
Specification-Enhanced Policies
for Automated Management of

Changes in IT Systems

Chetan Shankar – University of Illinois at Urbana-Champaign
Vanish Talwar, Subu Iyer, Yuan Chen, Dejan Milojicic – Hewlett Packard Laboratories

Roy Campbell – University of Illinois at Urbana-Champaign

ABSTRACT

Enterprise and grid computing systems are complex and subject to a broad range of changes
such as configuration updates, failures, and performance degradations. These changes affect
infrastructure elements such as computation and storage nodes, applications, and system
management elements such as monitoring infrastructures. Today’s best practices in use by system
administrators to manage these changes are manual and ad-hoc. In large complex installations, this
would lead to high operational costs, broken closed loop automation, and reduced agility.
Providing tools and mechanisms to administrators that automate the reaction to these changes is
highly desirable and is an active research area.

Policy-based management using Event-Condition-Action (ECA) rules is a well-known
approach for such automated change management where management actions are executed when
specified event-conditions are observed. In complex systems, the interdependence of components
generates multiple events when a single change happens causing multiple rules to be triggered.
The order of execution of rule actions determines the system behavior necessitating reasoning
about execution order. ECA rules do not contain explicit action specifications needed for
reasoning and are therefore unsuited for specifying management rules.

In this paper, we propose a specification-enhanced ECA model called Event-Condition-
Precondition-Action-Postcondition (ECPAP) for designing adaptation rules. ECPAP rules contain
action specifications in first order predicate logic enabling us to develop reasoning algorithms to
determine enforcement order of multiple rules. The enforcement order is represented as a Boolean
Interpreted Petri Net workflow. We introduce a new notion called enforcement semantics that
provides guarantees about rule ordering. We have built an adaptation framework using ECPAP
model and have demonstrated it for automated change management of Ganglia and HP OpenView
monitoring systems. The evaluation of the framework illustrates the significance of the ECPAP
model and demonstrates its applicability for managing complex IT environments.

Introduction

Modern IT systems, such as enterprise data cen-
ters and grids, are paradigms of distributed computing
where computation and data are distributed across
diverse computational and storage elements. These
systems are characterized by growing complexity,
scale, and heterogeneity of infrastructure and applica-
tions. Further, these systems are highly dynamic, and
subject to frequent changes such as service plug-
in/plug-out, workload variations, failures, configura-
tion updates, and application migration. Such changes
affect the runtime operation of the system, and the ser-
vice contracts offered to customers. Therefore, in reac-
tion to these changes, infrastructure elements, applica-
tions, as well as system management components need
to be adapted. For example, compute and storage
resources may have to be re-allocated, applications
may need to be restarted, and monitoring infrastruc-
tures may require re-configuration.

Current approaches used by administrators to
manage these changes are manual and/or a combina-
tion of ad-hoc tools and scripts. The process typically
requires special expertise and detailed actions by
administrators. While these approaches may work fine
in small scale installations, they do not scale in larger
scale installations typical of modern IT systems and
utility systems of tomorrow. In such environments,
there is a need to provide administrators with tools
that can capture the expert domain knowledge in
machine readable format and thereafter react to
changes in an automated manner.

The use of Event-Condition-Action (ECA) rules
[1] is a well-known approach for enabling system
administrators to specify the desired actions to be
invoked on changes in policy rules [5, 6, 7, 10, 20].
When a change event is received, the rules matching
the event are determined. If the conditions in these
rules are true, the corresponding actions are executed.

20th Large Installation System Administration Conference (LISA ’06) 101

Specification-Enhanced Policies for Automated Management . . . Shankar, et al.

An example of an ECA rule is ‘‘When checkpoint
store is full (event), if backup store is running (condi-
tion), assign backup store as new checkpoint store
(action).’’ When the checkpoint store becomes full, an
event is sent that triggers the rule. The management
system verifies if the backup store is running and if so
assigns it as the new checkpoint store.

Policy-based management systems have been
effectively used to manage network switches [5], con-
tent distribution networks [6], and general distributed
systems [7]. The applicability of policy-based systems
for reacting to changes in today’s IT systems, such as
data centers and utility infrastructures, presents
numerous challenges due to highly interdependent
components. Changes in these environments propa-
gate rapidly causing several related changes.

Consider, for example, an infrastructure for mon-
itoring performance of a data center as depicted in
Figure 1. The infrastructure consists of a set of moni-
tored nodes on which monitoring agents continuously
collect performance data and send them to nodes
called aggregators. These aggregators perform statisti-
cal functions on the collected data and send them to
interested clients, such as archival stores and perfor-
mance visualizers. An aggregator’s output typically
represents the performance data of a cluster and is use-
ful for viewing consolidated information.

m1

Aggregator
Node

Failover
Aggregator
Node

m2

Archival
Store

Visualizer

Data Center
(Monitored Nodes)

Aggregated
Data

Monitored
Data

Client Nodes

Figure 1: Infrastructure for monitoring performance
of a data center.

If the aggregator node fails, monitored nodes
cannot send data and may report failures. Similarly,
clients using the performance data may report failures
as they do not receive any data from the aggregator.
Other clients such as load balancers and job sched-
ulers using this data may unnecessarily rebalance the
load or schedule jobs incorrectly thus affecting the
overall utilization of the system.

Change detectors monitoring different aspects of
the system sense several changes due to aggregator
failure and generate various events. This causes several
policy rules to get triggered in the adaptation system.

The order of enforcement of rules determines the
final system state. As illustrated in Figure 2, the fail-
ure of aggregator node generates multiple events.
These events trigger two rules – R1 and R2. R1 states:
‘‘If aggregator node fails, assign failover node as
aggregator ’’ and rule R2 states: ‘‘If data-send from
monitoring agent fails, reconnect to aggregator.’’
When the aggregator node fails, both rules are trig-
gered. If R1 is enforced before R2, the failover node is
assigned as aggregator and the monitoring agent is
reconnected to it. But if R2 is enforced before R1, the
action of R2 fails since the monitoring agent tries to
reconnect to the stopped aggregator.

Therefore, the order of enforcement of rules deter-
mines the final system state when multiple rules are
simultaneously triggered. An adaptation system should
reason about the enforcement order of rules and pro-
vide guarantees for system behavior to be deterministic.

R2

A change
Multiple events

Rule 3
Rule 4
Rule 5

ECA Engine
R1
R2 R1�����������	
������	
��

Rule 1
Rule 2

�� ���������� ��������� �������� ������������ �������� ��������������� �� ����������
� !!"#! $%" & '()"#*

R2

A change
Multiple events

A change
Multiple events

Rule 3
Rule 4
Rule 5

ECA Engine
R1
R2 R1�����������	
������	
��

Rule 1
Rule 2

�� ���������� ��������� �������� ������������ �������� ��������������� �� ����������
� !!"#! $%" & '()"#*

Figure 2: Problem with ECA based system.

ECA rules do not contain explicit action specifi-
cations needed for reasoning and are therefore
unsuited for specifying management rules in such
environments. Therefore, we propose an extended
model of ECA called Event-Condition-Precondition-
Action-Postcondition (ECPAP) for designing manage-
ment rules. These rules contain the axiomatic specifi-
cation of rule actions in first-order predicate logic as
pre- and post-conditions. The pre-condition specifies
the partial system state before execution of rule action
while post-condition specifies the partial system state
once the action has successfully executed.

Note that the rule condition is different from pre-
condition because the rule condition is specified by
the policy designer while the pre-condition is specified
by the action developer (programmer). We have used
the ECPAP rule framework for conflict detection and
resolution and monitoring of rule enforcement in [11]
and analyzing policy cycles in [10]. In this paper, we
show how the pre- and post-conditions can be used to
determine the dependencies among triggered rule
actions and reason about their enforcement order.

Given a set of triggered rules, the adaptation sys-
tem dynamically generates a Petri net workflow repre-
senting dependencies among rule actions. An action

102 20th Large Installation System Administration Conference (LISA ’06)

Shankar, et al. Specification-Enhanced Policies for Automated Management . . .

depends on another action if the pre-condition of the
former is satisfied by the post-condition of the latter.
Since specifications are in first-order predicate logic,
which are undecidable in the general case, dependen-
cies can only be determined at runtime when the spec-
ifications are instantiated to form propositional expres-
sions. Therefore, workflows of rule actions cannot be
constructed statically and must be done at runtime.

