
its power management decisions are affecting the SLAs of applica-
tions running on top of it. With the growing proliferation of man-
agement applications, a more general-purpose approach is needed.



This paper presents such an approach, borrowing from the rich
prior work in the domains of adaptive and autonomic systems [19,
9], but using a light-weight implementation approach suited to the
hypervisor and system levels it targets.

The management architecture developed and evaluated in this
paper offers three technical contributions focused on the coordi-
nated nature of infrastructure management:

• Two building-block abstractions key to coordinated manage-
ment in virtualized systems are: (1) M-brokers and (2) M-
channels. M-brokers define policy managers with well-defined
application-level protocols to perform information exchange,
coordination, and actuation across different system layers.
M-channels define seamless communication between differ-
ent M-brokers. Both abstractions provide generic interfaces
to management applications in virtualized environments, thereby
hiding underlying implementation and platform details. We
instantiate these abstractions under Xen [2], and identify trade-
offs between different implementations of these management
abstractions in this instantiation.

• M-brokers provide the framework to uniformly carry out man-
agement actions at different levels of the management hierar-
chy, such as in guest VMs, dedicated and privileged manage-
ment VM (MVM), platform hardware, enclosure, server rack
and the data center. The management VM (MVM) is a new,
per-platform layer in the management hierarchy, which runs
M-brokers responsible for overall management of the plat-
form, and coordinates with other MVMs in the data center.

• Coordinated management is shown effective by using it to
implement and evaluate different solutions for online power
management for server-class systems. Results demonstrate
the flexibility and power of the M-channel and M-broker ab-
stractions for improved management functionality at reduced
application complexity.

Coordinated management with M-channels and M-brokers has
multiple benefits. First, the management framework constructed in
this fashion makes it easier to deploy layer specific policies using
M-brokers and coordinate among them using M-channels. Second,
coordination between M-brokers running at the VM, VMM, hard-
ware and the data-center levels provides the flexibility to run poli-
cies which is much harder in existing solutions, as demonstrated
with a software solution for power capping shown in this paper.
Third, the M-channel and M-broker abstractions and their interface
implementations can reduce the cost and time of developing man-
agement applications, because they offer functionality common to
all such solutions. They also constitute a generic framework that
can be applied to a wide range of management applications and
can be used as a standard by management application vendors.

The remainder of the paper is organized as follows. Sections 2
and 3 describe the M-channel and M-broker abstractions as well as
their implementation under Xen. In Section 4, these abstractions
are used to implement several power management solutions that
cross-cut management domains. Section 5 qualitatively discusses
other applications of these abstractions. Section 6 discusses prior
work, and Section 7 summarizes the paper.

2. COORDINATED MANAGEMENT IN VIR-
TUALIZED SYSTEMS

This section describes the M-channel and M-broker abstractions
designed to support management architecture for enterprise IT in-
frastructures. We first present the assumed system environment,
and then describe details of the abstractions.
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2.1 System Model
Figure 1 depicts the system model as a distributed environment

wherein each of the nodes is a virtualized system. Hardware can
have platform management controllers that perform hardware man-
agement. Each platform hosts a special privileged Management
VM (MVM) that can run platform wide control and management
software. Additional management capabilities may reside in guest
VMs, at system or application levels. In today’s systems, these in-
dividual management entities – those in the guest VMs, the MVM,
and the platformsâĂŹ management hardware – operate within iso-
lated silos, leading to reduced management functionality and po-
tential in-efficiency.

Fundamental to management architectures for system models
like those depicted in Figure 1 are two building block abstractions:
a communication abstraction, termed M-channels, and a coordi-
nation abstraction, termed M-brokers in Figure 2. As with event
channels in distributed systems [19], M-channels implement bi-
directional communication among participating entities, in our case
including the hardware, guest and management virtual machines,
and applications. M-brokers are the containers in which manage-
ment and coordination policies are run, leveraging information pro-
vided via the uniform APIs presented by M-channels. As seen in
Figure 2, our implementation of M-channels is built on top of exist-
ing physical channels, such as shared memory and network sock-
ets, but lower level implementations like those required for com-
munication across hardware components can exploit other facilities
(e.g., the IPMI standard [6]). The remainder of this section presents
details of the proposed abstractions.