Certain actions may be independent of other trig-
gered actions and therefore may not be present in the
workflow. In such cases, the system could take one of
several possible decisions, for, e.g., it may abort the
workflow, or it may execute the maximum possible
actions and so on. We identify the need for policy-
based systems to provide semantic guarantees for rule
enforcement in such circumstances.

We introduce a notion called rule enforcement
semantics for policy-based systems that provides certain
guarantees when multiple rules are concurrently trig-
gered. We have identified three enforcement semantics –
random, all-or-none and maximum rule – that have been
found useful in different circumstances. We discuss this
in detail in section ‘‘Ordering Rule Enforcement.’’

We make the following contributions in this
paper:

• We propose a specification-enhanced rule frame-
work called Event-Condition-Precondition-Action-
Postcondition (ECPAP) for specifying adapta-
tion rules.

• We present algorithms to determine enforce-
ment order of multiple rules using the ECPAP
model. The enforcement order is represented as
a Boolean Interpreted Petri Net (BIPN) work-
flow. We also introduce a new notion called
enforcement semantics that provides guarantees
about rule enforcement.

• We describe an adaptation framework built using
the ECPAP model and demonstrate its applica-
tion for automated change management of Gan-
glia and HP OpenView monitoring systems.

• We present evaluation results that illustrate the
need for enforcement guarantees and the feasi-
bility of the ECPAP model.

Our extension of the ECA framework with action
specifications follows naturally from current research
efforts in autonomic computing. There has been wide-
spread interest lately on using planning techniques
from AI for programming and managing distributed
systems with encouraging results [10, 11, 12, 13, 24].
In [10, 11] we showed how extending actions with
specifications enabled advanced conflict and termina-
tion analysis for policy-based management systems.
Andrzejak, et al. [12] have used actions with pre- and
post-conditions for planning complex workflows from
simple actions for system management.

The ABLE project [13] uses axiomatic specifica-
tions of actions for goal-based autonomic computing.

Anand, et al. [24] use specification-enhanced actions,
expressed as pre-conditions and effects, for program-
ming pervasive computing environments. These
research works have shown that annotating actions
with simple pre- and post-condition specifications pro-
vides numerous benefits such as raising the program-
ming abstraction level and automating system man-
agement. Based on the success of these efforts we
have extended management policies with action speci-
fications and introduced the ECPAP rule framework.

The rest of the paper is organized as follows. In
the next section, we present in detail the ECPAP rule
framework. We then describe the workflow generation
algorithms and enforcement semantics. Subsequently,
we present the ECPAP-based adaptation framework and
its application for managing monitoring systems. We
then discuss evaluation results and some lessons learned.
Finally, we present related work and a conclusion.

Specification-Enhanced Rule Framework

The ECA rule framework is used in different par-
adigms such as active databases, access control and
system management to react to different situations.
Active databases use the ECA framework for design-
ing triggers that specify actions to be executed when
certain database operations such as record insertion or
deletion are made. Access control systems use ECA
rules to authorize or deny access when an access
request is made. Management systems use the ECA
framework for designing obligation rules [7] to spec-
ify management actions to be executed when system
changes are observed. Rule actions in active databases
and access control are normally well-defined and
hence their effects on the system are implicitly known.

For example, active database trigger rules nor-
mally use insert, delete and update actions [21] while
access control actions are normally authorize, deny and
delegate. This enables complex reasoning such as con-
fluence [21], rights-amplification and conflict analyses
to be performed over these rules. But rule actions in
system management are not well-defined and can range
from simple atomic actions to complex scripts and so
their effects on the system are not implicitly known.
Therefore, explicitly specifying the action effects using
pre- and post-conditions enables complex reasoning to
be performed over management rules. This motivated
us to design the ECPAP rule framework.

The ECPAP framework extends the ECA frame-
work by using the Hoare triple [23]. A Hoare triple
represented as {P}C{Q} describes how an action C
changes the state of computation from a state where P
is true to a state where Q is true. P and Q, expressed as
first-order predicate logic expressions, are pre-and
post-conditions of C, respectively and are called
axiomatic specifications. The pre-condition specifies the
system state that should exist before C can be executed.

Our adaptation policies are formulated as sets of
ECPAP rules of the form

20th Large Installation System Administration Conference (LISA ’06) 103

Specification-Enhanced Policies for Automated Management . . . Shankar, et al.

on event if condition do action

A policy rule is read as: ‘‘When event occurs in a
situation where condition is true, then execute action.’’
The action is a call to a method in a library of actions
where each action is annotated with a pre-condition
and a post-condition by the action developer (pro-
grammer). Note that pre- and post-conditions are not
specified as part of the rules since an action may be
invoked by multiple rules in the policy and this format
avoids listing the specifications at multiple places.

We represent an ECPAP rule as (e, c, p) → (a, s)
where e denotes the rule event, c denotes the condition
of the rule, p is the pre-condition of the action, a is the
action to be executed and s is the action post-condi-
tion. Our policy rule framework extends that of Policy
Description Language (PDL) [1] by adding axiomatic
specifications as ‘‘extension’’s to the rule.

R1: on(AggregatorFail(Node n))
if(n.id != ‘‘FailOver ’’)
{statusNode(‘‘FailOver′′, running)}
do (UseNodeAsAggregator(‘‘FailOver ’’));
{statusAggregator(running)}

R2: on(DataSendFail(Node n))
if(n.id == ‘‘MonitoredNode’’)
{statusAggregator(running)}
do(ReconnectToAggregator(n));
{connectionStatusToAgg(n, connected)}

R3: on(DataReceptionFail(Node n))
if(true)
{statusAggregator(running)}
do(ReconnectToAggregatorAsClient(n));
{connectionStatusToAgg(n, connected)}

R4: on(AggregationAgentStopped(Node n))
if(true)
{statusAggregator(running) ∧ ∀ x∈MonitoredNodes, connectionStatusToAgg(x, connected) ∧

∀ x∈ClientNodes, connectionStatusToAgg(x, connected)}
do(RestartAggregationAgent());
{statusService(‘‘AggregationAgent′′, running)}

Policy 1: Adaptation Policy for Performance Monitoring Scenario.

Policy Syntax and Semantics

There are three basic classes of symbols: primi-
tive event symbols, action symbols and constant sym-
bols. Primitive event symbols represent basic events
that can be subscribed to in the system. For example,
MonNodeFail and ServiceFail are primitive event
symbols that are generated when a monitored node or
service fails. An event is a primitive event symbol or a
term of the form e(T1t1, . . . , Tntn), where e is a primi-
tive event symbol of n arguments and each ti is a con-
stant or a variable of type Ti. e(T1t1, . . . , Tntn) repre-
sents a parameterized event where the parameters are
bound to the data contained in the event.

The condition part of an ECPAP rule is a boolean
expression containing constants and variables that
appear in the event part of the rule.

Each action symbol denotes the name of a proce-
dure that can be invoked in the system. An action is of

the form proc(t1, . . . , tn) where proc is an action symbol
and tis are parameters. For example, startService(S) is
an action. Actions are defined in an action library that
also contains pre- and post-conditions of actions.

Pre- and post-conditions of an action are first-
order predicate logic formulas of the form

p1(∧ | ∨ pk)k=2..m ,
pi is a first-order predicate of the form Q1t1 ∈X1,
. . . , Qntn ∈Xn pred(t1, . . . , tn): Qi is a quantifier, Xi is a
constant symbol and each ti is a constant or a variable.

A policy, P is a finite set of ECPAP rules. The
adaptation system enforcing the policy expects as
input an event e, and its occurrence is represented by
occ(e). The semantics of each rule, (e, c, p) → (a, s) in
the policy is specified by the implication,

occ(e) ∧ c ∧ p → exec(a)
exec(a) → s

where exec(a) represents the initiation of the execution
of action a. The evaluation of the rule and execution
of the action is treated as an atomic operation i.e., if
the system state changes after the rule evaluation and
before the action execution, the change is ignored.

Pre- and Post-condition Expressions

The pre- and post-conditions use pre-defined key-
words for specifying first-order expressions. For exam-
ple, MonitoredNodes and ClientNodes are keywords that
represent sets of monitored nodes and client nodes in
our system. In our example scenario these sets are:
MonitoredNodes = {m1, m2} and ClientNodes = {store,
visual}. A quantifier over these sets enumerates all the
elements of the set. First-order expressions are undecid-
able in the general case and therefore we convert them
to propositional logic expressions, which are decidable,
during evaluation.

104 20th Large Installation System Administration Conference (LISA ’06)

Shankar, et al. Specification-Enhanced Policies for Automated Management . . .

Consider, for example, ∀ x∈MonitoredNodes,
statusNode(x, running) is a first-order expression that
is converted to statusNode(m1, running) ∧ statusNode
(m2, running) before analysis. These expressions are
evaluated by invoking corresponding methods in the
system and verifying the return values. For example,
statusNode(m1, running) is evaluated by comparing
the return value of the call statusNode(m1) with the
string ‘‘running.’’

Example Adaptation Policy

The adaptation policy for the scenario described
in the first section is shown in Policy 1. The pre- and
post-conditions of actions are shown italicized in
braces for convenience and are not specified as part of
the rules.

Rule R1 gets triggered when the aggregator node
fails and if the failed node is not the failover node, it
assigns the failover node as the new aggregator. Rule R2

is triggered when any monitored node fails to send data
to the aggregator. The rule tries to reconnect the moni-
tored node to the aggregator. Rule R3 is triggered when a
node fails to receive data from the aggregator node. The
rule reconnects the node to the aggregator node. Rule R4

is triggered when the aggregation agent stops. The
aggregation agent needs to be started everytime new
clients or monitored nodes are connected to the aggrega-
tor node. This rule restarts the aggregation agent.

When the aggregator node fails, the monitored
nodes are unable to send data and the archival store
and visualizer nodes do not receive any data. There-
fore, one AggregatorFail event, two DataSendFail
events (one each from two monitored nodes), two
DataReceptionFail events (one each from the archival
store and visualizer nodes) and one AggregationA-
gentStopped events are generated. These events trigger
multiple instances of the above rules.

If both instances of rules R2 and R3 are enforced
before R1, the nodes try to connect to the failed aggre-
gator and therefore do not succeed. If R4 is enforced
before the other rules, the aggregation agent restart
fails and so the nodes can neither send nor receive
data. But if R1 is enforced before R2 and R3 and R4 is
enforced in the end, the nodes get connected to the
failover aggregator and the monitoring activity is
restored. Therefore, the order of enforcement of rules
determines system behavior. While ‘‘correct’’ order of
rule enforcement is hard to define and requires experi-
mental justification, other simpler guarantees about
ordering can be provided as will be discussed shortly.

Ordering Rule Enforcement

An adaptation policy is subject to numerous
changes such as addition and deletion of rules, rule
modifications and policy composition. Each rule is
generally evaluated and enforced independent of other
rules in the policy. When multiple rules are triggered the
order of enforcement of rules determines the system

behavior, as demonstrated in the previous section. There-
fore, we define a new notion called enforcement seman-
tics that provides certain guarantees about rule enforce-
ment. Enforcement semantics of a policy-based adapta-
tion system dictates the way rules are to be enforced
when multiple rules are simultaneously triggered.

V : set of trivially-enabled actions
A : set of actions of triggered rules
Enable(a) : set of actions enabled by action a
P = {Start} : set of Petri net Places – initialized to

Place called ‘Start’
T = {} : set of Petri net Transitions
place(a) : Place for action a
adj(x) : adjacency list of x represented as a set,

where x ∈ P ∪ T
trans(p, f) : Transition with Boolean function f con-

nected by edges from places in set p

Figure 3: Notations used in the workflow generation
algorithms.

When a set of rules is triggered, the execution
order of the rule actions is determined by constructing
a workflow that expresses dependencies between dif-
ferent actions. The pre- and post-conditions of actions
determine which action enables which other actions.
An action is said to enable another action if the post-
condition of the former satisfies the pre- condition of
the latter. In our example scenario, the post-condition
in rule R1 satisfies the pre-condition in R2. Therefore,
action of R1 is said to enable that of R2.

The workflow of rule actions is represented as a
Boolean Interpreted Petri net (BIPN) [4], which is use-
ful to model and reason about concurrent action exe-
cution. A Boolean Interpreted Petri net is a Petri net
[3] whose transitions are assigned Boolean functions.
A transition can fire only when all of its input places
are marked and its Boolean function is true. We assign
a place to each action and each transition leading to
the place is assigned the pre-condition of the action as
the Boolean function. We formally define our work-
flow BIPN in Appendix I. We will describe the algo-
rithms that construct the workflow in the rest of this
section. The various notations used in the algorithms
in this section are catalogued in Figure 3.

Workflow Construction

The workflow is constructed by analyzing each
pair of actions to determine if one enables the other.
The current system state can be represented as a set of
propositions and pre-conditions of certain actions may
be satisfied by it. These actions are independent of
other triggered rules and can be executed as the first
set of actions in the workflow. These actions are called
trivially-enabled actions.

Definition 1: An action a is said to be trivially-
enabled if the current state of the system, I, satis-
fies its pre-condition. Formally, it is represented as
I |= pre(a), where |= is the satisfies symbol.

20th Large Installation System Administration Conference (LISA ’06) 105

Specification-Enhanced Policies for Automated Management . . . Shankar, et al.

In our example scenario, the pre-condition in R1 :
statusNode(‘‘FailOver′′, running) is satisfied by the cur-
rent system state since the failover system is running
when the aggregator node fails. Therefore, the action of
R1 can be executed independent of actions in other trig-
gered rules. Algorithm 1 to determine trivially-enabled
actions is shown in Figure 4a.

The algorithm initializes the Petri net by assign-
ing a place to each action and creating a transition
with the Boolean function true. This transition is con-
nected to the Start place. The algorithm evaluates the
pre- condition of each action to determine if it is true
and marks the action as trivially-enabled if so. These
trivially-enabled actions are connected by edges from
the true transition. In our adaptation scenario, only
action A1 is trivially-enabled (action of rule Ri is rep-
resented as Ai). The Petri net workflow that results
from the algorithm for our adaptation scenario is
shown in Figure 4b.

Once trivially-enabled actions have been identi-
fied, we check to see which action enables which
other actions through enablement analysis.

Definition 2: An action a1 is said to enable action
a2 if post(a1) |= pre(a2) where post(a1) represents
the post-condition of action a1 and a2 is not triv-
ially-enabled.

This implies that execution of a1 would satisfy
the pre-condition of a2 and so a2 can be executed after
a1. Since any proposition satisfies the true proposition,
we do not check if post-condition of an action satisfies
pre-condition of a trivially-enabled action.

Algorithm 2 for enablement analysis is shown in
Figure 5a. This algorithm verifies for each triggered
action if its post-condition satisfies the pre-condition
of a non-trivially-enabled action. It does a pair-wise
satisfiability check of actions to determine enable-
ment. The set Enable(a) contains all actions that are
enabled by action a. The algorithm iterates through
each action a and if a enables other actions, it con-
nects them to a through transitions labeled with their
pre-conditions.

In our example scenario, both instances of action
A2 (corresponding to two monitored nodes) and both
instances of action A3 (corresponding to archival store
and visualizer) are enabled by A1. The Petri net result-
ing from Algorithm 2 is shown in Figure 5b. Ak

i repre-
sents the ith instance of action Ak. Since two instances
of rules R2 and R3 are triggered, the Petri net contains
two instances of their actions represented as A2

i and
A3

i, (i = 1, 2).