2.2 M-Channels
The M(anagement)-channels communication channels used for

transferring commands and associated information items between
MVM and other VMs, as well as between MVM and management
hardware. These channels can be instantiated on a single system or
in a distributed setting. On a single platform, different M-channels
are used for communication among VMs and MVM and for com-
munication among MVM and hardware components. In a dis-
tributed system, M-channels are used for exchanging information
among MVMs running on different platforms In both settings, M-
channels can carry simple monitoring data, like system-provided
information about current CPU usage (e.g., for utilization based
power management), or they can be used for rich data and control
exchanges between VMs and MVM (e.g., SLA related data about
VMs’ applications). M-channels continue to function under VM
migration, by supporting dynamic disconnection and reconnection
between VMs and MVM. We rely on underlying physical channels
for the reliable, unreliable, or ordered delivery of messages. The
event notification model uses interrupts to notify the coordination



application.

2.3 M-Brokers
M-brokers execute coordination policies, since our management

architecture assumes the presence of management policies embed-
ded in hardware, MVMs, and guest VMs. A given system, there-
fore, has multiple M-brokers, different ones for different levels
(VMs, MVMs, platform hardware etc.) and for different manage-
ment applications (e.g., power vs. reliability management). Fur-
ther, M-brokers may be distributed across guest VMs, MVM, and
the hardware. Some M-brokers have more limited tasks, such as
interacting with existing applications and hardware management
applications and serving as proxies for sending management in-
formation to other brokers. Referred to as M-agents (or simply
agents), these do not execute any coordination code, but are only
responsible for monitoring, passing information, and receiving ac-
tuation commands. Examples provided in this paper concern M-
agents used for power management, imparting information about
application-level SLAs to power M-brokers resident in MVMs.

M-brokers and agents exchange messages via M-channels. Such
exchanges belong to the phases of discovery, communication estab-
lishment, connection termination, and most importantly, runtime
coordination. We have not yet implemented rich naming schemes
and associated dynamic discovery mechanisms, currently relying
on simple naming and discovery schemes. Addressing among bro-
kers and agents uses identifiers unique for both hardware and soft-
ware components and across a distributed system.

As shown in Figure 2, an M-broker uses the M-channel APIs
to implement its coordination modules. Core coordination mod-
ules implementing basic protocols for communication among bro-
kers and agents are reused across different coordination brokers.
Application-specific extensions can be provided over this basic frame-
work.

2.4 Benefits
Management architectures and applications built with M-channels

and M-brokers has several advantages compared to using adhoc or
point solutions. The generic nature of the architecture permits it
to be used for multiple management applications. This helps re-
duce the costs of developing and administering these applications
and may lead to standardization efforts across different platforms
and systems. Further, by abstracting common parts of management
applications into well-defined communication and coordination ab-
stractions, application developers can focus on the management-
and coordination-specific logic required by applications, infrastruc-
tures, and execution environments.

An important functionality provided by M-channels is the dy-
namic association of M-brokers. For instance, when a VM is mi-
grated, the M-broker inside the VM must be dissociated from the
MVM on the original platform and associated with the new plat-
form’s MVM. M-channels are implemented to support dynamic
and endpoint-transparent reconnection between brokers, including
those residing in VMs and MVMs. A specific use of that func-
tionality explained in Section 4 is the use of VM migration to im-
plement efficient method for power capping in data center envi-
ronments. M-channels provide standard APIs found in a typical
middleware system like operations on channels, e.g., open, close,
read, write etc. In addition, the M-channels also transparently han-
dle the virtualization layer (apart from hiding hardware details) and
VM migration and expose the same set of APIs irrespective of
underlying physical channel. M-channels also provide primitives
for accessing management hardware and associating VMs with the
host platform. The code fragment below shows the M-channel’s

internal support for VM migration. It registers suspend_vm and
resume_vm callback functions with the underlying VMM, which
during VM migration, get called when the VM is suspended on the
old machine and resumed on the new machine, respectively thereby
handling VM migration transparently.

suspend_vm() {
flush_message_queue()
save_channel_state()
close_connection()
wait_for_VM_resume()

}
resume_VM () {

discover_the_new_MVM()
establish_connection()
restore_channel_state()
resume_normal_operation()

}

Uniform APIs and channel-based interactions between guest VMs,
MVMs, hypervisor, and the hardware platform provide manage-
ment applications with a holistic view of the system, enabling co-
ordinated management actions superior to those taken in isolated
silos. By hiding the details of hardware management units, M-
brokers enable developers to focus on management functionality
and actions instead of the nuances of certain hardware components.
Finally, the design of the framework permits the reuse of coordina-
tion modules across different management applications and is eas-
ily extended with additional functionality.