Post-conditions of some actions may satisfy part
of the pre-condition of another action. For example,
post-pcondition of A1: statusAggregator(running) sat-
isfies a part of the pre-condition of A4. Similarly, post-

conditions of A2
1, A2

2, A3
1 and A3

2 satisfy the other
parts of the pre-condition of A4. Therefore, A1, A2

i and
A3

i must be executed to enable A4. We say that each

for each action a ∈ A //initialization
P = P ∪ {place(a)}

t = trans({start},true)
adj(Start) = adj(Start) ∪ {t}
T = T ∪ {t}

V = {} //trivially-enabled action analysis
for each action a in A

if pre(a) is true
V = V ∪ a

for each action a ∈ V //adding transitions to workflow
adj(t) = adj(t) ∪ {place(a)}

Figure 4a: Algorithm 1: Workflow Initialization and
Trivially-enabled action analysis.

Start

true

A
1

Figure 4b: Petri net workflow after trivially-enabled
action analysis.

Enable(a) = {}, ∀ a∈A //enablement analysis
for each action a ∈ A

for each action b ∈ A-V
if post(a) |= pre(b)

Enable(a) = Enable(a) ∪ {b}

for each action a ∈ A //adding transitions to workflow
for each action b ∈ Enable(a)

t = trans({place(a)}, pre(b))
if t ∉ T

T = T ∪ {t}
adj(place(a)) = adj(place(a)) ∪ {t}

end if
adj(t) = adj(t) ∪ {place(b)}

end for
end for

Figure 5a: Algorithm 2: Enablement Analysis.

Start

true

statusAggregator(running)

A
1

A
2

A
3

A
3

A
2

2

2

1

1

statusAggregator(running)

Figure 5b: Petri net workflow after enablement anal-
ysis.

action A1, A2
i and A3

i partially-enables A4. Note that
the variables x and n in predicates connectionStatus-
ToAggregator(x, connected) and connectionStatus-
ToAggregator(n, connected) are bound to values of
the nodes during evaluation.

106 20th Large Installation System Administration Conference (LISA ’06)

Shankar, et al. Specification-Enhanced Policies for Automated Management . . .

Definition 3: An action a1 is said to partially-
enable action a2 if post(a1) |= partial-pre(a2),
where partial-pre(a2) is a conjunction of some
proper subset of conjuncts of pre(a2). A set of par-
tially-enabling actions of an action a that together
enable a is called a partial-set of a. An action may
have multiple partial-sets and therefore, the set of
all partial-sets of a is denoted by partial-sets(a) . In
the above example,
partial-sets(A3) = { {A1, A2

1, A2
2, A3

1, A3
2} }.

Start

true

statusAggregator(running)
token

A1

A2

A4

A3

A3

A
2

2

2

1

1

statusAggregator(running) Λ
connectionStatusToAggregator(m1, connected) Λ
connectionStatusToAggregator(m2, connected) Λ
connectionStatusToAggregator(store, connected) Λ
connectionStatusToAggregator(visual, connected)

statusAggregator(running)

Figure 6b: Final Petri net workflow.

Algorithm 3 in Figure 6a determines for every
action a that is not trivially-enabled, which set of
actions collectively enable a. If the set contains only
one action, then it implies that a single action enables
a and therefore is already determined by Algorithm 2.
Therefore, Algorithm 3 only considers sets having
more than one element. In addition, the algorithm does
not test an action with itself for partial-enablement as
this might lead to a deadlock.

Though the algorithm for partial-enablement
analysis can replace enablement analysis of Algorithm
2, we separate the two algorithms since partial-enable-
ment analysis has a much higher complexity. We will
discuss this in more detail below when we evaluate the
algorithmic complexities.

Once we determine the partial-sets, we complete the
workflow construction by adding transitions. The Petri
net generated from Algorithm 3 is shown in Figure 6b.

Enforcement Semantics

Once dependencies among triggered rule actions
have been determined, the enforcement semantics of the
adaptation system specifies the execution order of
actions. We have identified three different enforcement
semantics for policy-based adaptation systems.

Random

This semantics executes rule actions in a random
order. The pure ECA policy system without the specifi-
cation enhancements follows this semantics, implicitly,
since it does not provide guarantees about enforcement
of multiple triggered rules. This is the weakest of all

Partial-sets(a) = {}
S : set that temporarily contains partially-enabling

actions of an action

for each action a ∈ A-V //partial sets determination
S = {}
for each action b ∈ A-{a}

if b partially-enables a
S = S ∪ {b}

for each subset s of S
if (cardinality(s) > 1)

p = true
for each action a ∈ s

p = p ∧ post(a)
if p satisfies pre(a)

Partial-sets(a) = Partial-sets(a) ∪ {s}
endif

end for
end for

for each action a ∈ A-V //adding transitions to workflow
for each set s ∈ Partial-sets(a)

t = trans(s, pre(a))
T = T ∪ {t}
adj(t) = adj(t) ∪ {place(a)}
for each action b ∈ s

adj(place(b)) = adj(place(b)) ∪ {t}
end for

end for

Figure 6a: Algorithm 3: Partial-sets Determination.

three semantics and does not require the action work-
flow to be constructed. This semantics can be used
when dependency among rule actions is low and very
few rules are triggered by a single change.

All-or-None

The all-or-none semantics specifies that the rule
actions in the workflow must be executed only if all
actions can eventually execute. This implies that even
if one action in the workflow cannot be enabled then
the entire workflow should be discarded. In order to

20th Large Installation System Administration Conference (LISA ’06) 107

Specification-Enhanced Policies for Automated Management . . . Shankar, et al.

enforce this semantics, the BIPN workflow is ana-
lyzed to see if all places can be reached using a reach-
ability algorithm [3]. The all-or-none semantics pro-
vides the strongest guarantee and is useful in policies
that have high dependency among rule actions.

Maximum Rule

The maximum rule semantics guarantees that the
management system enforces rules in an order that
ensures as many rules are successfully enforced as
possible, provided no other errors cause rule enforce-
ment to fail. The difference between all-or-none and
maximum rule enforcement semantics is that in the
latter if any place in the workflow can be reached
from the Start place it will be executed. If a place can-
not be reached, the workflow is not discarded as in the
all-or-none semantics. Our adaptation framework dis-
cussed in the ‘‘Framework’’ section uses the maxi-
mum rule enforcement semantics.

We prove formally in Appendix I that the work-
flow algorithms described above guarantee the above
semantics by showing that ordering actions according
to the workflow enables maximum number of rules to
be successfully enforced.

Action Execution

The order of execution of rule action depends on
the enforcement semantics used in the system. If ran-
dom enforcement is used, the workflow construction
is skipped and actions are executed in an arbitrary
order. The all-or-none and maximum rule enforcement
semantics use Petri net based traversal algorithms to
traverse the workflow and execute actions. If the sys-
tem guarantees all-or-none semantics a reachability
analysis [3] is performed to determine if all places are
reachable from the Start place prior to execution.

A workflow execution engine analyzes the Petri
net for any deadlocks using the deadlock detection
algorithm described in [3]. If a deadlock is found the
execution engine does not execute any action in the
workflow. Currently, we do not resolve deadlocks and
abandon the workflow. If the Petri net is deadlock-
free, the engine uses a simple Petri net traversal algo-
rithm based on Breadth-First Search (BFS) to traverse
the net and execute actions.

The transition states of the Petri net act as syn-
chronization points in the workflow. When multiple
places lead to a single transition, the engine waits for
the completion of all actions in the places before exe-
cuting actions of places leading out of the transition.
At each transition, the engine verifies the Boolean
function for satisfaction before executing the follow-
ing action. For our adaptation scenario, action A1 is
executed, followed by concurrent execution of actions
A2

i and A3
i and then action A4 is executed.

ECPAP-based Adaptation Framework

We have designed a framework based on ECPAP
rules for adapting Ganglia and HP OpenView monitor-
ing systems to various changes. The framework is

external to the monitoring systems and does not modify
either system. It uses the reconfiguration support pro-
vided by the systems for adaptation. In this section, we
discuss the details of the framework and its applications.

Policy-based

Adaptor

Event

Reception

System

Policy

Store

Action

Store

Policy

Management
Interface

Change
Events

Rule

Processor

Workflow

Construction

System

Workflow

Execution

Engine

Figure 7a: Adaptation Framework.