3. XEN IMPLEMENTATION
To experiment with and evaluate these abstractions, they have

been implemented in Xen as a representative VMM. Figure 3 shows
the Xen-specific implementation where multiple hosts are commu-
nicating over M-channels and where one of the host’s virtualized
structure is shown in detail. The MVM is instantiated in Xen’s
“"Dom0", and the guest VMs are referred to as “DomUs". The
intra-machine M-channels are implemented using Xen-provided inter-
domain shared memory communication. The M-broker and M-
agent interfaces to M-channels support both user- and kernel-based
implementations. Each of these components is described in more
detail below.

3.1 M-Channel Implementation
Xen realization of M-channels uses multiple implementation

methods, described in more detail below and used for power man-
agement in Section 4. For intra-platform communications and to
meet the need for high rate, low overhead communications (e.g., for
reliability monitoring), M-channels are mapped onto Xen’s VMM-
provided inter-domain communication channels, Xenbus. This in
turn uses shared memory regions mapped by the VMM to the com-
municating VMs. More specifically, a management frontend (mgmt-
front) driver module runs inside the guest VM. This module com-
municates with the management backend (mgmtback) inside the
MVM. Mgmtfront and mgmtback represent the M-channel end-
points for the guest VM and MVM, respectively. Communica-
tion is asynchronous and hence, uses two different communication
rings for the two directions (send and receive). Both mgmtfront and
mgmtback export a file interface (/dev/mgmt) to user-level brokers
and an API interface to brokers running at kernel level. If the sent
or received data size is more than the ring element size, the data is
passed by sharing the page containing the data and passing pointers
to it.
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Figure 3: M-Channel and M-Broker Implementation in Xen.
Intra-platform M-channelsare implemented as shared memory
based while inter-platform channels are network sockets based

The second implementation of M-channels uses network sock-
ets for cross-machine communications, providing the same APIs as
the shared memory implementation. This permits VMs to transpar-
ently communicate and coordinate across multiple machines, but
offers higher latencies and overheads than shared memory chan-
nels. In both implementations the management-specific agents and
brokers define their own message formats for M-channels which
provides flexibility to the applications.

The M-channel to the management hardware is implemented as
a device driver which communicates with the hardware provided
communication interfaces (e.g. PCI interface in case of the man-
agement processor). This driver also exports a file interface and
API interface (similar to shared memory M-channels) and provides
the same basic interfaces as the VM-VM M-channels.

An important attribute of the M-channel implementation is that
brokers and agents can continue communicating during VM mi-
grations. During migration, the mgmtfront and mgmtback modules
are notified of the VM migration event. This triggers a new set of
disconnections and reconnections (using suspend and resume call-
backs described in Section 2.4) i.e., the older mgmtback breaks
its connection with the mgmtfront and new mgmtback establishes
a new connection with the mgmtfront. The outcome is that the
agents and brokers inside guest VMs need not be cognizant of mi-
gration actions, even when the M-brokers with which they interact
are changed (e.g., M-broker in the new platform’s MVM).

3.2 M-Broker Implementation
M-brokers and agents are implemented as multi-threaded appli-

cations, with core threads responsible for coordination and com-
munication and others executing actual management application-
specific broker code. They can run at kernel or user levels, in both
cases seeing the same M-channel APIs. To access the management
hardware, the MVM’s M-broker utilizes the “driver”-provided M-
channel interface (similar to /dev/mgmt) to read from and write to
it. In the current implementation, the MVM’s M-Broker also works
as the bridge between the VMs and the management hardware,

i.e., all accesses to the management hardware from VMs must go
through the M-broker in the MVM.