Compile
policy

Load policy
object file into

adaptor

Subscribe to
policy
events

Receive

events

Epoch
end ?

Determine

triggered
adaptation

rules

Conflicts
?

Resolve
conflicts using

priorities

Generate
actuation
workflow

Initiate

actuation

YesNo

No

Yes

Policy

Figure 7b: Adaptation flowchart.

System Architecture

Adaptation policy, containing ECPAP rules, is
compiled and loaded into the adaptation system by the
system administrator. The adaptation system sub-
scribes to events specified in the policy and initiates
corresponding actions when those events are fired.
Figure 7a shows the adaptation framework and Figure
7b illustrates the steps involved in loading a policy,
planning adaptation and initiating actuations.

A policy is compiled into a policy object file.
The policy object file contains rules in a format suit-
able for loading into the enforcement system. The
enforcement system subscribes to policy events and
waits for the occurrence of events

108 20th Large Installation System Administration Conference (LISA ’06)

Shankar, et al. Specification-Enhanced Policies for Automated Management . . .

Since a single change to the monitoring system
may trigger more than one event occurrence, we
define time intervals called epochs and consider all
events received within an epoch to correspond to a
single change. The epoch model for event reception
was proposed in [2] and was found suitable for defin-
ing policy rules with composed events.

import java.util.HashSet;
import AdaptiveMonitoringService.AxiomatizedAction;
import AdaptiveMonitoringService.Types.Node;
import AdaptiveMonitoringService.Types.Service;
import AdaptiveMonitoringService.Types.Process;
import AdaptiveMonitoringService.Types.Container;

public class FailOver
{

public HashSet AggregatorFail(Node n)
{

HashSet hs = new HashSet();
if (n.id != "FailOver")
{

useNodeAsAgg tmp = new useNodeAsAgg("FailOver");
AxiomatizedAction act = new AxiomatizedAction();
act.precond = tmp.getPrecond();
act.actuator = tmp;
act.postcond = tmp.getPostcond();
hs.add(act);

}
return hs;

}
}

on(AggregatorFail(Node n))
if (n.id != “FailOver”)
do (useNodeAsAgg(“FailOver”))

Rule

Java Class

Compile

Figure 9: Policy compilation.

Since a composed event normally contains
events that have occurred ‘‘simultaneously’’ and event
reception system receives events sequentially, the
epoch model provides a good approximation to simul-
taneity. At the end of each epoch, the adaptor evalu-
ates the policy and determines the set of rules that are
triggered. The triggered rules are checked for conflicts
and resolved using a priority-based resolution tech-
nique [10]. The adaptor reasons about the enforcement
order of rules using pre- and post-conditions of actions
and generates the Petri net workflow. The workflow is
executed by a workflow execution engine and the
adaptor waits for further events.

The policy-based adaptor supports interfaces to
load policies and conflict resolution rules, query the pol-
icy store for the loaded policies and retrieve the set of
actions in the action store. In addition, the system also
supports user interfaces to list available events and
actions. These interfaces are useful for designing policies.

Event Reception Model

Our monitoring framework views a change as a
set of correlated events and evaluates the policy based
on the events in the set. Event correlation is a well-
researched problem and numerous models have been
proposed to group events corresponding to a change
[25, 26, 27]. Since the focus of our work is on policy
evaluation and enforcement, we use a simple event
correlation model based on epochs proposed by
Chomicki, et al. [2] for policy evaluation. Figure 8
illustrates the epoch model. The input to our adapta-
tion framework is a set of events and therefore, the

epoch model can be replaced by more appropriate cor-
relation models without affecting policy evaluation
and enforcement.

time

epoch

e
1

e
2

e
3

e
i

- events

Figure 8: Epoch model.

Policy Tools and Adaptation Implementation

The adaptation framework consists of policy
tools and the adaptation system. The policy compiler
generates Java class files from policy rules. We used
this approach to leverage the language features of
Java. An ECPAP rule is compiled into a method that
has the same signature as the event. The condition part
of the rule is translated into an ‘if’ block in the
method. The conditional expression of the ‘if’ state-
ment is the same as that in the rule. The rule action is
translated into a set of statements that create a Java
object containing the action object along with its pre-
and post-conditions. If multiple rules have the same
event signatures, the compiler consolidates the rules
into a single method with multiple ‘if’ blocks. A typi-
cal Java class, for a rule, generated by the policy com-
piler is shown in Figure 9.

These classes are compiled by a Java compiler
into class files and loaded into the adaptation system
by the policy loader. When an event is received by the
adaptation system, an equivalent method signature is
created with the event name as the method name and
the event parameters as method parameters. This
method is invoked on the rule class files and if the rule
contains the event, the method invocation succeeds.

20th Large Installation System Administration Conference (LISA ’06) 109

Specification-Enhanced Policies for Automated Management . . . Shankar, et al.

The condition is checked and if it is satisfied, an
object containing the action object along with its pre-
and post-conditions is returned. This approach pro-
vides the adaptation system with the action specifica-
tions necessary for reasoning.

Figure 10: Adaptation framework implementation.

The adaptation system has been implemented in
Java. Figure 10 shows the main components of the
framework. It consists of a policy store that stores a
set of Java objects instantiated from rule classes. An
action library acts as an actuator store and contains a
set of actions that can be invoked from policy rules.
The action library in addition contains specification of
actions in first order predicate logic.

Application to Monitoring Systems

Our data center and enterprise systems use HP
OpenView and Ganglia systems for performance monitor-
ing. Since monitoring systems run independent of the core
system services, we tested the applicability of our adapta-
tion framework to manage changes to these systems.

The configuration of our monitored environment
consists of a set of nodes monitored by the Ganglia
monitoring system [14]. Ganglia is a scalable distrib-
uted monitoring system for high-performance comput-
ing systems such as clusters and grids. It supports a
hierarchical organization of monitoring agents called
Ganglia Monitoring Daemons (gmond) that collect
monitoring information from individual nodes.

Aggregation agents called Ganglia Meta Dae-
mons (gmetad) collect data from gmonds and apply
aggregation functions to provide consolidated informa-
tion about cluster of machines. The focus of Ganglia is
on monitoring nodes and provides simple replication-
based approaches for tolerating node failures. It does
not provide support for aggregation agent failures,
application migration or other infrastructure changes.

We used the adaptation framework to enhance
the resilience of Ganglia monitoring system to
changes as proof-of-concept. We developed change
detectors to detect aggregator failures and data-send

and data-receive failures from the various nodes of the
monitored environment. The change detection system
generates parameterized events that contain relevant
state information. The reasoning system uses XSB
Prolog [19] to verify satisfiability of propositions.

We also used the adaptation framework for adapt-
ing OpenView monitoring system. The framework
enables adaptation when services are plugged-in,
plugged-out or migrated, alarm events are generated
and so on. For example, the adaptive system dynami-
cally configures the OpenView components to collect
performance data from a service when it is plugged-in.
Similarly, the framework reconfigures the components
to collect additional metrics, through deep-diving (mon-
itoring specific components), when alarms are gener-
ated due to high CPU utilization, low memory and so
on. Our initial evaluation demonstrates that the ECPAP-
based adaptation framework can dramatically reduce the
administration cost of OpenView monitoring system.

Evaluation

In this section, we will discuss the algorithmic
complexities of the various algorithms presented in the
paper and use them to explain the system performance
that we have empirically measured.

Algorithmic Complexity

Trivially-enabled action analysis (Algorithm 1)
has a linear complexity of O(n) pre-condition checks
for n actions. Enablement analysis (Algorithm 2) does
a pair-wise satisfiability check of actions and therefore
has a quadratic complexity of O(n2). Partial-enable-
ment analysis (Algorithm 3) analyzes for each action
if it is enabled by a set of actions.

Each action subset must be determined and this
has an exponential complexity of O(2n). Since each
subset is tested to see if it enables the action for all
actions the final complexity is O(n22n). Currently,
Algorithm 3 has a very high complexity but there are
various optimizations that can be performed to reduce
the value of n.