Security (i.e., authentication and authorization) is not imple-
mented in the current M-Broker and M-channel interfaces and is
on-going work. Because of the M-channel handling of VM migra-
tion, the M-brokers and agents remain oblivious to such events, and
local M-channels get re-established after migration.

4. BENEFITS FOR POWER MANAGEMENT
We construct two different M-brokers in our experiments to

evaluate the benefits of SLA-aware power management. The pur-
pose of these implementations is to show that M-channel and M-
broker abstractions can be used to construct different power man-
agement architectures and policies, ranging from traditional utilization-
based management to novel SLA-based management and in coor-
dination with other VMs and platform requirements. Power man-
agement is based on the active management of power via VM mi-
gration for consolidation and via dynamic voltage and frequency
scaling (DVFS) of the CPUs. In the next two sections, we detail
the particular implementations of these brokers, completing with a
review of the evaluation summary.

4.1 M-brokers for Power Management

4.1.1 M-Broker1
The first power management M-broker instantiated on this ar-

chitecture runs inside the MVM, and agents run in guest VMs. The
M-broker establishes M-channels with the VM agents. The VMs
run an application with some specified service level agreements
(SLAs) which is monitored by agents. The individual agents use
the M-channel to notify the broker of SLA violations. For power
management, the M-broker runs administrator-specified policies,
which set the power state (p-state) of the physical CPUs by using
the SLA violations as inputs. The application-specific message for-
mats allow the power management algorithms to have the flexibility
of implementing arbitrary SLA models (e.g., hard and soft SLA vi-
olations, different metrics for SLA violations, etc.) The M-broker,
then, uses inputs from the M-channels to drive decision algorithms
that set the power states of CPUs.

Our testbed consists of dual-core, dual-socket (a total of 4 cores)
AMD 64-bit Opteron based HP C-class blades. These processors
provide hardware frequencies of 2.4 GHz, 2.2 GHz, 2.0 GHz, 1.8
GHz, and 1.0 GHz. This testbed is used to experiment with SLA-
based power management using this broker. Guest VMs are non-
SMP and run the HTTP server workload, and httperf is used to
generate load for this server. The VM agent monitors the server
side response time of individual requests as the SLA parameter.
SLA Model: with this evaluation setup, three sample power man-
agement policies are evaluated.
(1) Basic policy: the agent records the number of SLA violations
within epochs (500 ms each), and at the end of each epoch, if the
percentage of violations exceeds a threshold (1%), a SLA violation
notification is sent to the power broker. Upon receiving this notifi-
cation, the broker increases the p-state of the VM’s vcpu to the next
higher value. A parallel thread also monitors the VM’s cpu utiliza-
tion and whenever the utilization goes below a certain threshold
(80%), the VM’s vcpu is reduced to the next lower p-state. For a
particular physical CPU, all of the vcpus (currently mapped onto
that physical CPU) p-states are examined, and the highest p-state is
set as the p-state of the physical CPU.
(2) Richer policy: a more sophisticated notification criteria is one in
which the SLAs are defined as hard (higher response time thresh-
old) or soft (lower response time threshold). With each notification,
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Figure 4: CPU frequency traces for various policies

then, the VM agent sends information whether a hard SLA viola-
tion or a soft SLA violation was experienced. The power broker
can, then, employ more sophisticated management policies. In our
example, on hard violations, the policy reacts the same as the Basic
Policy. For soft violations, however, the policy records these vio-
lations for 10 consecutive epochs and if the soft violations happen
more than 30% of the time, it is treated as a hard SLA violation and
action is taken according to the Basic Policy, else soft violations
are ignored. Here, the richness of M-channel interface allows the
agent to define various degrees of sophistication in notification to
the power broker which then allows the broker to implement more
sophisticated policies.
(3) Utilization-based: guest VMs with built-in power management
policies are used in the third set of experiments, based on the Linux
VM’s ondemand power governor. This governor decides the power
state of the vcpu based on its current vcpu utilization, but to ‘trans-
late’ such settings to actual p-state changes, the power broker re-
ceives this information through the M-channel. It then uses it as
input to Basic Policy to decide the actual p-state of the CPU.

We compare the three policies against the "no power manage-
ment (No PM)" case for a varying httperf workload. These results
are explained in more detail next, but we note that the most im-
portant insight derived from them for this paper is the relative ease
with which these different power management solutions and archi-
tectures could be built, thereby demonstrating the flexibility and
richness of M-broker and M-channel abstractions and their ability
to implement SLA-aware power management. Each of these poli-
cies were implemented with approximately only 300 lines of code.
Results: Figure 4 shows the trace of the frequency of the CPU run-
ning the http server VM as the experiment progresses. We note
that, the Utilization-based policy runs the CPU at the highest speed
for most of the time because it sees the virtual CPU utilization to
be high most of the time. Although this leads to less power savings
as shown in Figure 6, it is still able to save about 10% power by
putting the three other less utilized cores into lower power states.
The Basic policy reacts much better to SLA violations and chang-
ing domain utilization compared to the Utilization-based policy,
because it coordinates with the MVM using the MVM’s view of
CPU utilization. This underscores the fact that VM-based policies
are often inefficient in system monitoring because of the virtual-
ization layer. The MVM in turn uses SLA violations as input for
making p-state decisions. It saves power by operating mostly at
the lower CPU speeds while still trying to maintain SLAs. The
Richer policy is even more aggressive in saving power because of
the more flexible SLA model defined for it (hard and soft SLAs
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with threshold values of 6ms and 3 ms, respectively). This leads to
a reduced number of total hard violations over intervals, which al-
lows the policy to run the CPU predominantly at the lowest speed.
Figure 6 shows that this leads to the Richer policy providing the
most power savings (22%). Figure 5 shows the cumulative number
of SLA violations for different policies. We see that the ‘No PM’
policy expectedly performs the best. However, the Basic, Richer,
and Utilization-based policies show similar characteristics with the
Utilization-based policy only slightly outperforming the Basic one.
The results also demonstrate that for policies focused on maintain-
ing application SLAs, SLA-based power management proves to be
more efficient at power savings than traditional utilization-based
policies.

4.1.2 M-Broker2
To demonstrate the hardware/software coordination between the

VMs and platform’s power limitations, we implement a power cap-
ping M-broker which takes platform’s power limits (both average
and peak power) and enforces the limits. We use HP’s C-class
blades, with their built-in management processor called iLO (in-
tegrated lights out). This processor continually records the cur-
rent power consumption of the platform. The M-broker maintains
a M-channel with the agent running on iLO management proces-
sor to obtain current power consumption, and it also establishes
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additional M-channels to coordinate with M-brokers running on
other machines’ MVMs in the data center. This co-ordination also
helps in implementing data-center wide power capping policies by
making sure the overall power consumption of the data-center stays
within limits besides individual nodes power consumption.
SLA Model: the M-broker periodically (every 5 minutes) queries
the management processor for current average and peak power con-
sumption. If these limits are violated (e.g., because of an increase
in VM load), the M-broker queries other MVMs in the data center
to find a less heavily loaded machine (with power consumptions
well within limits) and migrates the VM to that machine to bring
the power consumption within limits. VM migration is transparent
from the M-broker’s point of view because the M-channel inter-
nally handles migration, as described in Section 3. Results: Fig-
ure 7 shows the results of this experiment. A machine is running 4
VMs containing a WebServer which gets heavily loaded by httperf
clients. The average and peak power limits are defined as 185 and
200 watts, respectively. We see that after 10 minutes, as the load
increases in all VMs, the power limits (both average and peak) are
violated. In response, the broker finds a suitable machine and mi-
grates the most heavily loaded VM to that machine. This reduces
power consumption, but it is still above the set limit. In response (at
20 minutes), the broker migrates another VM, which finally brings
down the power consumption within desired limits. The experi-
ment demonstrates that the M-channel between the broker and the
iLO processor enables the system to directly react to power limit
violations, which otherwise is not possible or will have to rely on
indirect metrics (e.g., cpu utilization) as a proxy for power con-
sumption. This example also clearly shows the importance of co-
ordination between management policies and platform hardware to
ensure efficient data center operation.