110 20th Large Installation System Administration Conference (LISA ’06)

Shankar, et al. Specification-Enhanced Policies for Automated Management . . .

For example, the enablement analysis algorithm
reduces the number of rules to be verified during par-
tial-enablement analysis. Since enablement analysis
has a quadratic complexity the overall performance
overhead is greatly reduced. In addition, the number
of rules that are normally triggered on a single event is
quite less (fewer than five rules per event in our adap-
tation policy) and so the overhead is tolerable. We are
currently looking at static analysis techniques to deter-
mine dependencies between different rules at policy
compilation time. Finally, the overall complexity of

the workflow generation is O(n22n), bounded by the
complexity of the partial-enablement analysis.

Experimental Validation

The performance overhead of Petri net workflow
generation is shown in Figure 11. The adaptation sys-
tem was executed on a Pentium III 1GHz dual proces-
sor SMP machine with 2 GB memory. Figure 11a
shows the overhead with varying number of triggered
rules. Our test policy had multiple instances of the same
rule since the focus was on testing the overhead of the
system. As predicted from the algorithmic complexity
described above the overhead is exponential with the
number of triggered rules. For 15 triggered rules the
overhead was found to be around three seconds. Nor-
mally, for a typical policy, the number of rules triggered
on a single change can be expected to be much less than
15 and so the approach is feasible. Several optimization
using configuration and state models can be performed
to reduce the overhead. We do not discuss these opti-
mizations since they are out of the scope of the paper.

The number of predicates in pre- and post-condi-
tions of actions influences the Petri net generation
overhead. Therefore, we measured the overhead with
varying number of predicates in action specifications.
Figure 11b illustrates the performance overhead of the
system. The x-axis indicates the average number of
predicates for each pre- and post-condition. The y-axis
shows the overhead in seconds. The overhead is less
than one second for about 144 predicates.

Figure 12 shows the graphs of times required for
policy compilation and rule evaluation. Policy compi-
lation has a reasonable overhead of about one second
for a policy containing 400 rules. Since policies are
compiled only when they are modified, this is an
acceptable overhead. Rule evaluation is an important
component of the adaptation process and therefore its
overhead contributes to the overall performance of the
system. We measured the performance of the adapta-
tion system with varying number of rules in a policy.
We found that rule evaluation takes about 100 ms for a
policy with 2000 rules which is a reasonable overhead
for an adaptation system.

Experience in a Real Scenario

We have used our adaptation system for manag-
ing changes to monitoring systems as was described
earlier. Figure 13 shows the Ganglia visualizer output

Figure 11a: Petri net Workflow Generation vs Num-
ber of Triggered Rules.

Figure 11b: Petri net Workflow Generation vs Aver-
age Number of Predicates.

Figure 12a: Policy Compilation Times.

Figure 12b: Rule Evaluation Times.

on aggregator failure for our adaptation scenario. The
policy consisted of four rules shown in the ‘‘Example
Adaptation Policy’’ section. On aggregator failure, six
events – one AggregatorFail, two DataSendFail, two

20th Large Installation System Administration Conference (LISA ’06) 111

Specification-Enhanced Policies for Automated Management . . . Shankar, et al.

DataReceptionFail and one AggregationAgentStopped
event – are generated. In the first experiment (Figure
13a), an ECPAP system with maximum rule enforce-
ment enabled was used and the aggregator was manu-
ally stopped. The temporary disruption during adapta-
tion is illustrated in the figure. The adaptation used the
policy from the ‘‘Specification-based Rule Frame-
work’’ section.

Once the rules are enforced, monitoring resumes
using the failover aggregator. In the second experi-
ment (Figure 13b), a pure ECA based system was used
and the adaptation framework enforced rules as soon
as they were triggered. As illustrated in the figure, ran-
dom enforcement of rules failed to connect the nodes
to the failover aggregator and so the visualizer node
did not receive data.

Temporary disruption in

data during adaptation

(with rule ordering)

Temporary disruption in

data during adaptation

(with rule ordering)

Figure 13a: Disruption in monitored data during adaptation (as perceived by the visualizer node) – ECPAP based
system with Maximum Rule Enforcement (with reasoning).

Complete disruption in

data due to random rule

enforcement (without rule

ordering)

Complete disruption in

data due to random rule

enforcement (without rule

ordering)

Figure 13b: Pure ECA based system (Random Rule Enforcement).

Before performing the second experiment, the
original aggregator was restarted and the failover
aggregator was disconnected. This caused no disrup-
tion in data reception since atleast one aggregator was
active during the switch. Thus, we see that with an
ECPAP based approach, even though there is overhead
in workflow generation, we guarantee recovery,
whereas with a pure ECA based system (random
enforcement order), complete disruption could happen.

Lessons Learned

Policy Design: Designing adaptation policies is an
onerous task and requires significant knowledge of the

system configuration and functioning. Policy designers
should foresee various changes that may affect IT sys-
tems and specify rules. This demands significant sys-
tem knowledge and expertise from the administrator.

Defining Correctness: In this paper, we intro-
duced the notion of enforcement semantics and identi-
fied three different semantics for rule enforcement. In
order to prescribe a specific semantics we need to
define correctness for concurrent rule enforcement.
This requires empirical validation to determine if
application of a specific semantics provides appropri-
ate guarantees.

Optimization using Models: As discussed in the
previous section, the workflow generation algorithms
have high complexity. In a cluster of nodes, a single
change may cause similar events from multiple nodes
to be generated triggering multiple instances of the
same rule. The workflow generation complexity can be
greatly reduced if it can be inferred that the triggered
rules are instances of a smaller set of rules by using
configuration models. Similarly, using information
models, such as Common Information Model (CIM)
for representing system states enables faster evaluation
of specifications. These models represent state infor-
mation of entities and provide a central service that
can be queried. Therefore, extending the adaptation
framework with models enables optimization and we
plan to explore that as extensions to our work.

112 20th Large Installation System Administration Conference (LISA ’06)

Shankar, et al. Specification-Enhanced Policies for Automated Management . . .

Event Correlation Models: Finally, the epoch
model that we have used approximates a system
change in our prototype and in order to develop a fully
functioning adaptation system an event correlator is
necessary. The correlator would require system infor-
mation such as configuration, event delivery latency
and so on, which can be represented as system models.

Related Work

Automated change management has gained atten-
tion in the past few years as a necessary technology to
address the adaptation needs of rapidly growing enter-
prise and grid computing markets. Several research
projects are focusing on reducing the administrator
efforts in managing different aspects of large distributed
systems through policy and model-based approaches.

The CHAMPS project [18] aims to reduce the
complexity of IT change and configuration manage-
ment in distributed environments through planning
and scheduling approaches. The project uses model-
based approaches to build task graphs to adapt to sys-
tem changes. Our adaptation framework uses policies
and therefore differs significantly from the CHAMPS
project. Policy-based management has been used for
network switch management [5], managing content
distribution networks [6] and distributed systems [7].

The focus of our work is on managing complex
IT systems. As we have described, the complexity of
these systems causes simultaneous activation of multi-
ple policy rules, which have to be enforced in proper
order. None of the projects on policy-based manage-
ment seem to address this problem, to the best of our
knowledge, as we have addressed.

There have been several research efforts in
designing policy languages [1, 15], detecting and
resolving policy conflicts [2, 9, 11, 22], and various
other analyses [8, 20]. To the best of our knowledge,
no research in this area has addressed the problem of
ordering management rules and providing enforce-
ment guarantees as we have addressed in this paper.

Dunlop, et al. [22] use temporal characteristics of
policies to dynamically reason about policy consistency.
Their approach detects a large class of conflicts that
cannot be detected statically. The focus of their work is
on conflict analysis and not on ordering rule enforce-
ment as we have presented in this paper. Our previous
work [11] proposes an ECA-P framework to detect and
resolve dynamic conflicts that occur due to side-effects
of actions. The focus of the work was on conflict analy-
sis and not on enforcement order determination.

Sloman, et al. [7, 8, 9] have developed the Ponder
policy specification language and defined techniques
for conflict analysis and role-based management. To
the best of our knowledge, their work does not address
the problem of ordering concurrently triggered rules.