4.1.3 Summary
The ability to easily implement various power management ar-

chitectures and policies underscores the flexibility of the M-channel
and M-broker abstractions and therefore, their appropriateness for
providing general management functionality. Experiments under-
score the importance of coordinated management in virtualized en-
vironments, both across VMs and across hardware and software.
Another key insight shown by these experiments is that SLA-aware
power management enabled by our architecture provides good power
savings while maintaining VMs’ SLA levels. Section 5 qualita-
tively describes how other management applications can be imple-

mented using this architecture, thereby further demonstrating its
generality.

5. BENEFITS FOR OTHER USE CASES

5.1 Storage Backup
Storage backup can be improved in many ways by using this

management architecture. Backup in virtualized environments can
be done either from inside the VM (just like in non-virtualized en-
vironments) or from outside the VM (e.g., inside the MVM or as in
VMWare’s Consolidated Backup [22]. The former solution can po-
tentially lead to performance interference among VMs sharing the
disk, because of the lack of coordination about when backups are
performed. The performance interference can be reduced by having
VMs’ backup agents coordinate with the MVM to avoid backing up
data simultaneously on shared disks. If backup is done from outside
VMs, e.g., from the MVM, the VM backup agents can also notify
the MVM about when the VM’s disk activity is low, whereupon
the MVM can perform the VM’s backup at times of low activity so
as to minimally affect the VM’s performance because of backup.
Further, since storage virtualization involves all disk accesses from
the VMs being handled by the VMM (or in many cases, the priv-
ileged disk driver VM), this provides us with the opportunity of
externally tracking VM disk activity. Hence, the MVM can coordi-
nate with the VMM or the disk driver VM, using an M-channel to
keep track of all of the disk blocks a VM modifies. This informa-
tion can then be used to create a disk replica by writing modified
blocks to the replicated disk in parallel (essentially implementing
a software based RAID-1) and using the replica for backup, incur-
ring zero freeze time. This information can also be used to perform
efficient incremental backup since a list of modified blocks is main-
tained. Finally, an M-channel to the disk drive can be used to access
the S.M.A.R.T. data from the MVM. This can then be used by the
MVM’s backup agent or passed to the VM’s backup agent to esti-
mate disk health and predict impending failures and thus perform
proactive backup. In such cases, to minimize possible data loss, the
backup system can prioritize blocks that are known to be modified.

5.2 Inventory Management
Inventory management can be performed by using M-channels

for information exchange among inventory M-brokers at various
system layers, e.g., at the hardware, software, and virtualization
layers. These brokers perform coordination across hardware and
software, as well as across VMs. For example, if a correlation
is desired between the software and hardware inventory, the M-
brokers at the guest VM and firmware unify such information. If
a correlation is desired for all of the information at the hardware,
software, and virtualization layers, the M-broker at the MVM can
perform the unification. The M-broker at the MVM also provides
a single client interface to simplify administrator access to inven-
tory information. In such a design, the M-broker at the MVM hosts
an inventory registry broker to which all of the inventory agents at
the guest VMs, firmware, and MVM register themselves. On re-
ceiving a request, the inventory registry broker acts as a proxy and
re-directs the request to one or more of the agents at the guest VMs,
at the MVM, and the one hosted in the firmware (or management
processor). The communication takes place using M-channels. On
receiving the results from the inventory agents, the M-broker may
do correlation and unification of data as needed before sending it to
the client.

This enables the creation of a unified picture with inventory
information collected from the hardware, VMM, and guest VMs,
even in the absence of any common attributes across the individual



inventory tables. Further, leveraging a single access point at the
MVM aids in reduced administrator cost. This holds even greater
significance with advances in virtualization wherein several VMs
would be hosted per host, each of which contains a separate inven-
tory agent. Even if we assume 10 access points per server/blade,
with a single plain point interface provided by our solution, an ad-
ministrator reduces his number of steps by 90% – a large complex-
ity and cost savings.

5.3 Trust Management
Trust management concerns with the trust placed in a platform

to faithfully and securely carry out certain application tasks. The
problem, of course, is that these trust levels vary over time, de-
pending on current platform properties (e.g., temperature levels or
observed recent failure rates) and depending on static or dynamic
VM properties (e.g., OS configuration with/without certain virus
checkers or recently observed OS behaviors). Hardware/software
management, then, can (1) observe components and VMs, (2) use
observations as inputs to dynamic trust models, and (3) run poli-
cies that continually monitor total platform trust and/or ensure cer-
tain minimum levels of trust to be present for running applications.
Here, trust is built incrementally by the VMM using the Trusted
Platform Module (TPM) for basic platform trust, then using this
trust to certify trust in MVM, (termed ‘trust controllers’ in the lit-
erature [10]), then having MVM perform monitoring, execute trust
models, and finally, trigger actuators to maintain the levels of trust
desired by applications or data center administrators.

Here, VMs’ agents can assist in VM monitoring, using M-channels
to provide trust data to MVM, but MVM must have its own, ad-
ditional monitoring methods to deal with misbehaving VMs. All
policies are run in MVMs, with each single MVM responsible for
its platform and platform-resident VMs, and multiple MVMs co-
operating to establish the end-to-end notions of trust required by
applications. For instance, for a multi-tier application, trust is not a
meaningful concept unless it can be applied across all tiers used by
requests, thus requiring coordination across all MVMs involved in
tier execution.

6. RELATED WORK
Modern data centers require the simultaneous deployment of

multiple management solutions. Examples include hardware based
management solutions such as temperature control, cooling [15]
etc. Multiple vendors have built-in support for management ca-
pabilities in their systems, e.g., iLO from HP, iAMT from Intel,
ALOM from SUN, SP from IBM, etc. These solutions, however,
are not seamlessly integrated into the host OS’s management appli-
cations. Additionally, multiple management standards have been
defined to manage resources in distributed environments, such as
SNMP, WBEM, CIM etc. Various vendors use these standards
to provide management solutions to enterprises [4, 5]. These are,
however, mainly software based solutions and usually do not coor-
dinate with the platform hardware on which they run. With virtual-
ization technologies like Xen and VMWare [2, 21] entering the data
center, the manageability and coordination problem becomes even
more complex e.g., SNMP, WBEM, and CIM do not account for
virtualization layer or its side affects (e.g., VM migration) leading
to inefficient management.

Various methods have been proposed to perform power man-
agement of computing platforms. For example, DVFS (Dynamic
Voltage and Frequency Scaling) mechanism can be extended using
hardware solutions [13] or OS-level techniques that set processor
states based upon predicted application behavior [7]. Other meth-
ods utilize the notion of performance slack for real-time workloads

to aggressively reduce frequencies while meeting deadlines [17].
Power budgeting solutions for single platforms have also utilized
processor control to provide fine grain power capping capabili-
ties [12]. Solutions for power budgeting across multiple systems
have considered intelligently enforcing power budgets at individual
machines and blade enclosure granularities [18]. Providing system
support for extending such management techniques to virtualized
environments with existing virtual machine interfaces has also been
studied [16, 20].

The point solutions listed above solving individual management
problems, however, make management very complex when deployed
in a large virtualized data-center. The generic nature of our man-
agement architecture significantly reduces this complexity while
providing better support for developing management applications.

7. CONCLUSIONS AND FUTURE WORK
This paper presents two powerful abstractions, termed M-channel

and M-broker, for coordinated management in virtualized execu-
tion environments. These abstractions provide generic interfaces
for implementing diverse management policies, resident in VMs, in
management VMs, and in hardware. We have shown the usefulness
of these abstractions by implementing them in the Xen environment
and using them to realize coordinated power management policies.
We also present a qualitative analysis of additional management ap-
plications, including storage backup, inventory management, and
trust management, to further demonstrate the utility of these ab-
stractions and the generality of our approach.

This remains an active work in progress, with ongoing work to
implement additional management applications such as reliability
and trust using these abstractions. Further, we are working on an
integrated management solution where VMs and host platforms can
be managed by managing a variety of metrics, e.g., SLA, power, re-
liability, trust etc. in coordination with each other, compared to ex-
isting solutions where these metrics are managed in isolation from
each other. The current MVM implementation is also being gener-
alized to become a virtual appliance, suitable for dynamic deploy-
ment and upgrades in realistic enterprise systems.
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