Several research projects in autonomic computing
reason about action ordering [12, 13]. These projects are
based on AI planning techniques where users specify

high-level goals and the planning system determines the
ordered set of actions to be executed to reach the desired
goal state. The main difference between these projects
and our work is that in goal-based approaches the final
system state that needs to be reached is known and the
system has to determine the actions to be executed to
reach that state. In the problem that we have addressed,
the final system state is unknown. When an event
occurs, a set of rules get triggered and we need to reason
about the execution order of the rule actions based on
some enforcement semantics.

Finally, our application of policy-based tech-
niques for adapting monitoring systems is a novel
research effort. System monitoring is a well-researched
field and several monitoring systems such as HP Open-
view [16], IRISLOG [25], Ganglia [14] and MonAL-
ISA [17] are currently being used. These systems focus
mainly on data collection, delivery, scalability and fault
tolerance. None of these systems support a generic
framework that adapts to a spectrum of changes such
as application migration, service plug-ins and so on,
which is required for automated change management.
Our framework uses the configurability features of
these systems to adapt to changes based on adminis-
trator-specified policies.

Conclusion

IT systems are dynamic and subject to various
changes. Management of such changes needs to be
automated to reduce administration cost. Policy-based
adaptation is a suitable approach where management
actions are specified by an administrator, as Event-
Condition-Action rules, for different changes in the
system. The interdependence of components in mod-
ern IT systems causes several change events to be gen-
erated when a single change occurs triggering multiple
rules. Since the order of enforcement of rules deter-
mines the system behavior, adaptation systems should
reason about the enforcement order of the rules before
initiating corrective actions. We found the ECA rule
framework to be poorly suited for reasoning since it
does not contain specifications of rule actions.

In this work, we introduced a new rule frame-
work, called Event-Condition-Precondition-Action-
Postcondition (ECPAP) that contains action specifica-
tion for designing adaptation policies for IT systems.
When multiple rules are simultaneously triggered on a
change, the adaptation system uses the specifications
to analyze dependencies between rule actions and gen-
erate a Petri net workflow that is executed by an exe-
cution engine. We introduce a new notion called
enforcement semantics that provides guarantees about
rule enforcement. We have used this framework for
adapting monitoring systems to changes and presented
its performance and advantages in this paper.

Acknowledgements

We would like to thank Martin Arlitt, Keith
Farkas, and our shepherd John ‘‘Rowan’’ Littell, for

20th Large Installation System Administration Conference (LISA ’06) 11 3

Specification-Enhanced Policies for Automated Management . . . Shankar, et al.

their comments, which have helped improve the con-
tent and presentation of the paper. We also thank Rob
Kolstad for his extra typesetting efforts that have helped
to significantly improve the look and feel of the paper.

Author Biographies

Chetan Shankar is a doctoral candidate at the
University of Illinois at Urbana-Champaign (UIUC).
He is one of the main contributors to the Active Spa-
ces pervasive computing project at UIUC and has pub-
lished several papers on pervasive computing and pol-
icy-based management. He is broadly interested in ser-
vices and systems management, programming and
management frameworks for dynamic systems and
pervasive computing.

Vanish Talwar is a researcher in the Enterprise
Systems and Software Lab at Hewlett-Packard Labo-
ratories. His technical interests include distributed sys-
tems, operating systems, and computer networks, with
a focus on management technologies. He received his
M.S. and Ph.D. degrees in computer science from the
University of Illinois at Urbana Champaign (UIUC) in
2001 and 2006 respectively. He is the recipient of the
David J. Kuck Best Masters Thesis award in the Dept.
of Computer Science, UIUC, and is an elected mem-
ber of Phi Kappa Phi and Sigma Xi.

Subu Iyer is a Systems Software Engineer and
researcher at HP Labs, Palo Alto. He joined DEC Net-
work Systems Lab in 1997 where he worked on col-
lecting and analyzing performance data from a large
cluster of machines on DEC’s Palo Alto Research
Gateway. Over the years, Subu has worked on projects
in the areas of distributed computing, performance
monitoring and telepresence. His current work is on
scalable adaptive performance monitoring.

Yuan Chen is a post-doctoral researcher in Enter-
prise Systems and Software Laboratory at HP Labs.
He received a B.S degree from University of Science
and Technology of China in 1994, and M.S. and Ph.D.
degrees from the Georgia Institute of Technology in
2001 and 2005, respectively, all in Computer Science.
His current research focuses on performance and sys-
tems management in complex and large-scale enter-
prise computing systems.

Dejan Milojicic is a senior researcher and a
project manager at HP Labs. He has worked in the
area of operating systems and distributed systems for
more than 20 years. He has been the program chair of
the IEEE Agent Systems and Applications Sympo-
sium (ASA/MA’99) and of the first USENIX Work-
shop on Industrial Experiences with System Software
(WIESS’2000). Dr. Milojicic published in many jour-
nals and at various events. He is currently on the edi-
torial board of IEEE Distributed Systems Online. He
has been engaged in various standardization bodies,
such as OMG and Global Grid Forum. He is a member
of the ACM, IEEE, and USENIX. He received his

B.Sc. and M.Sc. from University of Belgrade and his
Ph.D. from University of Kaiserslautern. Prior to HP
Labs, Dejan worked at Institute ‘‘Mihajlo Pupin,’’ Bel-
grade and at OSF Research Institute, Cambridge, MA.

Roy Campbell is the Sohaib and Sara Abbasi
Professor of Computer Science at the Siebel Center
for Computer Science at the University of Illinois,
Urbana-Champaign. He has supervised the completion
of forty Ph.D. dissertations and the author of over two
hundred and forty four research papers on security,
programming languages, software engineering, operat-
ing systems, distributed systems, and networking. His
research includes the Gaia project on Active Spaces,
the security of the power grid, and mobile computer
operating systems. Professor Campbell is Director of
the University Of Illinois Center Of Academic Excel-
lence in Information Assurance Education, a member
of the Information Trust Institute and, with Guy Gar-
nett, directs the Cultural Computing Program. He is a
member of the ACM and an IEEE Fellow.

Bibliography

[1] Lobo, J., et al., ‘‘A Policy Description Language,’’
Proceedings of the Sixteenth National Conference
on Artificial Intelligence (AAAI-99), pp. 291-298,
July, 1999.

[2] Chomicki, J., J. Lobo, and S. Naqvi, ‘‘Conflict
Resolution Using Logic Programming,’’ IEEE
Transactions on Knowledge and Data Engineer-
ing, Vol. 15, Num. 1, pp. 244-249, January/
February, 2003.

[3] Reisig, W., Petri Nets: An Introduction,
Springer-Verlag, New York, 1985.

[4] Roussev, B. N., ‘‘Self-checking Implementation
of Boolean Interpreted Petri Nets,’’ Proceedings
of IEEE Symposium on Emerging Technologies
and Factory Automation, 1994.

[5] Bhatia, R., et al., ‘‘Policy Evaluation for Net-
work Management,’’ Proceedings of 19th Annual
Joint Conference of the IEEE Computer and
Communication Societies (INFOCOM 2000), pp.
1107-1116, March, 2000.

[6] Amiri, K., et al., ‘‘Policy Based Management of
Content Distribution Networks,’’ IEEE Network
Magazine, 2002.

[7] Sloman, M., ‘‘Policy Driven Management For
Distributed Systems,’’ Plenum Press Journal of
Network and Systems Management, Vol 2, Num.
4, Dec., 1994, pp. 333-360.

[8] Lupu, E. C., A Role-Based Framework for Dis-
tributed Systems Management, Ph.D. Thesis,
Imperial College, London, 1998.

[9] Lupu, E. C., et al., ‘‘Conflicts in Policy-Based
Distributed Systems Management,’’ IEEE Trans-
actions on Software Engineering, Vol. 25, pp.
852-869, Nov., 1999.

[10] Shankar, C., et al., ‘‘A Policy-based Management
Framework for Pervasive Systems using

114 20th Large Installation System Administration Conference (LISA ’06)

Shankar, et al. Specification-Enhanced Policies for Automated Management . . .

Axiomatized Rule Actions,’’ Proceedings of
Fourth IEEE International Symposium on Net-
work Computing and Applications (IEEE
NCA05), MA, 2005.

[11] Shankar, C., et al., ‘‘An ECA-P Policy-based
Framework for Managing Ubiquitous Computing
Environments,’’ Proceedings of The Third
Annual International Conference on Mobile and
Ubiquitous Systems: Networks and Services
(Mobiquitous 2005), San Diego, July, 2005.

[12] Andrzejak, A., et al., ‘‘FeedbackFlow – An
Adaptive Workflow Generator for System Man-
agement,’’ Proceedings of The Second IEEE
International Conference on Autonomic Comput-
ing (ICAC-05), June, 2005.

[13] Srivastava, B., et al., ‘‘The Case for Automated
Planning in Autonomic Computing,’’ Proceed-
ings of The 2nd IEEE International Conference
on Autonomic Computing (ICAC-05), June,
2005.

[14] Massie, M., B. Chun, and D. Culler, ‘‘The Gan-
glia Distributed Monitoring System: Design,
Implementation, and Experience,’’ Parallel
Computing, Vol. 30, Issue 7, July 2004.

[15] Damianou, N., et al., ‘‘The Ponder Specification
Language,’’ Proceedings of Workshop on Poli-
cies for Distributed Systems and Networks (Pol-
icy2001), HP Labs Bristol, pp. 29-31, Jan., 2001.

[16] HP OpenView Management Solutions, http://www.
managementsoftware.hp.com/ .

[17] Newman, H. B., et al., ‘‘MonALISA: A Distrib-
uted Monitoring Service Architecture,’’ Proceed-
ings of 2003 Conference for Computing in High
Energy and Nuclear Physics (CHEP03), La
Jolla, California, March, 2003.

[18] Brown, A., et al., ‘‘A Model of Configuration
Complexity and its Application to a Change
Management System,’’ Proceedings of the 9th
International IFIP/IEEE Symposium on Inte-
grated Management (IM 2005), May, 2005.

[19] XSB Logic Programming and Deductive Database
system for UNIX and Windows, http://xsb.source
forge.net/ .

[20] Verma, D., ‘‘Simplifying Network Administration
using Policy based Management,’’ IEEE Network
Magazine, 2002.

[21] Baralis, E. and J. Widom, ‘‘Better Static Rule
Analysis for Active Database Systems,’’ ACM
Tr a n s a c t i o n s on Database Systems, Vol. 25, Num.
3, pp. 269-332, September, 2000.

[22] Dunlop, N., et al., ‘‘Dynamic Conflict Detection
in Policy-Based Management Systems,’’ Proceed-
ings of Enterprise Distributed Object Computing
Conference (EDOC ’02), September, 2002.

[23] Hoare, C. A. R., ‘‘An axiomatic Basis for Com-
puter Programming,’’ Communications of the
ACM, Vol. 12, Num. 10, 1969.

[24] Ranganathan, A., et al., ‘‘Pervasive Autonomic
Computing Based on Planning,’’ Proceedings of
IEEE International Conference on Autonomic
Computing (ICAC-04), May, 2004.

[25] Nath, S., et al., ‘‘Tolerating Correlated Failures in
Wi d e - A r e a Monitoring Services,’’ Intel Research
TR, May, 2004.

[26] Kliger, S., et al., ‘‘A Coding Approach to Event
Correlation,’’ Proceedings of the 4th International
IFIP/IEEE Symposium on Integrated Manage-
ment (IM 1997), 1997.

[27] OpenView Event Correlation Service, http://www.
www.managementsoftware.hp.com/products/ecs/ .

20th Large Installation System Administration Conference (LISA ’06) 115

Specification-Enhanced Policies for Automated Management . . . Shankar, et al.

Appendix I

Definition 4: Formally, the BIPN of a set of actions A = {a1, . . . , an} is a 1-safe marked Petri net [4] repre-

sented as a triple B = (P, T, F) where

P = { place(a) | ∀ a∈A } ∪ {Start}, where place(a) is the place representation of action a .

T = { tK,pre(a) | ∀ x∈K, tK,pre(a) ∈x⋅ ∧ place(a)∈tK,pre(a)⋅ }, where K is a set of places and for

x∈P ∪ T, ⋅x = {y | yFx} is called the input set of x and x⋅ = {y | xFy} is called the output set of x and

the flow relation, F ⊆ (PxT) ∪(TxP) such that dom(F) ∪ codom(F) = P ∪ T. pre(a) represents the

pre-condition of action a .

The Petri net generated from Algorithms 1-3 for actoin set A is represented as B = (P, T, F) where

P = { place(a) | ∀ a∈A } ∪ { Start }

T = { ti,j | (i = { Start }, j = true) ∧

(i = {place(a)}, j = pre(b) | ∀ a, b ∈A, post(a) |= pre(b)) ∧ (pre(b) |= true) ∧

(i = s, j = pre(b) | ∀b∈A, (∀s∈2P−{Start}, Λ∀k∈s post(action(k))) |= pre(b)) },

action(k) represents the action in set A assigned to place k.

F = { (x, y) | ∀ ti,j ∈T, ∀ x∈i, y = ti,j } ∪
{ (x, y) | ∀ ti,j ∈T, (x = ti,j ∧ y = place(k), ∀ k∈A | j = pre(k)) }

The three conjuncts in the definition of T correspond to the transitions resulting from Algorithms 1-3. The transi-

tions are labeled ti,j where i = ⋅ti,j and j is the assigned Boolean function. The flow relation, F, represents the

various edges of the Petri net.

Theorem 1: For a set of actions A = {a1, . . . , an}, the Petri net generated by Algorithms 1-3 enables maximum

number of actions starting from the current system state I.

Proof. To prove the above theorem, it is sufficient to prove that for every action a∈A, if I ⇒k a, then there is a

reachable path [3] in the Petri net from the Start place to place(a), where I ⇒k a means that starting from the

current system state I, successful execution of k actions of A enables a. X → a1 implies execution of all actions

of set X enables a1. We prove this by structural induction on the Petri net.

Basis: I ⇒0 a

pre(a) is satisfied by current system state and so a is trivially-enabled by Algorithm 1. Therefore, t{Start},true ∈ T

and { (Start, t{Start},true), (t{Start},true, place(a)) } ⊆ F. Therefore, there is a reachable path from S to

place(a) through the transition labeled t{Start},true.

Hypothesis: Assume if I ⇒k a there is a reachable path from Start to place(a). We need to prove that if

I ⇒k+1 a1 there exists a reachable path from Start to place(a1).

Since I ⇒k a from our inductive hypothesis, there is a set of actions A′ ⊂ A such that ∀ x∈A′, I ⇒l≤k x and

A′ → a1. Therefore, there is a reachable path from Start to place(x) for all x∈A′. There are two cases to consider.

Case 1: A′ = {a} Since a is found to enable a1 from enablement analysis in Algorithm 2, t{place(a)},pre(a1) ∈T and

{ (place(a), t{place(a)},pre(a1)), (t{place(a),pre(a1)}, place(a1)) } ⊂ F. Therefore, there is a reachable path from

place(a) to place(a1) and since by hypothesis there exists a reachable path from Start to place(a), by transitiv-

ity, there is a reachable path from Start to place(a1).

Case 2: Cardinality(A′) > 1 Actions in A′ are found to enable a1 from partial-enablement analysis in Algo-

rithm 3. Therefore, t{place(x) | ∀ x∈A′},pre(a1) ∈T and

{ (place(a) | ∀ a∈A′, t{place(x) | ∀ x∈A′},pre(a1)), (t{place(x) | ∀ x∈A′},pre(a1), place(a1))} ⊂ F.

Therefore, there is a reachable path from place(x), ∀ x∈A′ to place(a1) through the transition

t{place(x) | ∀ x∈A′},pre(a1). Since there is a reachable path from Start to place(x), ∀ x∈A′ from our hypothesis, by

transitivity, there is a reachable path from Start to place(a1).

116 20th Large Installation System Administration Conference (LISA ’06)

